

On the design of high-resolution finite element schemes for coupled problems with application to an idealized Z-pinch implosion model

Matthias Möller¹ joint work with: Dmitri Kuzmin²

¹Institute of Applied Mathematics (LS III), Dortmund University of Technology, Germany, Email: matthias.moeller@math.tu-dortmund.de

² Department of Mathematics, University of Houston, TX, USA, Email: kuzmin@math.uh.edu

Motivation: Z-pinch implosion

 Phenomenological model by Banks and Shadid compressible Euler equations + source term coupled with tracer equation for Lorentz force

Mathematical challenges

high-resolution scheme for time-dependent conservation laws; positivity-preservation of density and pressure; failsafe strategy High-order scheme

$$M_C \frac{\mathrm{d}U^H}{\mathrm{d}t} = KU^H$$

Low-order scheme

$$M_L \frac{\mathrm{d}U^L}{\mathrm{d}t} = LU^L, \quad L = K + D$$

■ **Predictor:** Compute low-order solution

$$M_L \frac{\mathrm{d} U^L}{\mathrm{d} t} = L U^L \qquad \Rightarrow \qquad \dot{U}^L \approx M_L^{-1} L U^L$$

Corrector: Apply limited antidiffusion

$$M_L U = M_L U^L + \overline{F}, \qquad F = [M_L - M_C] \dot{U}^L - DU^L$$

$$\partial_t U + \nabla \cdot \mathbf{F} = 0$$

High-order scheme

$$M_C \frac{\mathrm{d}U^H}{\mathrm{d}t} = KU^H$$

Low-order scheme

$$M_L \frac{\mathrm{d}U^L}{\mathrm{d}t} = LU^L, \quad L = K + D$$

Predictor: Compute low-order solution

$$M_L \frac{\mathrm{d} U^L}{\mathrm{d} t} = L U^L \qquad \Rightarrow \qquad \dot{U}^L \approx M_L^{-1} L U^L$$

Corrector: Apply limited antidiffusion

$$M_L U = M_L U^L + \overline{F}, \qquad F = [M_L - M_C] \dot{U}^L - DU^L$$

⚠ Low-order scheme must satisfy physical constraints

Design principles of FCT schemes

Perform flux correction such that mass is conserved.

Design principles of FCT schemes

Perform flux correction such that mass is conserved.

Conservative flux decomposition

$$m_i U_i = m_i U_i^L + \sum_{j \neq i} F_{ij},$$
 $F_{ji} = -F_{ij}$

Design principles of FCT schemes

Perform flux correction such that mass is conserved.

Conservative flux decomposition and limiting

$$m_i U_i = m_i U_i^L + \sum_{j \neq i} \alpha_{ij} F_{ij}, \qquad F_{ji} = -F_{ij}, \qquad \alpha_{ji} = \alpha_{ij}$$

- high-order approximation $(\alpha_{ij} = 1)$ to be used in smooth regions
- low-order approximation $(\alpha_{ij} = 0)$ to be used near steep fronts

Design principles of FCT schemes, cont'd

Perform flux correction such that certain **physical quantities** are bounded by the local extrema of the low-order solution.

Perform flux correction such that certain **physical quantities** are bounded by the local extrema of the low-order solution.

Fixed fraction flux limiter

- Set $\alpha_{ij}^{(0)} := 1$ and repeat $r = 1, \dots, R$
- Mark all nodes i that violate the local FCT constraint

$$u_i^{\min} \le u_i^L + \frac{1}{m_i} \sum_{j \ne i} \alpha_{ij}^{(r-1)} f_{ij}^u \le u_i^{\max}$$

Eliminate fixed fraction of unacceptable antidiffusion

$$\alpha_{ij}^{(r)} := \left\{ \begin{array}{ll} 1 - r/R & \text{if node } i \text{ or } j \text{ is marked} \\ \alpha_{ij}^{(r-1)} & \text{otherwise} \end{array} \right.$$

Low-order solution is recovered in the worst case:

$$U_i = U_i^L$$

- Consider positive/negative antidiffusive contributions separately
- Limit antidiffusion if it exceeds the distance to local maximum/minimum

- Consider positive/negative antidiffusive contributions separately
- Limit antidiffusion if it exceeds the distance to local maximum/minimum

Nodal correction factors

$$\begin{split} R_i^+ &= \min\{1, Q_i^+/P_i^+\} \quad \text{for positive fluxes into node } i \\ R_i^- &= \min\{1, Q_i^-/P_i^-\} \quad \text{for negative fluxes into node } i \end{split}$$

- Consider positive/negative antidiffusive contributions separately
- Limit antidiffusion if it exceeds the distance to local maximum/minimum

Nodal correction factors

$$\begin{split} R_i^+ &= \min\{1, Q_i^+/P_i^+\} \quad \text{for positive fluxes into node } i \\ R_i^- &= \min\{1, Q_i^-/P_i^-\} \quad \text{for negative fluxes into node } i \end{split}$$

lacksquare Limit antidiffusive flux for edge ij by the minimum of R_i and R_j

Apply flux limiter to a **set of control variables**, e.g., the primitive variables density, pressure and velocity.

Apply flux limiter to a **set of control variables**, e.g., the primitive variables density, pressure and velocity.

Apply flux limiter to a **set of control variables**, e.g., the primitive variables density, pressure and velocity.

Apply flux limiter to a **set of control variables**, e.g., the primitive variables density, pressure and velocity.

Nodal transformation of variables $V_i = \mathcal{T}(U_i)U_i$ and $G_{ij} = \mathcal{T}(U_i)F_{ij}$

Failsafe flux correction algorithm

1 Compute low-order solution at time t^{n+1}

$$M_L \frac{U^L - U^n}{\Delta t} = \theta L U^L + (1 - \theta) L U^n \qquad \qquad \text{prediction}$$

Perform flux correction by Zalesak's limiter

$$m_i U_i^{(0)} = m_i U_i^L + \sum_{j \neq i} \alpha_{ij} F_{ij}$$
 correction

Eliminate spurious undershoots/overshoots

$$m_i U_i^{(r)} = m_i U_i^L + \sum_{i \neq i} \alpha_{ij}^{(r)} [\alpha_{ij} F_{ij}]$$
 failsafe step

Double Mach reflection

From: P.R. Woodward and P. Colella, JCP 54, 115 (1984)

Solution at T = 0.2 computed by low-order scheme $(\alpha_{ij} \equiv 0)$

Solution at T=0.2 computed by fixed fraction flux limiter

Solution at T=0.2 computed by Zalesak's flux limiter ($\alpha_{ij}=\alpha_{ij}^p\alpha_{ij}^\rho$)

Solution at T=0.2 computed by Zalesak's flux limiter $(\alpha_{ij}=\alpha_{ij}^p\alpha_{ij}^\rho)$

Numerical studies: D. Kuzmin, M. Shashkov, J. Shadid, M.M. (in prep.)

Idealized Z-pinch implosion model by Banks and Shadid

Generalized Euler system coupled with scalar tracer equation

$$\frac{\partial}{\partial t} \begin{bmatrix} \rho \\ \rho \mathbf{v} \\ \rho E \\ \rho \lambda \end{bmatrix} + \nabla \cdot \begin{bmatrix} \rho \mathbf{v} \\ \rho \mathbf{v} \otimes \mathbf{v} + p \mathcal{I} \\ \rho E \mathbf{v} + p \mathbf{v} \\ \rho \lambda \mathbf{v} \end{bmatrix} = \begin{bmatrix} 0 \\ \mathbf{f} \\ \mathbf{f} \cdot \mathbf{v} \\ 0 \end{bmatrix}$$

Equation of state

$$p = (\gamma - 1)\rho(E - 0.5|\mathbf{v}|^2)$$

Non-dimensional Lorentz force

$$\mathbf{f} = (\rho \lambda) \left(\frac{I(t)}{I_{\text{max}}}\right)^2 \frac{\hat{\mathbf{e}}_r}{r_{\text{eff}}}$$

Coupled solution algorithm

Idealized Z-pinch implosion

From: J.W. Banks and J.N. Shadid, JCP 61, 725 (2009)

 $\mathbf{v}=0.0,\,p=1.0$ everywhere

Idealized Z-pinch implosion, cont'd

Idealized Z-pinch implosion, cont'd

Idealized Z-pinch implosion, cont'd

Conclusions and outlook

- Linearized flux correction algorithm for time-dependent flows mass conservation, boundedness of physical quantities, failsafe strategy if density/pressure becomes negative
- Coupled solution algorithm for idealized Z-pinch implosions
 positivity and symmetry preservation on unstructured grids
- Todo: Extension to more 'realistic' scenarios
 current drive, r-z plane, RT-instabilities, AMR

Appendix

Input: auxiliary solution u^L and antidiffusive fluxes f^u_{ij} , where $f^u_{ji} \neq f^u_{ij}$

 \blacksquare Sums of positive/negative antidiffusive fluxes into node i

$$P_i^+ = \sum_{j \neq i} \max\{0, f_{ij}^u\}, \qquad P_i^- = \sum_{j \neq i} \min\{0, f_{ij}^u\}$$

2 Upper/lower bounds based on the local extrema of u^L

$$Q_i^+ = m_i(u_i^{\text{max}} - u_i^L), \qquad Q_i^- = m_i(u_i^{\text{min}} - u_i^L)$$

 \blacksquare Correction factors $\alpha_{ij}^u=\alpha_{ji}^u$ to satisfy the FCT constraints

$$\alpha_{ij}^{u} = \min\{R_{ij}, R_{ji}\}, \quad R_{ij} = \begin{cases} \min\{1, Q_i^+/P_i^+\} & \text{if } f_{ij}^u \ge 0\\ \min\{1, Q_i^-/P_i^-\} & \text{if } f_{ij}^u < 0 \end{cases}$$

Conservative variables: density, momentum, total energy

$$U_i = \left[\rho_i, (\rho \mathbf{v})_i, (\rho E)_i\right], \qquad F_{ij} = \left[f_{ij}^{\rho}, \mathbf{f}_{ij}^{\rho v}, f_{ij}^{\rho E}\right], \qquad F_{ji} = -F_{ij}$$

 \blacksquare Primitive variables V=TU: density, velocity, pressure

$$V_i = \left[\rho_i, \mathbf{v}_i, p_i\right], \qquad \mathbf{v}_i = \frac{(\rho \mathbf{v})_i}{\rho_i}, \qquad p_i = (\gamma - 1) \left[(\rho E)_i - \frac{|(\rho \mathbf{v})_i|^2}{2\rho_i} \right]$$
$$G_{ij} = \left[f_{ij}^{\rho}, \mathbf{f}_{ij}^{v}, f_{ij}^{p} \right] = T(U_i) F_{ij}, \qquad T(U_i) F_{ji} = G_{ji} \neq -G_{ij}$$

Raw antidiffusive fluxes for the velocity and pressure

$$\mathbf{f}_{ij}^{v} = \frac{\mathbf{f}_{ij}^{\rho v} - \mathbf{v}_{i} f_{ij}^{\rho}}{\rho_{i}}, \qquad f_{ij}^{p} = (\gamma - 1) \left[\frac{|\mathbf{v}_{i}|^{2}}{2} f_{ij}^{\rho} - \mathbf{v}_{i} \cdot \mathbf{f}_{ij}^{\rho v} + f_{ij}^{\rho E} \right]$$

■ Pointwise initialization

$$U(\mathbf{x}_i) = U_0(\mathbf{x}_i)$$

$$\rho = \left\{ \begin{array}{ll} 1.0 & \text{in } \Omega_1 \\ 0.01 & \text{in } \Omega_2 \end{array} \right.$$

$$u = v = 0.0, \ p = 1.0$$

Pointwise initialization

$$U(\mathbf{x}_i) = U_0(\mathbf{x}_i)$$

$$\rho = \left\{ \begin{array}{ll} 1.0 & \text{in } \Omega_1 \\ 0.01 & \text{in } \Omega_2 \end{array} \right.$$

$$u = v = 0.0, \ p = 1.0$$

■ Conservative initialization

$$\int_{\Omega} w U_h \, \mathrm{d}x = \int_{\Omega} w U_0 \, \mathrm{d}x$$

Pointwise initialization $U(\mathbf{x}_i) = U_0(\mathbf{x}_i)$

$$\rho = \left\{ \begin{array}{ll} 1.0 & \text{in } \Omega_1 \\ 0.01 & \text{in } \Omega_2 \end{array} \right.$$

$$u = v = 0.0, \ p = 1.0$$

Conservative initialization

$$\int_{\Omega} w U_h \, \mathrm{d}x = \int_{\Omega} w U_0 \, \mathrm{d}x$$

• Consistent L_2 -projection

$$\sum_{j} m_{ij} U_{j}^{H} = \int_{\Omega} \varphi_{i} U_{0} \, \mathrm{d}x$$

Pointwise initialization $U(\mathbf{x}_i) = U_0(\mathbf{x}_i)$

$$\rho = \left\{ \begin{array}{ll} 1.0 & \text{in } \Omega_1 \\ 0.01 & \text{in } \Omega_2 \end{array} \right.$$

$$u = v = 0.0, \ p = 1.0$$

Conservative initialization

$$\int_{\Omega} w U_h \, \mathrm{d}x = \int_{\Omega} w U_0 \, \mathrm{d}x$$

■ Consistent *L*₂-projection

$$\sum_{j} m_{ij} U_{j}^{H} = \int_{\Omega} \varphi_{i} U_{0} \, \mathrm{d}x$$

Mass-lumped L_2 -projection $m_i U_i^L = \int_{\Omega} \varphi_i U_0 \, \mathrm{d}x$

Pointwise initialization $U(\mathbf{x}_i) = U_0(\mathbf{x}_i)$

$$\rho = \left\{ \begin{array}{ll} 1.0 & \text{in } \Omega_1 \\ 0.01 & \text{in } \Omega_2 \end{array} \right.$$

$$u = v = 0.0, \ p = 1.0$$

Conservative initialization

$$\int_{\Omega} w U_h \, \mathrm{d}x = \int_{\Omega} w U_0 \, \mathrm{d}x$$

• Consistent L_2 -projection

$$\sum_{j} m_{ij} U_{j}^{H} = \int_{\Omega} \varphi_{i} U_{0} \, \mathrm{d}x$$

lacktriangle Mass-lumped L_2 -projection

$$m_i U_i^L = \int_{\Omega} \varphi_i U_0 \, \mathrm{d}x$$

■ Limited L_2 -projection $(0 \le \alpha_{ij} \le 1)$

$$m_i U_i = m_i U_i^L + \sum_{j \neq i} \alpha_{ij} m_{ij} (U_i^L - U_j^L)$$

Initialization for bilinear elements

(a) consistent L_2 -projection

(b) lumped L_2 -projection

(c)
$$L_2$$
-projection, $\alpha_{ij} = \alpha_{ij}^{\rho}$

	bilinear elements, 3×3 Gauss rule		
	$\ \rho-\rho_h\ _2$	$\min(\rho_h)$	$\max(\rho_h)$
(a)	1.048e-1	-1.031e-1	1.098
(b)	1.168e-1	1.000e-2	1.000
(c)	1.103e-1	1.000e-2	1.000

computed by adaptive cubature formulae

Initialization for linear elements

(a) consistent L_2 -projection

(b) lumped L_2 -projection

(c)
$$L_2$$
-projection, $\alpha_{ij} = \alpha_{ij}^{\rho}$

	linear elements, 3-point Gauss rule			
	$\ \rho-\rho_h\ _2$	$\min(\rho_h)$	$\max(\rho_h)$	
(a)	1.206e-1	-7.143e-2	1.088	
(b)	1.357e-1	1.000e-2	1.000	
(c)	1.259e-1	1.000e-2	1.000	

computed by adaptive cubature formulae