



# Accelerating an Edge-Based CFD Solver Using Many-Core Co-Processors

Matthias Möller Institute of Applied Mathematics (LS3) TU Dortmund, Germany

Thanks to D. Göddeke, M. Köster, D. Ribbrock (TUDo) D. Kuzmin (University of Erlangen-Nuremberg)

- Open-source finite element library with demo applications
- ~ 700.000 lines of Fortran 95 code + external libraries
- available online <a href="http://www.featflow.de/en/software/featflow2.html">http://www.featflow.de/en/software/featflow2.html</a>

- Open-source finite element library with demo applications
- ~ 700.000 lines of Fortran 95 code + external libraries
- available online <a href="http://www.featflow.de/en/software/featflow2.html">http://www.featflow.de/en/software/featflow2.html</a>
  - I. Milestone: OpenMP parallelization
    - classical FE-like assembly of coefficient matrices
    - edge-based assembly of vectors and operators
    - other loops (flux limiter, MVmult, norms, ...)



- Open-source finite element library with demo applications
- ~ 700.000 lines of Fortran 95 code + external libraries
- available online <a href="http://www.featflow.de/en/software/featflow2.html">http://www.featflow.de/en/software/featflow2.html</a>
  - I. Milestone: OpenMP parallelization
    - classical FE-like assembly of coefficient matrices
    - edge-based assembly of vectors and operators
    - other loops (flux limiter, MVmult, norms, ...)

- 2. Milestone: CUDA port of time consuming parts
  - minimally invasive integration of co-processor support
  - edge-based assembly of vectors and operators

- Open-source finite element library with demo applications
- ~ 700.000 lines of Fortran 95 code + external libraries
- available online <a href="http://www.featflow.de/en/software/featflow2.html">http://www.featflow.de/en/software/featflow2.html</a>
  - I. Milestone: OpenMP parallelization
    - classical FE-like assembly of coefficient matrices
    - edge-based assembly of vectors and operators
    - other loops (flux limiter, MVmult, norms, ...)

#### Reuse of application code via metaprogramming library (C++/Fortran)

- 2. Milestone: CUDA port of time consuming parts
  - minimally invasive integration of co-processor support
  - edge-based assembly of vectors and operators

Weak formulation

$$\int_{\Omega} W \frac{\partial U}{\partial t} - \nabla W \cdot \mathbf{F}(U) \, d\mathbf{x} + \int_{\Gamma} W \, \mathbf{n} \cdot \mathbf{F}(U) \, ds = 0, \quad \forall W \in \mathcal{W}$$

Group representation [Fle83]

$$U(\mathbf{x},t) \approx \sum_{j} \varphi_{j}(\mathbf{x}) U_{j}(t)$$
  $\mathbf{F}(U) \approx \sum_{j} \varphi_{j}(\mathbf{x}) \mathbf{F}(U_{j})$ 

Semi-discrete high-order scheme

$$\sum_{j} m_{ij} \frac{\mathrm{d}U_{j}}{\mathrm{d}t} - \sum_{j} \mathbf{c}_{ji} \cdot \mathbf{F}_{j} + \sum_{j} \mathbf{s}_{ij} \cdot \mathbf{F}_{j} = 0$$

$$m_{ij} = \int_{\Omega} \varphi_i \varphi_j \, d\mathbf{x}$$
  $\mathbf{s}_{ij} = \int_{\Gamma} \varphi_i \varphi_j \mathbf{n} \, ds$   $\mathbf{c}_{ji} = \int_{\Omega} \nabla \varphi_i \varphi_j \, d\mathbf{x}$ 

### Galerkin finite element schemes, cont'd

Galerkin flux decomposition

$$\sum_{j} \mathbf{c}_{ij} = 0 \quad \Rightarrow \quad -\sum_{j} \mathbf{c}_{ji} \cdot \mathbf{F}_{j} = \sum_{j \neq i} \mathbf{c}_{ij} \cdot \mathbf{F}_{i} - \mathbf{c}_{ji} \cdot \mathbf{F}_{j}$$

Semi-discrete high-order scheme [Ku03]

$$\sum_{j} \left[ m_{ij} \frac{\mathrm{d}U_{j}}{\mathrm{d}t} + \mathbf{s}_{ij} \cdot \mathbf{F}_{j} \right] + \sum_{j \neq i} G_{ij} = 0$$

- efficient edge-based assembly of Galerkin fluxes
- precomputation of coefficient matrices (on CPU) and singular transfer to device memory (low storage requirement on GPU)

### Algebraic flux correction, Kuzmin et al.

Semi-discrete low-order scheme

$$m_i \frac{\mathrm{d}U_i}{\mathrm{d}t} + \sum_{j \neq i} G_{ij} + D_{ij}(U_j - U_i) = 0 \qquad m_i = \sum_j m_{ij}$$
 mass lumping artificial dissipation

Conservative flux decomposition

$$m_i(U_i^H - U_i^L) = \sum_{j \neq i} m_{ij} \left( \frac{\mathrm{d}U_i}{\mathrm{d}t} - \frac{\mathrm{d}U_j}{\mathrm{d}t} \right) + D_{ij}(U_i - U_j)$$

antidiffusive fluxes

- low-order scheme + limited antidiffusion = high-resolution scheme
- Parallelization of edge-loops is crucial to achive high overall efficiency

### Outline of solution algorithm

Initialization: Transfer edge-data to global device memory

In every time step:

- Transfer solution vector into global device memory
- Assemble rhs vector and transfer back to host memory

In every nonlinear step:

- Assemble nonlinear parts of operator and residual vector and transfer to host memory
- Combine with constant contributions on host
- Solve nonlinear problem, update solution, and transfer solution into global device memory

overlap transfers with computation

### Preparation of parallel edge-based assembly

Edge-coloring of the FE sparsity graph

```
c \leq 2\Delta - 1 greedy algorithm \Delta \leq c \leq \Delta + 1 \quad \text{Vizing's algorithm}
```

Precompute constant coefficient matrices (classical FE-assembly on CPU)
 and store them into edge-based data structure (AoS/SoA/mixture)















### Numerical example

- Sod's Shock tube problem in 2D
- Linearized FEM-FCT (density, pressue)
- Artificial dissipation
  - scalar (39 l.o.c.)
  - Roe-type (55 l.o.c.)
- Q I finite elements
- Regular grid  $(\Delta = 8)$
- Greedy coloring (c = 14)
- Gcc 4.4.3, CUDA 4.2



### Computational efficiency

#### Computing platforms

- PI: Intel Xeon X5680 at 3.33GHz (2x6, no hyperthreading, 2x12MB L3)
  - **P2:** Intel Core i7 at 3.33GHz (1x6, 1x12MB L3) + C2070 (ECC off)
- OpenMP: with 800 edges per "parallel block"
   CUDA: with 64 threads per CUDA block

#### Comparisons

- micro benchmark: PI-OpenMP vs. P2-CUDA edge-based vector assembly of a single color group
- meso benchmark: P2-OpenMP vs. P2-CUDA edge-based vector assembly over all color groups
- macro benchmark: P2-OpenMP vs. P2-CUDA "full" simulation (100 time steps) w/o I/O-operations

### Bandwidth: CPU implementation (P1)

Kernel: inviscid fluxes with scalar dissipation in 2D



### Bandwidth: CPU implementation (PI)







Kernel: inviscid fluxes with scalar dissipation in 2D



Kernel: inviscid fluxes with scalar dissipation in 2D



### Computing time: GPU implementation (P2)



#### GPU is >5x faster than best CPU implementation



### Efficiency of vector assembly (P2)

Kernel: inviscid fluxes with scalar dissipation in 2D





### Efficiency of vector assembly (P2)

Kernel: inviscid fluxes with register intense Roe-type dissipation in 2D





### Efficiency of "full" simulation (P2)

Comparison: full OpenMP vs. OpenMP + vector assembly on GPU



### Efficiency of "full" simulation (P2)

Comparison: full OpenMP vs. OpenMP + vector assembly on GPU



### A second look on vector assembly

## GPU would perform best for only few groups with an equally distributed number of edges per color

=> use better coloring algorithm and "better" finite elements (?)



### A second look on vector assembly

#### Non-conforming rotated bilinear QI~ finite element

- DOFs are located at the midpoints of edges
- each DOF always couples with 6 neighbors (10 in 3D)





### Non-conforming finite elements







Technical details

### Handle-based storage manager

- (De-)allocate new memory assigned to ihandle (= unique integer)
   call storage\_new( (/a,b,c/), ST\_DOUBLE, ihandle, [rheap] )
   call storage\_free( ihandle, [rheap] )
- Associate 3D double pointer to memory at ihandle call storage\_getbase( ihandle, p\_Darray3D, [rheap] )
- Different memory managers can be used ,under the hood'

| Fortran only allocate / deallocate | CUDA cudaHostAlloc / cudaFreeHost |
|------------------------------------|-----------------------------------|
| works with all F90 compilers       | works with F2003: iso_c_binding   |
| no asynchronous transfers          | fast and asynchronous transfers   |

### Handle-based storage manager, cont'd

- Full Fortran 95 functionality: size, shape, assumed-shape arrays
- Lightwight data structures (= collection of handles)

```
type t_matrix
integer :: na, neq, ncols
integer :: h_Da, h_Kcol, h_Kld <- simple resize in mesh adaptation
```

- Co-Processor support does not break legacy code
- Memory transfers and accessing memory on device

```
storage_syncMem(ihandle, <direction>, async=YES/NO, ...)
storage_getMemPtr(ihandle, p_memptr, ...) -> pass p_memptr to GPU kernel
```

Support for OpenCL, ... can be integrated easily (!?)

### Meta-programming library

**Example:** Roe's Riemann solver is the same on CPU/GPU except for

- different programming languages (Fortran/C++)
- different index addressing (0-/1-based)
- different memory layouts (AoS/SoA/mixture)

- Meta-programming of application code via pre-processor macros
  - tedious to find least common subset of built-in pre-processor features supported by all Fortran compilers
  - GNU cpp: F90 → f90 + Fortran compiler

Inspired by presentation by X. Roca at FEF 2011

### Meta-programming library

```
IDX1( flux_xi, 1) = INVSCFLUX1_XDIR( edgedata, IDX3, i, tid, . . . )
 IDX1(flux_xi, 2) = INVSCFLUX2_XDIR(edgedata, IDX3, i, tid, . . . )
           #define FORTRAN_AOS
                                            flux_xi(1) = edgedata(2, i, tid)
                                            flux_xi(2) = edgedata(2, i, tid)*ui+pi
           #define FORTRAN_SOA
                                           flux_xi(1) = edgedata(tid, i, 2)
                                           flux_xi(2) = edgedata(tid, i, 2)*ui+pi
#define C_AOS
 flux_xi[((nthreads)*(1 + (-1))+(tid))] = edgedata[((nthreads)*(2)*(2 + (-1))
                                                    +(nthreads)*(i +(-1))+(tid));
 flux_xi[((nthreads)*(2 + (-1))+(tid))] = (edgedata[((nthreads)*(2)*(2 + (-1))+(tid))]
                                              (nthreads)*(i + (-1))+(tid))]*ui+pi);
```

### Summary

#### Parallelization of edge-based CFD-solver Featflow2

- Group-FEM formulation leads to memory and time efficient edge-based assembly on Many-Core architectures
- Minimally invasive integration of GPU acceleration in legacy code
- Meta-programming library simplifies mixing of programming languages and enables reuse of application code

#### Future plans

- Explore benefits of non-conforming FEs for edge-parallelization
- Port more edge-loops to CUDA and add multi-GPU support
- Combine assembly on CPU and GPU adaptively

#### References

- C.A.J. Fletcher, The group finite element formulation. CMAME 1983, 37(2), pp. 225–244.
- D. Kuzmin, Explicit and implicit FEM-FCT algorithms with flux linearization.
   JCP 2009, 228(7), pp. 2517–2534.
- D. Kuzmin, M. M, S. Turek, Multidimensional FEM-FCT schemes for arbitrary time-stepping. IJNMF 2003, 42(3), pp. 265-295.
- D. Kuzmin, M. M, J.N. Shadid, M. Shashkov, Failsafe flux limiting and constrained data projections for equations of gas dynamics. JCP 2010, 229(23), pp. 8766–8779.
- X. Roca, private communication (FEF 2011, Munich)