technische universitat fakultat fur m I
dortmund mathematik -

Accelerating an Edge-Based CFD Solver
Using Many-Core Co-Processors

Matthias Moller
Institute of Applied Mathematics (LS3)
TU Dortmund, Germany

Thanks to D. Goddeke, M. Koster, D. Ribbrock (TUDo)
D. Kuzmin (University of Erlangen-Nuremberg)

CFD-Software: FeatFlow?2

Open-source finite element library with demo applications

~ 7/00.000 lines of Fortran 95 code + external libraries

avallable online http://www.featflow.de/en/software/featflow2.html

http://www.featflow.de/en/software/featflow2.html
http://www.featflow.de/en/software/featflow2.html

CFD-Software: FeatFlow?2

= Open-source finite element library with demo applications

m ~ /00.000 lines of Fortran 95 code + external libraries

= avallable online http//www.featflow.de/en/software/featflow2.ntm|

|. Milestone: OpenMP parallelization

m classical FE-like assembly of coefficient matrices

m edge-based assembly of vectors and operators

= otherloops (flux limiter, MVmult, norms, ...)

http://www.featflow.de/en/software/featflow2.html
http://www.featflow.de/en/software/featflow2.html

CFD-Software: FeatFlow?2

= Open-source finite element library with demo applications

m ~ /00.000 lines of Fortran 95 code + external libraries

= avallable online http//www.featflow.de/en/software/featflow2.ntm|

.--7...'1 -

¥ R -

- (S

[N] | ‘.

[RERERIRE § L4
e

vl Y
o | S M
ey s

- -
- ‘l
re
e

|. Milestone: OpenMP parallelization

m classical FE-like assembly of coefficient matrices

m edge-based assembly of vectors and operators

= otherloops (flux limiter, MVmult, norms, ...)

b
e)
i

Ny
. . . ‘i"!\m :
2. Milestone: CUDA port of time consuming parts %5

= minimally invasive integration of co-processor support

m edge-based assembly of vectors and operators

http://www.featflow.de/en/software/featflow2.html
http://www.featflow.de/en/software/featflow2.html

CFD-Software: FeatFlow?2

= Open-source finite element library with demo applications

m ~ /00.000 lines of Fortran 95 code + external libraries

= available online http://www.featflow.de/en/software/featflow2.html

4 o —

geen ii!

- 1 R S§RRES
,‘:[-_,,“_1‘ ‘I“r!!;!!!.
PEERCRERTS

i ""T"ff‘;"l‘l,‘t‘_-.g---

! -)\\
I SN B
Pl g ! \
& : "‘u
: -

[
.
.
rl-'
e :.Q
]

|. Milestone: OpenMP parallelization

m classical FE-like assembly of coefficient matrices

m edge-based assembly of vectors and operators

= other loops (flux limiter; MVmult, norms, ...)

Reuse of application code via meta-
programming library (C++/Fortran)

2. Milestone: CUDA port of time consuming parts

= minimally invasive integration of co-processor support

® edge-based assembly of vectors and operators

http://www.featflow.de/en/software/featflow2.html
http://www.featflow.de/en/software/featflow2.html

Galerkin finite element schemes a.U +V-FU) =0

Weak formulation

/W%(Z VW-F(U)dx+/Wn-F(U)ds:O, YW e W
Q) I

Group representation [Fe83]

U(x,t) ~ Zj p;(x)U;(t) F(U) = Zj p;(x)F(U;)

Semi-discrete high-order scheme

dU;
ijz'j dtj ZjCji'Fj—FZjSij'Fj:O

mi; Z/%Sﬁj dx sj; =/$07;90jﬂd3 CjiZ/V%;SOj dx
Q r Q

Galerkin finite element schemes, cont'a

Galerkin flux decomposition

chij:() — _chi.Fj

J

Semi-discrete high-order scheme [Kv03]

SR :
Zj g dt] | Sz‘j'Fj_

efficient edge-based assembly of Galerkin fluxes

precomputation of coefficient matrices (on CPU) and singular
transfer to device memory (low storage requirement on GPU)

Algebraic flux correction, Kuzmin et al.

m Semi-discrete low-order scheme

dU
dt Z G@] —+ ng (U U) 0 m; — Zj mz-j
T j#’L <=

mass lumping artificial dissipation

= Conservative flux decomposition

U, dU;
mi(U ;m’” (dt dtj> F Pt

antidiffusive fluxes

= low-order scheme + limited antidiffusion = high-resolution scheme

= Parallelization of edge-loops Is crucial to achive high overall efficiency

Outline of solution algorithm

Initialization: Transfer edge-data to global device memory
In every time step:
Transfer solution vector into global device memory
Assemble rhs vector and transfer back to host memory

In every nonlinear step:

Assemble nonlinear parts of operator and
residual vector and transfer to host memory

Combine with constant contributions on host

Solve nonlinear problem, update solution, and
transfer solution into global device memory

Preparation of parallel edge-based assembly

Edge-coloring of the FE sparsity graph

c <2A —1 greedy algorithm
A<c<A+1 Vizing's algorithm

Precompute constant coefficient matrices (classical FE-assembly on CPU)
and store them into edge-based data structure (AoS/SoA/mixture)

|>...

A

struct {

int i, j;
double m_ij;
double cx_ij, cx_ji;
double cy_lij, cy_ji;
} EdgeData[nedge];

int nodes[2][nedge];
double coeff_m[nedge];
double coeff_cx[2][nedge];
double coeff_cy[2][nedge];

and index vector separating color groups

Parallel edge-based assembly

precomputed edge-data
CTTTTTTTTTTTTITTTITTTT } o o o

C
O
+—
O
O,
>
C
O
=
D)
O
Vg

preconditioner or residual/rh.s. vector

stored in block or interleaved format

Parallel edge-based assembly

precomputed edge-data
[(TTTTTTTTTTTTTTTITTTT } o o o

single edge per cudathread OR
group of edges per ompthread
= work unit

C
O
+—
O
O,
>
C
O
=
D)
O
Vg

preconditioner or residual/rh.s. vector

Parallel edge-based assembly

precomputed edge-data
[(TTTTTTTTTTTTTTTTTTT } o o o

C
O
+—
O
O,
>
C
O
=
D)
O
Vg

preconditioner or residual/rh.s. vector

Parallel edge-based assembly

precomputed edge-data
(TTTTTTTTTTTTTTTITTTT [TTTTTTT}ee-o

solution vector

[TTT] [T
+ +
TTT] [T

precondritioner or residual/rh.s. vector

Parallel edge-based assembly

precomputed edge-data
[(TTTTTTTTTTTTTTTTTTT } o o o

++
++

C
O
+—
O
O,
>
C
O
=
D)
O
Vg

preconditioner or residual/rh.s. vector

Parallel edge-based assembly

precomputed edge-data
l o o o

Limiting factors
63 registers and

v~

+ size of shmem

/ per cudathread

C
O
+—
O
O,
>
C
O
=
D)
O
Vg

preconditioner or residual/rh.s. vector

Numerical example

= Sod's Shock tube problem in 2D
» Linearized FEM-FCT (density, pressue)
= Artificial dissipation
m scalar (39 lo.c.)
= Roe-type (55 l.o.c.)
QI finite elements
Regsular grid (A = 8)
Greedy coloring (¢ = 14)
Gee 4.4.3, CUDA 4.2

density

pressure

X-velocity

Computational efficiency

Computing platforms

Pl: Intel Xeon X5680 at 3.33GHz (2x6, no hyperthreading, 2x|2MB L3)
P2: Intel Core 1/ at 3.33GHz (Ix6, IxI2MB L3) + C20/0 (ECC off)

OpenMP: with 800 edges per ,,parallel block”
CUDA: with 64 threads per CUDA block

Comparisons

ﬁ micro benchmark: P -OpenMP vs. P2-CUDA
edge-based vector assembly of a single color group

ﬁ meso benchmark: P2-OpenMP vs. P2-CUDA
edge-based vector assembly over all color groups

macro benchmark: P2-OpenMP vs. P2-CUDA
Jull™ simulation (100 time steps) w/o I/O-operations

Bandwidth: CPU implementation (P1)

Kernel: inviscid fluxes with scalar dissipation in 2D

+ | o 2 X 8 A 12 OMP threads

N
o

out of L3 cache

R e
o

Bandwidth (GB/s)
o
=D
u; xﬁ

Oy

o o)
- +

o

|8

125000 250000 375000 500000

Number of edges per color group

Bandwidth: CPU implementation (P1)

125000 250000 375000 500000

Number of edges per color group

Bandwidth: GPU implementation (P2)

Kernel: inviscid fluxes with scalar dissipation in 2D

+ Baseline impl. O Shared Memory impl.

N
o
+

¢

5%
%

W
o
-

N
o
®©

—~~
(7]
~—
oM
O
~—"
-
)
RS
3
5
C
(g°)
m

o
® 6 ®p o @

o

125000 250000 375000 500000

o

Number of edges per color group

Computing time: CPU implementation (P|)

Kernel: inviscid fluxes with scalar dissipation in 2D

o OMP2 | OMP4 | OMP8 [OMPI2

8

12312 106389 478503

Speedup to single thread CPU implementation

Number of edges per color group

Computing time: GPU implementation (P2)

GPU is >5x faster than best CPU implementation

C—

Speedup to OMP |2 implementation

12312 106389 478503

Number of edges per color group

~fficiency of vector assembly (P2)

Kernel: inviscid fluxes with scalar dissipation in 2D

O OMP6 O GPU

U1
o

N
o

N
o

W
o
O

w/ transf.
.55 ms*

N
o

~~
(7]
~~
a8}
O
N
-
=9
9
3
O
c
(ge)
a8}

Accumulated time (ms)

o

0-0-0-0-0-0-0-0-0-0-00-0-0

6-7 GB/s
0

Color groups |-14

~fficiency of vector assembly (P2)

Kernel: inviscid fluxes with register intense Roe-type dissipation in 2D
e —————

O OMP6 O GPU
|50 ms

N
o

N
o

W
o
O
o

w/ transf.
,64 ms*

N
o
o
o

~~
(7]
~~
a8}
O
N
-
=9
9
3
O
c
(ge)
a8}

Accumulated time (ms)

o
w
S

0-0-0-0-0-0-0-0-0000-00

6 GB/s
0

Color groups |-14

—fficiency of ,,full” simulation (P2)

Comparison: full OpenMP vs. OpenMP + vector assembly on GPU

I OMP6 = GPU OMP |

Level 4
Level 5
Level 6

Level 7

wall time (sec)

—fficiency of ,,full” simulation (P2)

Comparison: full OpenMP vs. OpenMP + vector assembly on GPU

B OMP6 B GPU porting more edge-loops to GPU
will improve overall performance

Level 4

Level 5

Speedup to OMP |

Level 6 Level 4 Level 5 Level 6 Level 7

Level 7

wall time (sec)

A second look on vector assembly

GPU would perform best for only few groups with
an equally distributed number of edges per color

=> use better coloring algorithm and ,,better” finite elements (?)

500000

375000

250000

125000

Number of edges per color group

Color groups |-14

A second look on vector assembly

Non-conforming rotated bilinear Q1~ finite element
m DOFs are located at the midpoints of edges
m each DOF always couples with 6 neighbors (10 in 3D)

1125000

6M total edges

843750

4M total edges
/ g

562500

Number of edges per color group

281250
HEREERLINL,

Color groups |-14

Non-conforming finite elements

Kernel: inviscid fluxes with scalar
dissipation in 2D

O OMP6 O GPU

40

w/ transf.
.95 ms*

Accumulated time (ms)

~~
(7]
S~
(a8
O
N
=
§30
3
5
c
()
(a8

N

o
U1
o

o

6-7 GB/s O

Color groups 1-9

0

Technical details

Handle-based storage manager

(De-)allocate new memory assigned to ihandle (= unique Integer)

call storage_new((/a,b,c/), ST_DOUBLE, ihandle, [rheap])
call storage_free(ihandle, [rheap])

Associate 3D double pointer to memory at ihandle

call storage_getbase(ihandle, p_Darray3D, [rheap])

Different memory managers can be used ,under the hood'

Fortran only allocate / deallocate | CUDA cudaHostAlloc / cudaFreeHost

works with all F90 compilers works with F2003: iso_c_binding

no asynchronous transfers fast and asynchronous transfers

Handle-based storage manager, cont'd

Full Fortran 95 functionality: size, shape, assumed-shape arrays

Lightwight data structures (= collection of handles)

type t_matrix
integer :: na, neq, ncols
integer :: h_Da, h_Kcol, h_Kld <- simple resize in mesh adaptation

Co-Processor support does not break legacy code

Memory transfers and accessing memory on device

storage_syncMem(ihandle, <direction>, async=YES/NO, ...)
storage_getMemPtr(ihandle, p_memptr, ...) -> pass p_memptr to GPU kernel

Support for OpenCL, ... can be integrated easily (1?)

Meta-programming library

Example: Roe's Riemann solver is the same on CPU/GPU except for
different programming languages (Fortran/C++)
different index addressing (0-/|-based)

different memory layouts (AoS/SoA/mixture)

Meta-programming of application code via pre-processor macros

tedious to find least common subset of bullt-in pre-processor
features supported by all Fortran compilers

GNU cpp: F90 = 190 + Fortran compiler

Inspired by presentation by X. Roca at FEF 201 |

Meta-programming library

IDXT(flux_xi, 1) = INVSCFLUX1_XDIR(edgedata, IDX3, i, tid, . . .)
IDXT(flux_xi, 2) = INVSCFLUX2_XDIR(edgedata, IDX3, i, tid, . . .)

I—(#define FORTRAN_AOS)—V flux_xi(1) = edgedata(2, i, tid)
flux_xi(2) = edgedata(2, i, tid)*ui+pi

#define FORTRAN_SOA }—»/ flux_xi(1) = edgedata(tid, i, 2)
flux_xi(2) = edgedata(tid, i, 2)*ui+pi

(#deﬁne c_Aos)

v

flux_xi[((nthreads)*(1 +(-1))+(tid))] = edgedata[((nthreads)*(2)*(2 +(-1))
+(nthreads)*(i +(-1))+(tid))];
flux_xi[((nthreads)*(2 +(-1))+(tid))] = (edgedata[((nthreads)*(2)*(2 +(-1))+
(nthreads)*(i +(-1))+(tid))]*ui+pi);

summary

Parallelization of edge-based CFD-solver Featflow?2

Group-FEM formulation leads to memory and time efficient
edge-based assembly on Many-Core architectures

Minimally invasive integration of GPU acceleration in legacy code

Meta-programming library simplifies mixing of programming
languages and enables reuse of application code

Future plans
Explore benefits of non-conforming FEs for edge-parallelization
Port more edge-loops to CUDA and add multi-GPU support
Combine assembly on CPU and GPU adaptively

References

C.AJ. Fletcher, The group finite element formulation. CMAME 1983, 37(2),
OP. 225-244.

D. Kuzmin, Explicit and implicit FEM-FCT algorithms with flux linearization.
JCP 2009, 228(7), pp. 251 7/-2534.

D. Kuzmin, M. M, S. Turek, Multidimensional FEM-FCT schemes for arbitrary
time-stepping. INMF 2003, 42(3), pp. 265-295.

D. Kuzmin, M. ™M, J.N. Shadid, M. Shashkov, Failsafe flux limiting and
constrained data projections for equations of gas dynamics. JCP 2010,
229(23), pp. 8/66—-8779.

X. Rocg, private communication (FEF 201 |, Munich)

