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Abstract

New a posteriori error indicators based on edgewise slope-limiting are presented.
The L2-norm is employed to measure the error of the solution gradient in both global
and element sense. A second order Newton-Cotes formula is utilized in order to de-
compose the local gradient error from a P1-finite element solution into a sum of edge
contributions. The gradient values at edge midpoints are interpolated from the two
adjacent vertices. Traditional techniques to recover a (superconvergent) nodal gra-
dient from the consistent finite element gradients are reviewed. The deficiencies
of standard smoothing procedures – global L2-projection and the Zienkiewicz-Zhu
patch recovery – as applied to non-smooth solutions are illustrated for simple aca-
demic configurations. The recovered gradient values are corrected by applying a
slope limiter edge-by-edge so as to satisfy geometric constraints. The direct compu-
tation of slopes at edge midpoints by means of limited averaging of adjacent gradient
values is proposed as an inexpensive alternative. Numerical tests for various solution
profiles in one and two space dimensions are presented to demonstrate the potential
of this postprocessing procedure as an error indicator. Finally, it is used to perform
adaptive mesh refinement for compressible inviscid flow simulations.

Key Words: error estimation; gradient recovery; adaptive mesh refinement;
convection-dominated problems; high-resolution schemes

1 Introduction

Progress in computer performance and the improvement of numerical methods for CFD
have enabled analysts to simulate more and more challenging problems for which no
or at least little a priori knowledge of the solution structure is available. At the same
time, this complexity has made it increasingly difficult to guarantee the reliability of the
numerical solution. The recent trend for a posteriori error estimation has provided tools
with which to verify that the model equation is solved accurately enough and/or to steer
mesh adaptation. Starting with the pioneering work of Babuška and Rheinboldt [4] in the
late seventies of the last century, theories and methods of a posteriori error estimation
have been developed extensively [2],[3],[35]. It is noteworthy, that most of the research
has focused on elliptic and parabolic linear problems in the framework of finite element
approximations while for nonlinear hyperbolic partial differential equations the theory of
a posteriori error estimation and adaptivity has remained in its infancy.
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In a series of recent publications [19], [20], [21], [22], [23], we have developed a family
of high-resolution schemes subsumed under the algebraic flux correction (AFC) paradigm.
In essence, a linear high order discretization, e.g., standard Galerkin scheme, is rendered
local extremum diminishing (LED) by a conservative elimination of negative off-diagonal
entries from the discrete transport operator so as to end up with a nonoscillatory low-
order approximation. In order to recover the high accuracy of the original scheme a
limited amount of compensating antidiffusion is added in regions of sufficiently smooth
solutions. The interested reader is referred to the aforementioned publications. The
promising results obtained for scalar conservation laws as well as for the simulation of
compressible inviscid and incompressible viscous flows on fixed unstructured grids have led
us to the incorporation of an adaptive mesh (de)refinement procedure in order to increase
the capability of resolving even small scale features. In addition, the computational cost
can be drastically reduced if local mesh coarsening is employed in regions where the flow
field is almost constant or its variance from node to node is quite small.

For the adaptive treatment of hyperbolic problems, Berger et. al. [8], [9] employ
Richardson extrapolation to estimate the truncation error in the solution and perform
local grid refinement so as to evenly distribute the error. This technique requires the
a priori knowledge of the order of approximation which varies locally for discretizations
based on flux/slope limiters and thus is not applicable in the context of AFC.

In [14], both the smoothness sensor and the correction factors resulting from the limiter
function have been utilized to steer grid adaptivity. In order to prevent refinement due
to microscopic jitters in the solution, also the curvature was taken into account. This
approach was adopted to simulate Sod’s transient shock tube problem in one dimension
by means of finite differences. However, the employed indicator strongly depends on the
properties of the limiter and in addition it vanishes for (nearly) zero flow velocity.

Recovery-based error estimators were first suggested by Zienkiewicz and Zhu [42], as
early as in 1987. The ‘simple error estimator for practical engineering analysis’ presented
for linear elastic problems was motivated by the observation that piecewise continuous
finite element solutions generally exhibit discontinuous gradients at the element inter-
faces. Provided the ‘true solution is sufficiently smooth’ [1], these jumps in the gradient
serve as an indicator for errors in the numerical solution. Several methods for recovering
piecewise continuous gradients have been proposed in the literature. Some of them, in-
cluding the well-known Zienkiewicz-Zhu patch recovery technique [44], [45], rely on the
superconvergence property of the finite element method obtained at certain points. Their
ease of implementation, robustness, and accuracy in many situations have boosted the
popularity of recovery-based adaptive schemes especially in the engineering community.

However, problems have been reported [30] applying this methodology to compressible
flows using classical finite element or finite volume schemes. In essence, shock waves
are typically smeared across several elements and captured as linear approximation with
steep gradients. As a consequence, the jumps across element interfaces are very small
and the error predicted by the recovery procedure tends to zero at the location of the
‘discontinuity’ [29]. Hence, mesh refinement is forced in the vicinity of the shock but not
at its core. Yet, it is questionable if this phenomenon can be attributed to the gradient
reconstruction or to the overly diffusive discretization scheme employed.
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The reformulation of the element gradient error in terms of edge contributions allows
for the application of slope limiting techniques which have been originally designed for a
special treatment of convective terms ∇ · (vu). Let us replace the velocity vector by the
unit vector ei in ith spatial direction one after another. Then the task of finding a good
approximation to the convective term reduces to that of computing the ith component of
the nodal gradient and vice versa. Based on our experience with algebraic flux correction
schemes we derived two different approaches for the evaluation of edge gradients by means
of slope limiting schemes. The gradient values at the edge midpoints can be directly
computed as a limited average of consistent slopes adjacent to the corresponding edge.
Moreover, standard recovery techniques may be employed to acquire smoothed nodal
gradients from which provisional slopes can be interpolated along the edge. A slope
limiter is applied edge-by-edge in order to adjust the intermediate values to the natural
bounds set up by the constant gradient values from adjacent cells. This idea can be traced
back to the concept of flux corrected transport (FCT) [19], [20], whereby a flux limiter was
designed so as to restrict the high-order solution on the basis of upper and lower bounds
stemming from an intermediate positivity-preserving (PP) solution.

2 Finite element discretization

As a model problem, consider the time-dependent continuity equation

∂u

∂t
+ ∇ · (vu) = 0, in Ω. (1)

Its variational form is derived by first multiplying the governing equation by the weighting
function w and integrating over the computational domain Ω

∫

Ω

w

[

∂u

∂t
+ ∇ · (vu)

]

dx = 0. (2)

A common practice in finite element methods for conservation laws is to interpolate the
convective fluxes in the same way as the numerical solution

uh =
∑

j

ujϕj, (vu)h =
∑

j

(vjuj)ϕj, (3)

where ϕj denotes the basis function spanning the finite-dimensional subspace. This kind
of approximation was promoted by Fletcher [13] who called it the group finite element

formulation. The substitution of (3) into (2) yields a DAE system for the vector of nodal
values which can be written compactly in matrix notation

MC
du

dt
= Ku, (4)

where MC = {mij} denotes the consistent mass matrix and K = {kij} stands for the
discrete transport operator. The corresponding matrix entries are given by

mij =

∫

Ω

ϕi ϕj dx, kij = −vj · cij, cij =

∫

Ω

ϕi∇ϕj dx. (5)
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For a fixed mesh, the coefficients mij and cij remain unchanged throughout the simula-
tion and, consequently, need to be evaluated just once during the initialization step and
each time mesh refinement/coarsening has been performed. Particularly for steady state
problems solved by pseudo time-stepping, the grid remains unchanged for a long period of
time such that the matrix K can be updated efficiently by computing its entries kij from
formulae (5) without resorting to costly numerical integration in each step. Moreover, the
coefficients mij and cij will be needed in the gradient recovery procedure.

3 A posteriori error indicators

No matter how sophisticated high-resolution finite element schemes employed to solve
equation (1) are, approximations involve all sorts of numerical errors, integration errors,
round-off errors, implementation errors (!), algorithmic error, discretization errors, etc., to
name just a few. In what follows, we shall concentrate on errors due to the finite element
discretization of the spatial derivatives. Since we are mainly interested in steady state
solutions it is acceptable to ignore those resulting from the discretization in time.

The numerical error relates the exact solution u of the continuous problem (1) to the
nodal values uh of the finite element approximation satisfying equation (4)

e = u − uh. (6)

It is well known, that obtaining an approximation to e yields a problem as complex as
the one for u. Thus the main objective of a-posteriori error estimation is not to get an
approximation of equation (6), but to estimate the magnitude of the error.

The first step in a posteriori error estimation is to choose a suitable norm in which
the accuracy of the finite element approximation should be measured. Different norms
show different aspects of the error, and for convection-dominated problems, the choice of
an appropriate norm is still an open question. Let

eσ = σ − σh (7)

denote the vector-valued error in the gradient computed directly from the solution as

σh = ∇uh =
∑

j

uj∇ϕj. (8)

In what follows, we will refer to σh as the low-order gradient. In general, pointwise
error estimates are difficult to obtain, so integral measures are typically employed in the
finite element framework. A widely used representative of such measures is the standard
L2-norm which can be associated with either the error of the solution

||e||L2 =

(
∫

Ω

eTe dx

)1/2

(9)

or in terms of the gradient error by replacing e by eσ in the equation above. Although
the integral measure (9) is defined in the whole domain Ω, its square can be obtained by
summing all element contributions over the triangulation Th of Ω. Thus

||e||2L2
=

∑

T∈Th

||e||2L2(T ), (10)
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where subscript L2(T ) refers to the local L2-norm computed on element T ∈ Th. Since
we employ piecewise linear trial functions ϕ for the approximation of the finite element
solution, the discrete gradient σh is constant on each element and exhibits discontinuous
jumps at element interfaces/vertices. The aim of recovery-based estimators, originally
introduced by Zienkiewicz and Zhu in [42], is to replace the exact value σ, which in
general is not known, by a smoothed gradient field σ̂ (to be defined below), such that

eσ ≈ êσ = σ̂ − σh (11)

gives a good approximation to the exact error defined in (7). Note that in our case the
computation of the L2-norm of the gradient error requires the numerical integration of
a piecewise quadratic function. Thus the use of a quadrature rule which is exact for
P2-functions is mandatory. We employ the following Newton-Cotes quadrature rule to
compute the element contribution of the triangle T ∈ Th to the global gradient error

∫

T

êT
σ êσ dx =

|T |
3

2
∑

d=1

∑

j 6=i

[êd
σ(xij)]

2, (12)

where superscript d denotes the dth component of the multidimensional vector êσ and
xij :=

xi+xj

2
. Let us single out the contribution of the edge ~ij to equation (12)

[êd
σ(xij)]

2 = [(σ̂d − σd
h)(xij)]

2. (13)

Here, σh is constant on the whole element and σ̂ varies linearly along the edge. Note that
equation (13) can be expanded to the following form

[êd
σ(xij)]

2 = [σ̂d(xij)]
2 − 2σ̂d(xij)σ

d
T + [σd

T ]2, (14)

where σd
T := σd

h|T stands for the dth component of the vector-valued constant gradient
on element T . It remains to compute a smoothed gradient value σ̂d at the midpoint
of edge ~ij as will be explained in the subsequent section. Unless indicated otherwise,
all modifications are to be performed individually for each spatial dimension so that
superscript d can be dropped for convenience.

4 Gradient reconstruction

Our first approach to obtaining a smoothed edge gradient is largely inspired by slope
limiting techniques employed in the context of high-resolution finite volume schemes and
later carried over to discontinuous Galerkin finite element methods [10]. Various attempts
to extend slope limiting to multidimensions can be found in the literature. In essence,
the task is to reconstruct the slopes at interelement boundaries where discrete solution
values exhibit jumps. However, geometrical constraints need to be satisfied in order to
guarantee that the numerical solution is free of nonphysical oscillations which would be
generated otherwise. To this end, the value of the recovered gradient is taken as a limited
average of constant slopes adjacent to edge ~ij.
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As an alternative, a provisional gradient at the midpoint of edge ~ij can be linearly
interpolated from nodal values: σ̂ij = 1

2
(σ̂i + σ̂j). Sophisticated projection or discrete

patch recovery techniques can be employed to compute smoothed slopes at the element
vertices. However, the resulting edge gradient may violate the natural bounds set up by
the first-order slopes of the two adjacent cells. This can be rectified by applying a slope
limiter edge-by-edge so as to satisfy geometric constraints.

4.1 Limited gradient averaging

For simplicity, we will discuss the basic ideas of slope-limited finite volume methods in one
space dimension. Let the interval I =

⋃m
j=1 Ij be partitioned into a set of finite volumes

Ij = (xj−1/2, xj+1/2) and let uj denote the mean value of some scalar quantity u on cell
Ij. The task is to construct a piecewise linear approximate solution

ũh(x) = uj + (x − xj)σj ∀x ∈ Ij, (15)

where σj denotes an approximation of the solution gradient on the jth cell. In the simplest
case, one-sided or centered slopes have been employed to obtain first- and second-order
accurate schemes, respectively. However, oscillations are quite likely to appear in the
second case. For a numerical scheme to be nonoscillatory, it should possess certain prop-
erties, e.g., be monotone or total variation / local extremum diminishing. This can be
accomplished by employing limited slopes σj in equation (15).

For the construction of LED and TVD schemes, Jameson utilized limited average
operators L(a, b) which are characterized by the following properties [18]:

P1. L(a, b) = L(b, a).

P2. L(ca, cb) = cL(a, b).

P3. L(a, a) = a.

P4. L(a, b) = 0 if ab ≤ 0.

While the first three conditions are natural properties of an average, P4 is to be enforced
by means of limiting. Jameson demonstrated that a variety of standard TVD limiters can
be written in such form. Let the modified sign function be given by

S(a, b) =
sign(a) + sign(b)

2
(16)

which equals zero for ab ≤ 0 and returns the common sign of a and b otherwise. Then
the most widely used two parameter limiters for TVD schemes can be written as:

1. minmod: L(a, b) = S(a, b) min{|a|, |b|}

2. Van Leer: L(a, b) = S(a, b)
2|a||b|
|a|+|b|

3. MC: L(a, b) = S(a, b) min

{ |a+b|
2 , 2|a|, 2|b|

}

4. superbee: L(a, b) = S(a, b) max{min{2|a|, |b|}, min{|a|, 2|b|}}
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In light of the above, equation (15) can be turned into a high-resolution scheme by setting

σj := L(
uj − uj−1

∆j

,
uj+1 − uj

∆j

), (17)

where the cellwidth of the jth subinterval is denoted by ∆j = xj+1/2 − xj−1/2.
Let us return to our original task that requires the computation of the solution slopes

at the midpoint of edge ~ij so as to estimate its contribution (14) to the local error. Let σ+
ij

and σ−
ij denote the piecewise constant finite element values evaluated on the two elements

to the left and to the right of edge ~ij, respectively. Then, the auxiliary quantities

σ
max
min
ij =

max

min
{σ+

ij , σ
−
ij} (18)

provide excellent lower and upper bounds that should be satisfied by any gradient value
along the edge. Moreover, each of the limited average operators presented above can be
utilized to obtain a usable edge gradient that can be computed efficiently as follows

σ̂ij = L(σmin
ij , σmax

ij ). (19)

Unfortunately, the choice of the limiter function is far from being unique and some kind
of empiricism is unavoidable. This has led us to the derivation of an alternative approach
whereby a slope limiter is applied to the provisional value of the averaged edge gradient.
Established recovery techniques are employed to generate smoothed slope values at the
vertices. Due to the linearity of edge gradients, their values at the midpoints can simply be
interpolated from adjacent nodes. Finally, slope limiting is carried out so as to guarantee
that the corrected quantity σ̂∗

ij stays within the upper/lower bounds defined in (18).

4.2 Nodal gradient recovery

Since the advent of recovery-based schemes introduced by Zienkiewicz and Zhu [42], var-
ious methods have been proposed in the literature to construct an ‘improved’ gradient
from the finite element solution by means of averaging projection schemes

σ̂ =
∑

j

σ̂jφj, (20)

where the coefficients are obtained by asking that

∫

Ω

φi(σ̂ − σh) dx = 0, ∀i. (21)

Here, φi stands for the basis functions onto which σh is to be projected. Note that the
corresponding element shape functions may differ from the ones of the finite element
approximation (3) in their polynomial degree. A detailed analysis of projection based
error estimators can be found in a paper by Ainsworth et. al. [1]. They finally conclude
that the original recovery procedure introduced in [42], which corresponds to choosing
φ = ϕ in the equations above, ‘is not only effective, but also the most economical’ one.
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This has already been mentioned in an earlier publication by Oden and Brauchli [26].
The substitution of equation (20) into (21) yields the following discrete problem

∑

j

[
∫

Ω

ϕiϕj dx

]

σ̂j −
∑

j

[
∫

Ω

ϕi∇ϕj dx

]

uj = 0, ∀i. (22)

Thus, the smoothed gradient can be recovered by solving the linear algebraic system

MC σ̂ = q, (23)

where MC = {mij} denotes the consistent mass matrix and the multicomponent right-
hand side is given by q = Cu. The matrix C = {cij} is assembled from the auxiliary
coefficients defined in (5) which correspond to the discretized space derivatives and have
zero row sum, i.e.,

∑

j cij = 0 as long as the sum of the basis functions ϕj is equal to one
at every point. Hence, an edge-by-edge assembly of qi =

∑

j 6=i cij(uj − ui) is feasible.
Note that the algebraic system (23) can also be obtained by applying the standard

Galerkin approximation to the weak form of the continuous problem σ = ∇u. Thus,
projection schemes of the form (20)–(21) are called variational recovery [24] and can be
applied repeatedly so as to determine an approximation to a higher-order derivative. The
solution to the algebraic system (23) can be computed iteratively by successive approxi-
mation preconditioned by the lumped mass matrix ML = {mi}, where mi =

∑

j mij

σ̂(m+1) = σ̂(m) + M−1
L [q − MC σ̂(m)], m = 0, 1, 2, . . . . (24)

If mass lumping is applied directly to equation (23), this yields an explicit formula for
computing the recovered gradient at each node as follows

σ̂i =
1

mi

∑

j 6=i

cij(uj − ui). (25)

Over the years, a more accurate patch recovery technique was introduced by Zienkiewicz
and Zhu [44], [45], which relies on the superconvergence property of the finite element
solution at some exceptional, yet a priori known, points. Let the smoothed gradient be
represented in terms of a polynomial expansion of the form

σ̂ = p(x) a (26)

where the vector p(x) = [1, x, y, x2, . . . , xk, xk−1y, . . . , xyk−1, yk] contains the appropriate
monomials of degree k at most. Since each vertex is surrounded by a patch of elements
sharing this node, the vector of coefficients a = [a1, a2, . . . , am]T with m = (k+1)(k+2)/2
can be computed from a discrete least square fit to the set of sampling points xj [44].
From that it follows, that a is the solution to the linear system

Ma = b, (27)

where the local matrix M and the right-hand side vector b are given by

M =
∑

j

p(xj)
Tp(xj), b =

∑

j

pT(xj) σh(xj). (28)
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For linear triangles, a = [a1, a2, a3]
T, p = [1, x, y] and the gradient is sampled at the cen-

troid xj of each triangle in the patch. In this case the lumped L2-projection yields almost
the same results on uniform grids but only patch recovery retains its superconvergence
property if the grid gets distorted which in general makes (26) superior to (25). However,
the solvability of the linear system (27) strongly depends on the relation rank M = m.

Since the advent of the superconvergent patch recovery (SPR) technique [44] its super-
and even ultraconvergence property has been analyzed extensively in the literature [36],
[37], [38]. This paved the way to the development of so-called polynomial preserving

(PPR) gradient recovery schemes [39]. While in SPR methods a Pk-polynomial is best
fitted to ∇uh directly, PPR schemes compute the nodal quantity p ∈ Pk+1 as a polyno-
mial approximation to uh and apply the derivative operator afterwards (∇uh ≈ ∇p). In
order to ensure the solvability of the linear system (27), the patch of surrounding ele-
ments needs to be enlarged recursively. Recently, Zhang et. al. introduced a ‘meshless’
gradient recovery method [41] in which the idea of element patches is abandoned in favor
of spherical patches which are expanded adaptively so as to satisfy a solvability condition.

The ease of implementation, generality and ability to produce quite accurate esti-
mators boosted the popularity of recovery-based techniques especially in the engineering
community. However, any of the above-mentioned strategies to compute a high-order
gradient from the finite element solution is quite likely to fail either for steep gradients or
in case the solution exhibits jumps (see below) as it is often the case in compressible flow
computations featuring shock waves and contact discontinuities. This can be attributed
to the fact, that the consistent L2-projection scheme tends to produce non-physical os-
cillations in the vicinity of jumps whereas both its lumped counterpart and the patch
recovery are overly diffusive. This drawback of the standard procedures can be rectified
by combining both imperfect methods as explained below.

4.3 Edgewise slope limiting

No matter if patch recovery or projection schemes are employed, the nodal gradient values
result from an averaging process over an unsettled number of surrounding element gradi-
ents which may strongly vary in magnitude and even possess different signs. Thus, it is
very difficult to find admissible upper and lower bounds to be imposed on the recovered
nodal gradient. Let us recall, that in order to compute the element gradient error (12) we
have to sum the contributions of the adjacent edges (13) which (in the interior) can be
associated with exactly two triangles sharing this edge. Hence, the auxiliary quantities
defined in (18) constitute excellent upper/lower bounds for the final edge gradient.

In the first step, provisional edge gradient values are recovered at the midpoint of edges
which are always located in the overlap of two element patches. Hence, the intermediate
edge slopes can easily be computed by linear interpolation of nodal values resulting from
any of the above nodal recovery schemes, i.e., σ̂ij = 1

2
(σ̂i + σ̂j). Alternatively, patch

recovery can be used to obtain the midpoint gradient values directly. In the next step,
the upper/lower bounds (18) are imposed so that the corrected edge gradient is given by

σ̂∗
ij = max{σmin

ij , min{σ̂ij, σ
max
ij }}. (29)

The edgewise slope-limiting procedure is illustrated in Figure 1 for an interior edge.
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xj xi

σ̂j

σ̂ij

σ̂
∗
ij

σ̂i

σ
−
ij

σ
+
ij

σ
max
ij

σ
min
ij

Figure 1: Edgewise slope-limited gradient recovery for internal edges.

In one space dimension, Zienkiewicz and Zhu observed, that ‘the recovered derivative
nodal values [computed by either lumped L2-projection or patch recovery] for linear ele-
ments are located between the discontinuity of the finite element solution’ [44]. The task
of our edgewise slope limiter is to enforce this property in the sense of a multidimensional
extension. The generality of this concept allows for the application of any nodal gradient
recovery procedure proposed in the literature or even a combination thereof.

Let is consider the situation when the upper and lower bounds (18) have different
signs. This indicates that the approximate solution attains a local minimum/maximum
along the edge. In the continuous case, the necessary condition of an extremum requires
that the corresponding derivatives be equal to zero. For the recovered gradient to satisfy
a discrete analog, it makes sense to modify equation (29) as follows

σ̂∗
ij = S(σmin

ij , σmax
ij ) max{σmin

ij , min{σ̂ij, σ
max
ij }}. (30)

This adjustment corresponds to property P4 of limited average operators (see above).

Boundary treatment In the framework of nodal recovery procedures, the gradient val-
ues at boundary vertices can be reconstructed from specially designed boundary patches.
However for a corner node, say ’�’, an insufficient number of elements denoted by ’△’
can render the matrix of system (27) singular as illustrated in Figure 2 (left). Zienkiewicz
and Zhu recommend always recovering the nodal values at the boundary from an inte-
rior patch recovery point ’◦’ [44] which for unstructured triangulations is far from being
unique. In the context of our edge-based formulation, it is natural to adopt the constant
slope value from the adjacent element, say ’△’, also at the midpoint ’�’ of a boundary
edge. As an alternative, the gradient value of a boundary edge can be recovered from the
unique patch assembly point ’◦’ opposite to it as depicted in Figure 2 (right).

The same applies to an interior edge, say ’⋄’, that belongs to a triangle with three
boundary nodes. Then the edge slope value can be recovered from the uniquely defined
patch assembly point ’◦’ connected to the adjacent ‘interior’ triangle.
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Figure 2: Boundary treatment: nodal vs. edgewise recovery.

5 Adaptation strategy

In adaptive solution procedures one typically starts with an initial grid coarse enough for
the solution to be inexpensive to compute. Yet it needs to be fine enough so as to capture
the essential flow features. As pointed out in the introduction, the misfortune experienced
with applying the ZZ error estimator to an adaptive shock wave simulation [29] may be
attributed to the hapless interplay of overly diffusive spatial discretization schemes applied
on insufficiently fine triangulations. In other words, the artificial dissipation introduced
by the numerical method overstrained the resolution facility of the employed coarse grid.

As a first step in adaptive solution procedures for steady state flow simulations, a
provisional solution is computed on the initial mesh. The relative error of the density has
been employed as a criterion to measure convergence [12]. Following [33], the flow solver
is stopped if this criterion is satisfied by the square root of the prescribed tolerance, that
is, intermediate solutions are required to be only ‘half-converged’. The (more expensive)
computation of a fully converged final solution is only necessary once the finest grid has
been generated. To this end, one or more mesh ‘convergence’ criteria need to be defined.
For steady state problems one typically prescribes the maximum number of refinement
levels. As a consequence, one needs to keep track of the complete mesh hierarchy so as to
control the father-son relationship and the number of times an element has been refined.
If both mesh refinement and coarsening take place, alternative stopping criteria making
use of mimimum element size and/or element shape conditions need to be considered.

In the next step, cells are flagged for local refinement or coarsening according to some
adaptation parameters. A common practice is to prescribe the tolerance for the relative
percentage error of the final solution and the gradient, respectively

η :=
||eσ||L2

||∇u||L2

≤ ηtol. (31)

Since neither the exact slope values nor the true error are known, the best approximation
available is utilized instead. From (10) it follows that the global L2-norm can be de-
composed into element contributions. Moreover, let us assume that the error is equally
distributed between cells then the condition η ≤ ηtol (c.f. (31)) can be rewritten as follows

||êσ||L2(T ) ≤ ηtol

[

(||σh||2L2
+ ||êσ||2L2

)/|Th|
]1/2

=: etol, (32)

where |Th| denotes the number of elements employed in the current triangulation Th.
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A similar estimate in terms of ||e|| is formulated in [42]. Finally, the ratio

ξT = ||êσ||L2(T )/etol > 1 (33)

specifies the set of elements T to be refined. At the same time, the cells to be coarsened
can be determined by inverting all inequalities and replacing ηtol by some η′

tol ≪ ηtol.

Grid refinement and coarsening techniques In a loop over elements, cells marked
for refinement are subdivided into four similar triangles. This so-called red refinement is
applied iteratively so as to eliminate adjacent cells with two or three hanging nodes. In
order to restore global regularity of the triangulation blue refinement is applied to bisected
edges that still remain, that is, their midpoints are connected to the opposite vertices.
The regular refinement of triangles is extensively dealt with in [5] and the PLTMG User’s

Guide [7] including a detailed description of efficient data structures.
Another conforming mesh refinement algorithm is based on bisection of the longest-

side as proposed by Rivara in [31]. In a loop over flagged elements, new vertices are
inserted at the midpoints of the longest edges and connected to the opposite nodes.
Adjacent triangles containing bisected edges are also marked and the refinement process
continues until all hanging nodes have been eliminated. A summary of various geometrical

properties proven for the longest-side bisection algorithm can be found in [32].
Preliminary results from simulation of shock waves indicate that the marriage of gener-

alized edge bisection techniques and algebraic flux correction may lead to further improve-
ments. Recall that our AFC methodology [22], [23] rests on an edge-based formulation.
The amount of artificial dissipation that outlasts the flux limiting procedure depends on
the interplay of internodal fluxes which are proportional to the edgewise solution differ-
ence multiplied by some (anti-)diffusion coefficient. If the solution variation along the
longest edge is smaller than that for another edge the latter one should be bisected. The
same applies to an edge ~ij related to a ‘strongly’ antidiffusive flux. Consider the situation
where this flux into one node, say i, cannot be balanced by diffusive fluxes from neigh-
boring nodes so that its magnitude needs to be drastically limited. In this case, edge ~ij
should be bisected, unless this would entail a reduction of the correction factor for node j.
Obviously, this algebraic edge bisection approach may lead to highly anisotropic meshes
which are tailored to the peculiarities of our AFC schemes [22].

Mesh coarsening is accomplished as described in [17]. In essence, edge-swapping is
performed repeatedly so as to ‘isolate’ the vertex to be erased. Iteration continues until
the corresponding node is connected to just three triangles and can be safely removed.
Vertices to be deleted from the boundary are first ‘moved’ into the interior by introducing
an artificial boundary element before the standard procedure can be applied.

Grid improvement techniques Edge-swapping can also be utilized as a postprecess-
ing step so as to improve the mesh quality with respect to some geometric measures, e.g.,
the normalized shape regularity functional presented in [6]:

q(T ) = 4
√

3|T |
[

∑

j 6=i

|~ij|2
]−1

. (34)
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Here, |~ij| denotes the length of the edge from node i to node j. This is where algebraic
aspects come into play. For interior edges, the sum of opposite angles should not exceed
π so as to guarantee that the coefficient matrix resulting from the standard Galerkin
finite element approximation of the second-order diffusion operator is an M-matrix [15].
For boundary edges the opposite angle is required to be less than π/2. Edge-swapping
can be equipped with algebraic quality measures of such kind so as to guarantee that all
off-diagonal entries of the physical diffusion operator (if any) remain nonnegative.

In addition, ‘smart’ Laplacian or optimization-based mesh smoothing [16] can be
driven by algebraic quality measures in order to ‘minimize’ the amount of required ar-
tificial diffusion. The knowledge about suboptimal regions of the computational mesh
is already ‘hidden’ in the matrix coefficients, and only needs to be retrieved. In other
words, the flux limiter not only prevents the birth and growth of oscillations on a given
(suboptimal) mesh but also provides valuable information for further mesh improvement.

5.1 Summary of the algorithm

Starting from an initial coarse grid that is supposed to be fine enough to capture essential
flow features, the algorithmic steps of our self-adaptive AFC schemes are as follows:

In the outer loop:

1. Generate the required adjacency lists for nodes and elements and initialize the edge-
based data structure. Furthermore, compute the coefficient matrices (5).

In the solution loop:

2. Employ algebraic flux correction techniques to transform the linear high-order
scheme (4) into its high-resolution counterpart of TVD type [20].

3. Use an iterative defect correction procedure to solve the resulting nonlinear
algebraic system for the current time step.

4. Compute the relative error of some indicator variable, i.e., density, to check if
the solution has ‘half-converged’. Otherwise, repeat steps 2–4.

5. Evalute the constant gradient (8) and recover improved slope values for each edge
either directly (19) or by means of edgewise slope limiting (29)/(30) applied to the
average of smoothed nodal gradients (c.f. (20)–(21) or (26)–(28)).

6. Assemble the L2-norm of the element gradient error (12) from the edge contributions
(14) and refine/coarsen all triangles according to conditions (32)–(33).

7. Apply edge-swapping and/or grid improving methods in order to increase the mesh
quality with respect to algebraic quality measures.

8. If the final/‘converged’ grid has been constructed, repeat steps 2–4 until the fully
converged solution is obtained. Otherwise, go to step 1.
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6 Numerical examples

In order to demonstrate the behavior of the edgewise slope-limited recovery procedure let
us start with the investigation of one-dimensional profiles. Each of the following academic
examples is designed so as to illustrate the deficiencies of standard recovery procedures per

se. In contrast, the edgewise slope limited recovery outperforms its linear counterparts.
In the second part of this section, the new error indicator is applied to compressible

inviscid flows at different Mach numbers. In previous publications, the authors presented
numerical results for some of these benchmarks computed on fixed meshes in order to
illustrate the performance of modern high-resolution finite element schemes based on the
algebraic flux correction (AFC) paradigm. In this paper, emphasis is placed on grid adap-
tivity so that for all simulations the same TVD type algorithm is utilized in conjunction
with the moderately diffusive CDS-limiter (Φ(θ) = min(1, 2θ)) applied to the character-
istic variables. In contrast to schemes of FCT type, the amount of artificial diffusion
remaining after an upwind-biased flux limiter has been employed does not depend on the
size of the time step. For a detailed comparison of flux limiting schemes of TVD and FCT
type, the interested reader is referred to [20]–[22]. Since we only consider steady state

flows which call for a fully implicit time discretization, i.e., the unconditionally stable
backward Euler method, the time step should be taken as large as possible in order to
rapidly reach a converged solution. Grid adaptivity only needs to be performed each time
the flow has ‘halfway’ converged which does not increase the overall computational costs
considerably. At the same time, a nonconservative projection scheme may be employed
in order to transfer the old solution to the newly generated grid.

6.1 One-dimensional profiles

Example 1: Let us start with the classical hat function given by

u(x) = 1 − r0
−1|x − x0|, in [0, 1], (35)

where x0 = 0.5 and r0 = 0.2 as depicted in Figure 3. Obviously, the exact gradient (not
displayed) exhibits three discontinuities at x ∈ {0.3, 0.5, 0.7} and is constant elsewhere.
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Figure 3: One-dimensional hat function.
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The values of the finite element gradient σh which serve as upper/lower bounds are
denoted by dots in all plots of Figure 4. It can be clearly seen from diagram (a) that
the high-order gradient breaches the admissible bounds in the vicinity of the disconti-
nuities and thus suffers from non-physical oscillations. As depicted in (b), the gradient
resulting from either the lumped L2-projection or the discrete patch recovery, which yield
indistinguishable results on uniform meshes, is completely free of under- and overshoots.
Obviously, it stays within the bounds from the outset (see also remark (ii) in [44]) but
is less accurate. In contrast, edgewise slope-limiting (c) combines the advantages of both
techniques: high accuracy and bounded results. Finally, the improved gradient σ̂la com-
puted directly by means of limited averaging (19) of constant slope values σh is depicted
in Figure 4 (d). Remarkably, the results recovered by the monotonized centered (MC)
limiter very much resemble the edgewise slope limited gradient σ̂∗

MC
in both accuracy and

the fact, that no undershoots and overshoots take place.

(a) σ̂MC

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−8

−6

−4

−2

0

2

4

6

8

x

y

(c) σ̂∗
MC

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−6

−4

−2

0

2

4

6

x

y

(b) σ̂ML
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(d) σ̂la(MC)
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Figure 4: One-dimensional hat function: Recovered gradients.
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Example 2: Our next example deals with the normal distribution function

u(x) = (4πǫ)−1e−
(x−x0)2

4ǫ , in [0, 1], (36)

where again x0 = 0.5. As can be seen from Figure 5, the solution profile (a) is smooth but
features strong gradients (b), two inflection points and a local extremum. The parameter
ǫ = 0.005 is chosen such that the extrema of the gradient are located at x ∈ {0.4, 0.6},
where the curvature of u changes its sign. Initially, the interval [0, 1] is uniformly dis-
cretized with linear finite elements of size h = 0.1. In order to study the nodal rate of
convergence, regular subdivision is applied until the mesh size reaches h = 0.0004.

(a) solution profile
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(b) exact gradient
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Figure 5: One-dimensional Gaussian hill.

The convergence of the finite element gradient σh (’•’) and its recovered counterparts
are illustrated in Figure 6. From left to right, the absolute error has been measured at
the boundary x = 0, at the local maximum x = 0.4 and at the point x = 0.7 located in a
smooth region. Since σh exhibits discontinuous jumps across element boundaries, we have
always chosen the value giving the maximum absolute error. At the boundary, only the
discretely recovered σ̂ZZ exhibits superconvergence while the convergence rate of all other
schemes degenerates to O(h). Consistent L2-projection yields a slightly smaller error as
compared to the rest of linearly converging methods. Due to the lack of appropriate
bounds, no slope limiting is performed at the boundary so that σ̂∗

MC
:= σ̂MC

.
From Figure 6 (middle) we observe, that all schemes are at least superconvergent with

only negligible differences in terms of the absolute error at local extrema. Unfortunately,
the ultraconvergence of the consistent L2-projection does not carry over to its slope-limited
counterpart. Indeed, peak clipping is a well known phenomenon in the context of limiting
procedures [27] which can be attributed to the fact that the upper and lower bounds (18)
are too restrictive to preserve the accuracy of the the original high-order scheme.

The nodal rate of convergence for smooth gradients is depicted in Figure 6 (right).
Obviously, σh converges only linearly whereas the gradients resulting from discrete patch
recovery, lumped L2-projection and MC-limited averaging of constant slopes exhibit O(h2)
convergence rates. Furthermore, the ultraconvergence of σ̂MC

carries over to its slope
limited counterpart. It is noteworthy, that limited averaging of constant slopes yields
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results competitive to those produced by discrete patch recovery for interior edges. This
observation implies that limited averaging techniques constitute a useful tool for the
design of cost effective gradient reconstruction procedures which may be extended to the
reconstruction of higher order derivatives.
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Figure 6: Gaussian hill: Nodal rate of convergence of σh, σ̂ and σ̂∗.

6.2 15◦ Converging channel

Let us proceed to the numerical treatment of the compressible Euler equations and em-
ploy the presented error indicator to govern an adaptive mesh refinement and coarsening
procedure. As a first benchmark we consider a supersonic flow through a two-dimensional
channel. The right half of the bottom wall is sloped at 15◦ giving rise to the formation
of an oblique shock. For M∞ = 2.5 the inclination angle β = 36.94◦ and the down-
stream Mach number M = 1.87 can be easily computed as explained in any textbook on
oblique shock theory. A detailed description of this so-called compression corner bench-
mark including numerical solutions computed by the Wind-US code is available in the
CFD Verification and Validation Database of the NPARC Alliance [25].
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The initial coarse grid1 of 1612 linear triangles is presented in Figure 7 (a). The grid
refinement/coarsening procedure has been called each time the relative changes of the
‘halfway’ converged solution reached the square root of ǫ = 10−7. The adapted grids
resulting from 4 iteration cycles are depicted in the diagrams (b)–(e). Here, the edgewise
slope-limited gradient values σ̂∗

MC
have been employed to steer the adaptation process

with ηref = 1% and ηcrs = 0.1%. The resulting Mach number distribution computed
on the final mesh5 is shown in Figure 7 (e). The thin shock wave is captured with an
impressive accuracy and the inclination angle perfectly matches the theoretical value.
The adapted numerical solution is even superior to the one presented in [23] which was
computed on a boundary-fitted uniform mesh of 128 × 128 bilinear elements by the less
diffusive FEM-FCT algorithm making use of a much smaller time step.
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(c) grid3
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(e) grid5
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(b) grid2
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(d) grid4
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(f) Mach number
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Figure 7: 15◦ Compression corner at M∞ = 2.5.
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The regular triangulations resulting from other error indicators ‘look’ quite similar
to the ones presented above and, hence, are not shown here. However, some difference
in terms of triangles can be observed from Table 1. The number of finite elements that
constitute the finest grid for σ̂ZZ exceeds that for σ̂∗

MC
by as much as 20%. This moderate

improvement may be attributed to the very simple structure of the considered benchmark.

grid1 grid2 grid3 grid4 grid5

σ̂ZZ 1612 1877 2869 5000 9329
σ̂∗

ZZ 1612 1830 2743 4815 8963
σ̂ML

1612 1874 2831 4950 9242
σ̂∗

ML
1612 1827 2738 4781 8888

σ̂MC
1612 1699 2448 4238 7918

σ̂∗
MC

1612 1705 2451 4221 7783

Table 1: Comparison of error indicators for ηref = 1%, ηcrs = 0.1%.

6.3 5◦ Converging channel

Our next example is taken from [33] and deals with multiple shock reflections. A su-
personic flow at M∞ = 2 enters a converging channel with the bottom wall sloped at 5◦

from the inlet. The initial triangulation was generated from a uniform mesh of 60 × 16
quadrilaterals by dividing each element into two triangles. Figure 8 shows the coarse grid
as well as a sequence of three refinement/coarsening steps. Note how the finest region
confines itself more and more to the vicinity of the shock as the adaptation proceeds. At
the same time, a multiply reflected shock wave confines five zones of essentially uniform
flow in which the mesh becomes increasingly coarsened. The normalized density distri-
bution computed on the finest grid demonstrates the precise separation of five uniform
zones as depicted in Figure 8 (e). The agreement of both density and Mach number for
the exact and the numerical solution which are presented in Table 2 is quite amazing.

The crisp resolution of the reflected shock wave can also be realized from the density
values on a slice through the grid presented in Figure 9. For unstructured meshes, a
straight line along y = 0.6 is quite unlikely to match any of the grid points. In order
to draw a fair comparison between different levels of refinement, the coordinates of all
intersection points of edges and the prescribed cutline (y = 0.6) have been computed.
In a second step, the density values on the slice have been recovered by means of linear
interpolation from adjacent nodes. Obviously, no additional error has been introduced
during the visualization procedure, since the P1-solution varies linearly along edges.

It can be clearly seen that the correct solution values in the interior are already
obtained on the coarsest grid. However, artificial diffusion passing through the flux limiter
smears the shock wave across several elements and yields underpredicted density values
at the outflow. Both the steepness of the ‘cascade’ and the correctness of the boundary
values get greatly improved as the adaptation process continues.
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(a) Coarse grid, 2048 cells
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(b) Adapted grid, 3503 cells
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(c) Adapted grid, 7194 cells
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(d) Finest grid, 15664 cells
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(e) Finest grid, density distribution
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Figure 8: 5◦ Converging channel at M∞ = 2.
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exact computed

ρI 1.000 1.000
ρII 1.216 1.216
ρIII 1.463 1.462
ρIV 1.747 1.747
ρV 2.081 2.079

MI 2.000 2.000
MII 1.821 1.821
MIII 1.649 1.651
MIV 1.478 1.479
MV 1.302 1.304

Table 2: Solution values.
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Figure 9: Density cutlines at y = 0.6.

6.4 GAMM channel

Our last example deals with a steady transonic flow over a 10% circular bump which is
frequently referred to as the GAMM channel benchmark. The computational domain is
given by a rectangular channel with a circular arc bump bounded by Γ = Γin∪Γout∪Γwall:

inlet: Γin = {x ∈ R
2 : x = −1, y ∈ (0, 1)},

outlet: Γin = {x ∈ R
2 : x = 1, y ∈ (0, 1)},

solid wall: Γwall = {x ∈ R
2 : x ∈ [−1,−0.5], y = 0}

∪ {x ∈ R
2 : x ∈ [−0.5, 0.5], y =

√
1.69 − x2 − 1.2}

∪ {x ∈ R
2 : x ∈ [0.5, 1], y = 0}

∪ {x ∈ R
2 : x ∈ [−1, 1], y = 1}.

(37)
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Figure 10: GAMM channel: coarse grid, level 1 and level 3.

The flow structure is very sensitive to the prescribed inlet Mach number which is set
to M∞ = 0.67. The initial conditions expressed in terms of primitive variables

[ρ, u, v, p] = [1.5 kg m−3, 205.709277 ms−1, 0 ms−1, 101000 Pa] (38)
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are supposed to be constant in the whole domain Ω. In order to accelerate the convergence
to a tentative steady state solution, full multigrid has been employed on three levels of
regularly refined grids where the coarsest mesh (level 1), depicted in Figure 10 (left),
consists of 42 triangles. After three steps of regular refinement the level 3 grid, made
up from 944 elements, serves as initial mesh for the adaptation procedure. For each
simulation, five sweeps of local grid refinement have been performed with ηref = 0.1%.

The final triangulation resulting from the use of superconvergent patch recovery em-
ployed as error indicator is depicted in Figure 11. As to be expected, the grid gets locally
refined in the vicinity of the isolated shock wave impinging on the lower wall. A zoom
of this region is drawn on the left which illustrates that the bowed shock is detected
very well. Its position can be clearly seen from the isolines of the corresponding Mach
number distribution presented in Figure 15 (a). For visualization purposes, the numerical
solution given on an unstructured finite element mesh was interpolated onto a Cartesian
background grid which leads to slight kinks in the isolines for the Mach number.
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Figure 11: Superconvergent patch recovery, 4563 triangles.
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Figure 12: Edgewise limited averaging (MC), 4260 triangles.
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Edgewise limited averaging employing the MC limiter function yields nearly indis-
tinguishable results as shown in Figure 15 (b). Remarkably, this new error indicator is
available at hardly any cost by just examining the constant slope values adjacent to each
edge. At the same time, no additional memory is required for assembling element patches.
Moreover, the zone of refined elements in the vicinity of the shock is confined more strictly
such that the final computational grid consists of slightly less triangles.
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Figure 13: Consistent L2-projection with edgewise slope limiting, 6085 triangles.

The merit of slope limiting applied to the recovered gradient values resulting from a
consistent L2-projection are illustrated in Figure 13. At first glance, the more expensive
procedure only increases the number of triangles by a factor of 1.4. However, local grid
refinement also takes place near the leading and trailing corners of the bump. It can be
seen from Figure 14, that this leads to a significantly improved resolution of the Mach
number near the lower wall in comparison to the error indicators based on superconvergent
patch recovery and edgewise limited averaging.

(a) patch recovery
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(c) corrected L2-proj.
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Figure 14: GAMM channel: Mach number distribution along the wall.
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(a) Superconvergent patch recovery
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(b) Edgewise limited averaging(MC)
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(c) Consistent L2-projection with edgewise slope limiting
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Figure 15: GAMM channel: Isolines of the Mach number.
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7 Conclusions and outlook

In this paper we focused on the reliability of gradient recovery procedures applied to dis-
continuous solutions. The local L2-error of the solution gradient has been decomposed
into a sum of edge contributions. Standard variational and discrete recovery techniques
have been revisited within an edge-based formulation and their shortcomings in the vicin-
ity of steep gradients have been illustrated. Geometrical constraints to be imposed on the
high-order slopes have been derived. In particular, the values of the low-order consistent
finite element gradient provided natural upper and lower bounds. A slope limiter was
invoked edge-by-edge so as to correct the provisional gradient values resulting from linear
interpolation of nodal data. Limited averaging procedures inspired by high-resolution fi-
nite volume schemes were presented as an alternative. They could be utilized to compute
smoothed gradient values at the midpoints of edges directly from the adjacent consistent
slopes. Moreover, the treatment of boundary nodes/edges was addressed.

The performance of the new error indicators was demonstrated in one and two space
dimensions. Algebraic flux correction schemes [22] have been successfully equipped with
self-adaptivity. The highly unstructured grids resulting from local refinement call for the
use of fully implicit AFC methods which are unconditionally stable/ positivity-preserving.
However, it is rather difficult to march the resulting nonlinear system of equations to
steady state on strongly nonuniform meshes. Full multigrid (FMG) has been employed to
compute the steady state solution on the initial mesh. It could be worthwhile to employ a
full approximation scheme (FAS) to tackle the strong nonlinearity. In addition, the (non-
linear) TVD operator can be constructed explicitly and used as a better preconditioner
for the defect correction procedure so as to improve the nonlinear rate of convergence.

Sophisticated mesh optimization techniques tailored to the peculiarities of algebraic
flux correction will be considered. An algebraic approach to the design of mesh smooth-
ing/optimization algorithms constitutes an interesting direction for further research.
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