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Why use hybrid grids?

Unstructured grids (triangles/quadrilaterals and tetrahedra/hexahedra)
triangulation of complex domains (Delaunay, advancing front)
prevent distorted grids (e.g., near singular points)
overhead costs due to indirect addressing

Structured grids (Cartesian and/or generalized tensor-product grids)
efficient numerics based on line-wise numbering (SBBLAS)
orthogonal grids to resolve boundary layers
unflexible/impractical for complex domains

Hierarchical hybrid grids
Use globally unstructured coarse grid and employ locally structured
and/or locally unstructured meshes for triangulation in each patch.
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Design goals for adaptivity

Adaptation strategy should lead to conforming triangulations
Mesh quality should not deteriorate due to grid refinement
Grid coarsening should ‘undo’ previous refinement steps
Coarse/initial grid should be preserved for all times
Dynamic grid adaptation must be efficient for transient flows

Literature
Bank83 R. E. Bank, A. H. Sherman and A. Weiser, Refinement

algorithms and data structures for regular local mesh
refinements, in: Scientific Computing, eds. R. Stepleman et al.
(IMACS, North-Holland, Amsterdam, 1983) pp. 3-17

Hem99 D. Hempel, Rekonstruktionsverfahren auf unstrukturierten
Gittern zur numerischen Simulation von Erhaltungsprinzipien,
PhD (in German), Hamburg 1999
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Red-green refinement revisited

Principle: Regular refinement in 2D [Bank83]
Subdivide each marked cell into four similar cells (red refinement)
Eliminate ‘hanging nodes’ by introducing transition elements that are
removed prior to performing further refinement (green refinement)
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Genealogy of the grid

Initial triangulation T0(E0,V0) consists of
a set of elements E0 = {Ωk : k = 1, . . . NE} and
a set of vertices V0 = {vi : i = 1, . . . , NV}

The red-green refinement algorithm is used to transform a conforming
triangulation Tm−1 into a conforming triangulation Tm, m = 1, 2, . . . .

Generation function: g : Vm → N0 (triangles in 2D [Hem99])

g(vi ) :=


0 if vi ∈ V0 initial triangulation

max
vj∈Ωk∩Ωl

g(vj) + 1 if vi ∈ Ωk ∩ Ωl face/edge vertex

max
vj∈Ωk

g(vj) + 1 if vi ∈ Ωk \ ∂Ωk interior vertex

Generation function can be used to prescribe maximum refinement level!
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Re-coarsening algorithm

Goal: Each refinement operation is reversed in a single step
⇒ re-coarsening must start from the red elements

Locking: d : Vm → Z; d(vi) := g(vi) ∀vi ∈ Vm [Hem99]
1 Vertex vi is locked, i.e. d(vi ) := −|d(vi )| if it belongs to

an element that is marked for further refinement
an edge ĳ and there is a vertex vj such that g(vj) > g(vi )
a red element which should not be coarsened due to accuracy

2 Vertices are locked if blue elements would be created otherwise
If two nodes of an inner red triangle are locked, then lock third vertex
If the ‘interior’ node of a patch of four quadrilaterals is locked or
if more than six nodes are locked, then lock all nodes of that patch

Result: Vertices vi ∈ Vm with d(vi ) ≤ 0 are locked;
all other nodes are ‘free’ and can be deleted.

d(vi ) = 0
∀ vi ∈ V0
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Example

Refinement algorithm: initial grid
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00 0
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Example

Refinement algorithm: mark elements for regular refinement
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Example

Refinement algorithm: perform regular refinement
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Example

Refinement algorithm: perform regular refinement + transition cells
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Example

Re-coarsening algorithm: vertices from initial grid are locked
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Example

Re-coarsening algorithm: keep cells and lock connected vertices
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Example

Re-coarsening algorithm: "lock vertex if there are younger ones"
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Example

Re-coarsening algorithm: "prevent creation of blue elements"
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Example

Re-coarsening algorithm: remove vertices and update elements
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Identification of elements

Characterization of triangles/quadrilaterals in 2D
If the triangulation Tm = (Em,Vm) is constructed from T0 = (E0,V0) by
performing m red-green refinement steps then each element Ωk ∈ Em can
be uniquely characterized by the generation number of the vertices.

Example: quadrilaterals

If all vertices of Ωk have zero age, then Ωk ∈ E0

If three vertices of Ωk have the same generation
number, then the element is a red quadrilateral
If exactly two consecutive vertices of Ωk have
largest generation number (in the cell), then
the element is a green quadrilateral and the
adjacent element Ωl is the green neighbor

0

0 0

0
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Identification of elements, contd.

Example: triangles

If all vertices of Ωk have the same generation
number, then the element is an inner red triangle
If exactly two vertices of Ωk have largest generation
number (in the cell), then the element is an outer
red triangle provided that the adjacent element is an
inner red triangle. Otherwise, it is a green triangle
If exactly one vertex vi of Ωk has largest generation
number (in the cell), then the element is a green
triangle and three difference cases are possible:

Adjacent element Ωl has one vertex with largest
generation number and it is the common node vi

There exists one neighboring green triangle with
exactly two vertices with largest generation number
There exist two neighboring green triangles sharing
the common node vi with largest generation number

00

1 1

0

1
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Efficient identification of elements

Idea I: State function s : Em → Z (in MSB representation)
Set Bit[0] to 1 for quadrilateral, otherwise set it to zero
Set Bit[k=1..4] to 1 if both endpoints of edge k have same age
If no two endpoints have same age, then find local position k
of the youngest vertex, set Bit[k] to 1 and negate the state

Idea II: Define local ordering strategy within each element a priori

element characterization element state
triangle/quadrilateral from T0 0/1
green quadrilateral 3, 5, 9, 11, 17, 21
red quadrilateral 7, 13, 19, 25
inner red triangle 14
’other’ triangle 2, 4, 8
green triangle -8, -4, -2

Motivation Grid adaptivity Implementation details Numerical examples Conclusions and Outlook
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Example: Swirling flow

Convection in Ω = (0, 1)2

∂u
∂t

+∇ · (vu) = 0

with velocity v(t), t ∈ (0, T )

vx = sin2(πx) sin(2πy)g(t)
vy = − sin2(πy) sin(2πx)g(t)

g(t) = cos(πt/T ), T = 1.5

32× 32 coarse grid + 3 ref. steps

29.345 cells, 26.189 vertices Time 0.0
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with velocity v(t), t ∈ (0, T )

vx = sin2(πx) sin(2πy)g(t)
vy = − sin2(πy) sin(2πx)g(t)

g(t) = cos(πt/T ), T = 1.5

32× 32 coarse grid + 3 ref. steps
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Example: Swirling flow

Convection in Ω = (0, 1)2

∂u
∂t

+∇ · (vu) = 0

with velocity v(t), t ∈ (0, T )

vx = sin2(πx) sin(2πy)g(t)
vy = − sin2(πy) sin(2πx)g(t)

g(t) = cos(πt/T ), T = 1.5

32× 32 coarse grid + 3 ref. steps

33.080 cells, 29.516 vertices Time 0.5

Motivation Grid adaptivity Implementation details Numerical examples Conclusions and Outlook



12

Example: Swirling flow

Convection in Ω = (0, 1)2

∂u
∂t

+∇ · (vu) = 0

with velocity v(t), t ∈ (0, T )

vx = sin2(πx) sin(2πy)g(t)
vy = − sin2(πy) sin(2πx)g(t)

g(t) = cos(πt/T ), T = 1.5

32× 32 coarse grid + 3 ref. steps

33.371 cells, 29.817 vertices Time 0.75
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Example: Swirling flow

Convection in Ω = (0, 1)2

∂u
∂t

+∇ · (vu) = 0

with velocity v(t), t ∈ (0, T )

vx = sin2(πx) sin(2πy)g(t)
vy = − sin2(πy) sin(2πx)g(t)

g(t) = cos(πt/T ), T = 1.5

32× 32 coarse grid + 3 ref. steps

33.639 cells, 30.089 vertices Time 1.0
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Convection in Ω = (0, 1)2

∂u
∂t

+∇ · (vu) = 0

with velocity v(t), t ∈ (0, T )

vx = sin2(πx) sin(2πy)g(t)
vy = − sin2(πy) sin(2πx)g(t)

g(t) = cos(πt/T ), T = 1.5

32× 32 coarse grid + 3 ref. steps

32.456 cells, 29.177 vertices Time 1.25
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Example: Swirling flow

Convection in Ω = (0, 1)2

∂u
∂t

+∇ · (vu) = 0

with velocity v(t), t ∈ (0, T )

vx = sin2(πx) sin(2πy)g(t)
vy = − sin2(πy) sin(2πx)g(t)

g(t) = cos(πt/T ), T = 1.5

32× 32 coarse grid + 3 ref. steps

30.774 cells, 27.691 vertices Time 1.5
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Example: Swirling flow, contd.

Initial profile

Motivation Grid adaptivity Implementation details Numerical examples Conclusions and Outlook



13

Example: Swirling flow, contd.

Initial profile and final solution computed by semi-implicit FEM-FCT
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Example: Compressible flows

Forward facing step, t = 4.0, 30 contour lines

Double Mach reflection, t = 0.2, 30 contour lines

solutions are computed by algebraic flux correction scheme; Kuzmin
Crank-Nicolson time stepping approach is adopted
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Conclusions and Outlook

Conclusions
hierarchical grid adaptivity can be based on red-green strategy
grid re-coarsening can be based on locking of vertices
grid genealogy can be recovered from nodal generation numbers
cells can be easily identified from element state function

Future work
Combine local grid adaptation with structured grids (HPC)
Implement refinement/re-coarsening algorithms in 3D
Improve error indicators/estimators also for time-dependent flows
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Steady-state flows

Scramjet inlet at Ma = 3.0, α = 0◦
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