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Motivation: Z-pinch implosion

m Phenomenological model by Banks and Shadid

compressible Euler equations + source term

coupled with tracer equation for Lorentz force

m Mathematical challenges

high-resolution scheme for time-dependent conservation laws;

positivity-preservation of density and pressure; failsafe strategy



High-resolution schemes for O,U +V -F =0

High-order scheme Low-order scheme

M9t — KUH M 95 = LU,

Predictor: Compute low-order solution

MY — Ut = Ul s MpULUE

Corrector: Apply limited antidiffusion

MU =M U"+F, F =My — Mc|U* —

L=K+D

DU*E



High-resolution schemes for O,U +V -F =0

High-order scheme Low-order scheme

Mo — Kyt MUt — LUt L=K+D

Predictor: Compute low-order solution

MY — Ut = Ul s MpULUE

Corrector: Apply limited antidiffusion
MU = M UF +F, F =M, — Mc|UY — DU"

A Low-order scheme must satisfy physical constraints



Design principles of FCT schemes

Perform flux correction such that mass is conserved.



Design principles of FCT schemes

Perform flux correction such that mass is conserved.

Conservative flux decomposition

m;U; = miUl + 3 Fj, by =L
J#i



Design principles of FCT schemes

Perform flux correction such that mass is conserved.

Conservative flux decomposition and limiting
qu, = miUZ-L + Z ()3’/ljFij7 qu = _Fij7 Otji = Oéij
J#i
high-order approximation (a;; = 1) to be used in smooth regions

low-order approximation (a;; = 0) to be used near steep fronts



Design principles of FCT schemes, cont'd

Perform flux correction such that certain physical quantities

are bounded by the local extrema of the low-order solution.



Design principles of FCT schemes, cont'd

Perform flux correction such that certain physical quantities

are bounded by the local extrema of the low-order solution.

min L 1 u fu max
{ui <ui + - %: ol fl <
J7F




Fixed fraction flux limiter

Set (?) =1 andrepeat r=1

..., R
Mark all nodes ¢ that violate the local FCT constraint

m1n<u _’_726“(7’1 Uéugnax

Eliminate fixed fraction of unacceptable antidiffusion

NeR 1—r/R if node i or j is marked
Y al"™ otherwise
ij

Low-order solution is recovered in the worst case: U =UF




Zalesak's flux limiter

m Consider positive/negative anti-
diffusive contributions separately
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diffusive contributions separately

= Limit antidiffusion if it exceeds the
distance to local maximum/minimum

= Nodal correction factors

R =min{1,Q;/P"} for positive fluxes into node i

R; =min{l,Q; /P, } for negative fluxes into node %



Zalesak's flux limiter

m Consider positive/negative anti-
diffusive contributions separately

= Limit antidiffusion if it exceeds the
distance to local maximum/minimum

= Nodal correction factors

R =min{1,Q;/P"} for positive fluxes into node i

R; =min{l,Q; /P, } for negative fluxes into node %

m Limit antidiffusive flux for edge 45 by the minimum of R; and R;



Flux limiting for systems

Apply flux limiter to a set of control variables, e.g.,

the primitive variables density, pressure and velocity.
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Flux limiting for systems

Apply flux limiter to a set of control variables, e.g.,

the primitive variables density, pressure and velocity.
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Failsafe flux correction algorithm

Compute low-order solution at time ¢**1
vl —yn

M
N

—9LUL + (1 —0)LU™ prediction

Perform flux correction by Zalesak’s limiter
ml-Ui(O) =mUF+ Y a;; Fyj correction
J#i
Eliminate spurious undershoots/overshoots

miUi(T) =m;UF+ Y az(.;) [ Fij] failsafe step
J#i



Double Mach reflection

From: P.R. Woodward and P. Colella, JCP 54, 115 (1984)

—>
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Double Mach reflection, cont'd

Solution at 7" = 0.2 computed by low-order scheme (a;; = 0)

h = 1/64
At=1-10"*
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Double Mach reflection, cont'd

Solution at 7' = 0.2 computed by Zalesak's flux limiter (a;; = of;af;

h = 1/64
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Double Mach reflection, cont'd

Solution at 7' = 0.2 computed by Zalesak's flux limiter (c;; = afjafj)

Numerical studies: D. Kuzmin, M. Shashkov, J. Shadid, M.M. (in prep.)



|dealized Z-pinch implosion model by Banks and Shadid

m Generalized Euler system coupled with scalar tracer equation

p pv 0
o | pv Ly | Y Qv+pLl | f
ot | pE pEvV + pv f-v

PA PAV 0

m Equation of state

p=(y—1p(E - 0.5]v[?)

m Non-dimensional Lorentz force

f=(pA) (M)2 e

IIIlZLX



Coupled solution algorithm

time stepping loop

Given: (U, p\)™

I N
Low-order scheme

MY = L(U)U + S(v, pA)

MY = L(v)(p))

(U, pA)"

[Zalesak's limiter a;; = ofaf; [+ failsafe correction] H [, pA)tt }




|dealized Z-pinch implosion

From: J.W. Banks and J.N. Shadid, JCP 61, 725 (2009)

p=0.5
A=0.0

v = 0.0, p = 1.0 everywhere




|dealized Z-pinch implosion, cont'd

Time: 0.8 sity distribution
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Conclusions and outlook

Linearized flux correction algorithm for time-dependent flows

mass conservation, boundedness of physical quantities,

failsafe strategy if density/pressure becomes negative

Coupled solution algorithm for idealized Z-pinch implosions

positivity and symmetry preservation on unstructured grids

Todo: Extension to more 'realistic’ scenarios

current drive, r-z plane, RT-instabilities, AMR
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Appendix




Extended version of Zalesak's FCT limiter =D

. .y . L .. . u u u
Input: auxiliary solution u™ and antidiffusive fluxes f}%, where f} # f

Sums of positive/negative antidiffusive fluxes into node i
P =3 max{0,f}, P7 =) min{0,f}
J#i J#i
Upper/lower bounds based on the local extrema of u”

QFf =™ —ub), Q7 =miu™ —uf)

7 @ %
Correction factors j; = af; to satisfy the FCT constraints

min{1, QF /P;"} if >0

Oé?v = mm{Rl,Rz}, RZ =
’ e ! {mm{l,Q;/P;} if f <0




Node-based transformation of control variables ==

Conservative variables: density, momentum, total energy

Ui = [pi (pv)is (pE)i],  Fij = [ [ e i } , Fju=-F;

Primitive variables V' = TU: density, velocity, pressure

) 2
‘/ti = [pi7vi7pi]7 Vv, = i’ Pi = ('Y - 1) |:(pE)z - %]

7.3 = [ Z,f;},fﬁ} = T(Ui)Fm, T(UJ)F]Z = Gji # *Gij

Raw antidiffusive fluxes for the velocity and pressure

£°V v, £P. |2
f;zj:ui"ﬂj, _p_:(v_l)[m p__vi.f{)jv_i_fZE}

pi ij 2 Jij




Constrained initialization

Pointwise initialization

U(x;) = Uo(x;)

_ 1.0 in Ql
P~ 001 inQy

u=v=0.0,p=1.0
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Constrained initialization

Pointwise initialization Conservative initialization

U(x;) = Up(x;) JowUp dz = [, wUodz

Consistent Lo-projection

> mi Ut = [ pilpdx

_ 1.0 in Ql
P~ 001 inQy

u=v=0.0,p=1.0



Constrained initialization

Pointwise initialization Conservative initialization
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Constrained initialization

Pointwise initialization Conservative initialization

U(x;) = Up(x;) JowUp dz = [, wUodz

Consistent Lo-projection

Zj mijUjH = fQ 801',U0 dl‘

Mass-lumped Ls-projection

mZUlL = fQ SDiUO dx

Limited Lo-projection (0 < a;; < 1)

_ 1.0 in Ql
P~ 001 inQy

u=v=0.0,p=1.0 i J

m;U; = mlUlL + Z aijmij(UiL = UJL)




Initialization for bilinear elements

(a) consistent La-projection (b) lumped L2-projection

(c) Lo-projection, a;; = of;

bilinear elements, 3 x 3 Gauss rule

lp—pnllz | min(pn) | max(pn)

(@) 1.048e-1 | -1.031e1 1.098
(b) | 1.168e1 1.000e-2 1.000
(©) 1.103e-1 1.000e-2 1.000

computed by adaptive cubature formulae




Initialization for linear elements

(a) consistent Lo-projection (b) lumped Ls-projection

i

AT A VI

(c) Lo-projection, a;; = of;

linear elements, 3-point Gauss rule

llo = prll2 [ min(pp) [ max(pp)

(a) 1.206e-1 -7.143e-2 1.088
(b) 1.357e-1 1.000e-2 1.000
() 1.259%e-1 1.000e-2 1.000

computed by adaptive cubature formulae
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