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Abstract

The flux-corrected-transport paradigm is generalized to implicit finite element
schemes for hyperbolic systems. A conservative flux decomposition procedure is pro-
posed for both convective and diffusive terms. A mathematical theory for positivity-
preserving schemes is reviewed. A nonoscillatory low-order method is constructed
by elimination of negative off-diagonal entries of the discrete transport operator.
Zalesak’s multi-dimensional limiter is employed to switch between linear discretiza-
tions of high and low order. A rigorous proof of positivity is provided. A feasible
generalization of the scalar methodology for the construction of low-order methods
is elucidated. An efficient edge-based algorithm for the matrix assembly for nonlin-
ear systems is devised. Scalar dissipation proportional to the spectral radius of the
Roe matrix is used to construct the low-order method for hyperbolic systems. A
block-diagonal preconditioner is utilized to work out an efficient defect correction
procedure for coupled systems. Several 2D examples for both stationary and highly
dynamic flow in a wide range of Mach numbers are presented to demonstrate the
potential of the new methodology.
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1 Introduction

Even today, the accurate treatment of convection-dominated transport problems remains
a challenging task in numerical simulation of both compressible and incompressible flows.
The discrepancy arises between high accuracy and good resolution of singularities on the
one hand and preventing the growth and birth of nonphysical oscillations on the other
hand. In 1959 it was proven [6], that linear methods are restricted to be at most first order
if they are to preserve monotonicity. Thus, the use of nonlinear methods is indispensable
to overcome smearing by numerical diffusion without sacrificing important properties of
the exact solution such as positivity and monotonicity. The advent of the promising
methodology of flux-corrected transport (FCT) can be traced back to the pioneering work
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of Boris and Books [3]. Even though their original FCT algorithm named SHASTA
was a rather specialized one-dimensional finite difference scheme, the cornerstone for a
variety of high-resolution schemes was laid. Strictly speaking, the authors recommended
using a high-order discretization in regions of smooth solutions and switching to a low-
order method in the vicinity of steep gradients. This idea of adaptive toggling between
methods of high and low order was dramatically improved by Zalesak [30] who proposed
a multi-dimensional generalization applicable to arbitrary combinations of high- and low-
order discretization but still remaining in the realm of finite differences. This barrier was
first crossed by Parrott and Christie [21] who settled the idea of flux-correction in the
framework of finite elements. Finally, FEM-FCT reached maturity by the considerable
contributions of Löhner and his coworkers [16], [17]. Beside the classical formulation of
Zalesak’s limiter in terms of element contributions, an alternative approach is available
limiting the fluxes edge-by-edge [26],[27].

Pursuing this idea, some modern compressible flow solvers completely abandon the
conventional finite element data structure in favor of an edge-based version. The foun-
dations were laid by Peraire et al. [23] but their conservative decomposition of Galerkin
integrals into fluxes assigned to the edges is applicable only to linear finite elements on
triangular and tetrahedral meshes.

In [12] we presented a coherent methodology for the decomposition of both convective
and diffusive terms into internodal fluxes independently of the underlying discretization.
In the same paper we proposed a multi-dimensional FCT algorithm which is applicable
to explicit and implicit schemes. The construction of the positivity-preserving low-order
scheme based on the elimination of negative off-diagonal entries was addressed. In this
paper we will advance the new approach to implicit schemes applied to systems of equa-
tions. The property of having diagonalizable Jacobians inheriting the hyperbolicity will
prove to be of great use for the design of the low-order method. We will review its
construction for systems in general and elucidate in particular how to obtain a positive
low-order method by adding artificial diffusion proportional to the spectral radius of the
Roe matrix for hyperbolic systems. Following the concept of edge-based data structures,
we propose an efficient algorithm for the matrix assembly but without the need of storing
them completely. The flux-correction step will be polished by a synchronization between
the distinct variables. Furthermore, we will address the treatment of the fully discretized
Euler equations within a defect-correction loop which benefits from the use of a decoupling
block-diagonal preconditioner. Last but not least, we elaborate on various implementa-
tion aspects and present several numerical examples to stress the potential of the implicit
formulation generalized to systems of equations.

2 Governing equations

Consider the conservative form of the Euler equations without source terms in the three-
dimensional space

∂U

∂t
+ ∇ · F = 0 (1)
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with the conservative variables and fluxes given by
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where ρ, vi, p and E represent the density, velocity, pressure and total energy of the
medium, respectively. Furthermore, we make the assumption of a polytropic gas, thus
the equation of state reads

E =
p

γ − 1
+

ρ

2
|v|2, (3)

in which v stands for the velocity vector and γ denotes the ratio of specific heats (γ = 1.4
for air). Beside the standard divergence form, the Euler equations can be rewritten in
an equivalent nonconservative formulation by introducing the Jacobian matrices for the
fluxes in each coordinate direction Axd = ∂F xd/∂U which can be found for instance in
[8]. As a result, the quasi-linear Euler equations can be reformulated as

∂U

∂t
+

∑

d

Axd
∂U

∂xd

= 0. (4)

Interestingly enough, the flux vectors F xd for compressible inviscid flow are homogeneous
functions of the conservative variables U independently of the spatial dimension, so that
the following useful identity holds [18]

F xd =
∂F xd

∂U
U = AxdU. (5)

In contrast to the one-dimensional Euler equations which are strictly hyperbolic, the
situation in multi-dimensions is more complicated. It can be shown [8] that for any linear
combination of the Jacobian matrices

A(κ) =
∑

d

Axdκxd (6)

there exists a regular matrix R(κ) such that

A(κ) = R(κ)Λ(κ)R(κ)−1 (7)

is diagonalizable, where Λ is the diagonal matrix of the real eigenvalues which are only
distinct in one space dimension. Nevertheless, it is not possible to diagonalize each Ja-
cobian simultaneously with the same matrix R. For the one-dimensional Euler equations
the diagonalization procedure simply reduces to

A = RΛR−1, where Λ = diag(v − c, v, v + c) (8)

is the diagonal matrix of eigenvalues, and

R =





1 1 1
v − c v v + c
h − vc v2/2 h + vc



 (9)

is the matrix of the corresponding right eigenvectors. Here c =
√

γp/ρ stands for the
local speed of sound and h denotes the total enthalpy which is given by h = (E + p)/ρ.
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3 Galerkin flux decomposition

For deducing the basic theory, let us go back to a generic time-dependent conservation
law for a scalar quantity u

∂u

∂t
+ ∇ · f = q in Ω, (10)

where q is a source term, and f is a flux function. The weak form of this equation reads
∫

Ω

w

[

∂u

∂t
+ ∇ · f − q

]

dx = 0, ∀w. (11)

It is well known from the theory of finite difference methods that a numerical scheme
is conservative if it admits the decomposition into a sum of fluxes from one node into
another. Indeed, as long as the internodal fluxes are equal in magnitude and opposite in
direction, the total mass of the system may only change due to boundary fluxes. Hence,
it is highly desirable to represent the numerical method in conservative form whenever
possible. At the same time, it has been largely unclear how to accomplish this in the
context of finite elements on unstructured meshes.

Many authors have concentrated on this topic promoting edge-based data structures
[15],[18],[20] and [23]. Unfortunately, the underlying flux decomposition is feasible only
for simplex elements with linear basis functions which have a constant gradient. In [12] we
propose an alternative flux decomposition technique which is applicable to general finite
element approximations on arbitrary meshes including quadrilateral and hexahedral ones.
Hence, let us just point out the main ideas in this paper.

Integration by parts of the weak formulation (11) yields
∫

Ω

w
∂u

∂t
dx −

∫

Ω

∇w · f dx +

∫

∂Ω

w f · n ds −
∫

Ω

wq dx = 0, ∀w. (12)

A common practice in finite element computations of compressible flow is to approximate
the fluxes in the same way as the desired solution which is referred to as the group finite
element formulation [5].

Let the solution, the fluxes and the source terms be represented in the form

u =
∑

j

ujϕj, f =
∑

j

fj ϕj, q =
∑

j

qjϕj. (13)

In fact, it is not compelling to use the same approximations for u and f . For instance,
one can consider using nonconforming Crouzeix-Raviart or Rannacher-Turek elements for
the fluxes.

After the substitution of expressions (13) and the weighting functions w = ϕi into the
variational formulation (12), we obtain

∑

j

[
∫

Ω

ϕiϕj dx

]

(u̇j − qj) −
∑

j

[
∫

Ω

∇ϕiϕj dx −
∫

∂Ω

ϕiϕj n ds

]

· fj = 0, (14)

which can be written in compact matrix form as

MC(u̇ − q) =
3

∑

d=1

Kxdfxd (15)
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in the three-dimensional case. The utility of the group formulation is illustrated by the
fact that the three matrices Kxd engendered by the corresponding first-order derivatives
can be assembled once and for all at the beginning of the simulation, as long as the mesh
does not change. This is in contrast to the standard finite element approach, whereby
the discrete operators for the linearized convective terms have to be updated in each time
step.

By construction, the discretized flux term consists of an interior part and a boundary
part. The former is given by the integral

∑

j

[
∫

Ω

∇ϕi ϕj dx

]

· fj =
∑

j

cij · fj, cij =

∫

Ω

∇ϕi ϕj dx, (16)

where the coefficient matrices cxd

ij possess the zero column sum property, since it is assumed
that the sum of basis functions equals unity. Therefore, it is possible to express the
diagonal coefficients in terms of off-diagonal ones

∑

i

cij = 0 ⇒ cii = −
∑

j 6=i

cji. (17)

It follows that the interior flux term (16) can be rewritten as
∑

j

cij · fj =
∑

j 6=i

gij, where gij := cij · fj − cji · fi. (18)

The newly introduced quantity gij represents the Galerkin flux from node j into node i. It
is obvious that gji = −gij, so that node j receives the same contribution with the opposite
sign. Importantly, flux decomposition is also possible for generalized diffusion operators
[11] which are defined as symmetric matrices having zero row and column sums. The
purely diffusive Galerkin flux assumes a remarkably simple form

∑

i

dij =
∑

j

dij = 0, dij = dji ⇒ gij = dij · (uj − ui). (19)

Note that generalized diffusion operators are not required to have continuous counterparts.
Some typical examples are the discrete Laplacian or the matrix MC − ML sometimes
referred to as ‘mass diffusion’. As we will see shortly, the properties of discrete diffusion
operators render them a valuable tool for the design of nonoscillatory low-order methods
to be combined with high-order ones within the flux-corrected-transport algorithm.

Another promising approach to the derivation of high-resolution finite element schemes
involves the replacement of the original Galerkin flux by another consistent numerical
flux. Its potential is demonstrated by numerous publications [18], [19], [20] in which one-
dimensional limiters are successfully applied on unstructured meshes in conjunction with
the edge-based data structure of Peraire et al. [23].

As a matter of fact, it is not necessary to implement the Galerkin flux decomposition en
bloc. On the contrary, it is sufficient to restrict this procedure to the diffusive terms. Thus,
our methodology can be integrated easily into existing element-based codes. However, this
decomposition constitutes an excellent tool for the derivation of new flux-manipulating
schemes.
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4 Discrete positivity criteria

Let us recall that most real-world applications are described by inherently nonlinear sys-
tems of partial differential equations modeling physical phenomena. It is therefore quite
natural to impose some constraints on the numerical method which are dictated by the
continuous model such as positivity-preservation of physical quantities. We will see that
the concept of an M-matrix provides a handy criterion to guarantee positivity. The second
fundamental issue concerning numerical methods is related to convergence. Convergence
proofs for nonlinear systems take their pivotal ideas from the nonlinear stability analysis,
the functional analytic framework of the theory of compactness. Combining both issues,
leads to the class of monotone methods, as a subset of the positive schemes, which guar-
antee that a converged solution of any conservation law does satisfy the entropy inequality
ensuring that the numerical solution converges to the physically relevant weak solution.

4.1 Positivity

Definition. A nonsingular discrete operator A ∈ R
n×n is called an M-matrix if aij ≤ 0

for i 6= j and all the entries of A−1 are nonnegative.

If A is strictly diagonally dominant and aii > 0, while aij ≤ 0 for i 6= j, then A is an
M-matrix. Note that for M-matrices Ax ≥ 0 implies that x ≥ 0. This property leads to
the following fundamental lemma:

Lemma. Let the numerical scheme be presented in abstract matrix operator form as

Lun+1 = Run. (20)

Then it follows that positivity is preserved provided that L is an M-matrix and all entries
of R are nonnegative (R ≥ 0).

The proof of this lemma is almost trivial and can be found in [11].
To introduce another useful concept, consider a semi-discrete problem of the form

dui

dt
=

∑

j

cijuj,
∑

j

cij = 0, (21)

where ui are the nodal values, and cij are some coefficients depending on the procedure
employed for the spatial discretization. Actually, for incompressible flows the lumped-
mass Galerkin discretization of the transport equation admits such a representation.

Since the coefficient matrix has zero row sum, the scheme can be rewritten as

dui

dt
=

∑

j 6=i

cij(uj − ui). (22)

Furthermore, by supposing all coefficients to be nonnegative (cij ≥ 0, j 6= i) we can show
stability in the L∞-norm for this scheme.

Consider ui to be a maximum. It follows that for all j uj −ui ≤ 0, so that dui/dt ≤ 0.
Hence, a maximum cannot increase, and similarly a minimum cannot decrease. Recall
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that coefficient matrices are sparse in such a way that cij 6= 0 only if i and j are adjacent
nodes. Restricting ourselves to a local neighborhood of ui the same consideration as
above reveals that the method is local extremum diminishing. The LED criterion was
introduced by Jameson [9], [10] as a convenient tool for the design of high-resolution
schemes on unstructured meshes. It implies positivity, since if the initial solution is
positive everywhere, then so is the global minimum which cannot decrease by definition.
Hence, the LED property provides an effective mechanism for preventing the birth and
growth of nonphysical oscillations.

4.2 Monotonicity

In one dimension the LED property ensures that the total variation of the solution which
is defined as

TV (u) =

∫ +∞

−∞

∣

∣

∣

∣

∂u

∂x

∣

∣

∣

∣

dx (23)

does not increase. As a matter of fact, equation (23) remains valid even for discontinuous
u(x) in the sense of distribution theory. For the sake of simplicity, consider homogeneous
Dirichlet boundary conditions at both endpoints. Then the discrete total variation is
given by

TV (u) = 2
(

∑

max u −
∑

min u
)

. (24)

Thus, a one-dimensional LED scheme is necessarily total variation diminishing. This is
a highly advantageous property, which has led to the development of a whole class of
nonoscillatory TVD schemes and which is sufficient for total variation stability. Thus,
existing convergence theorems for consistent TV-stable methods can easily be generalized
[7], [13]. Let us remark that the TVD feature can be consulted for the construction of
high-order schemes in contrast to just ‘mimicking’ other properties of the true solution
which renders the accuracy to be at most first order [13].

Recall that equations (21) and (22) correspond to the problem discretized in space
only. Let us now investigate the conditions under which a LED scheme will remain
positive after the time discretization. If the standard one-step θ-scheme is employed, the
fully discretized equation reads

un+1
i − un

i

∆t
= θ

∑

j 6=i

cij(u
n+1
j − un+1

i ) + (1 − θ)
∑

j 6=i

cij(u
n
j − un

i ), 0 ≤ θ ≤ 1. (25)

The choice of the parameter θ specifies the type of time-stepping. The extreme cases
θ = 0 and θ = 1 define the well-known forward and backward Euler methods. Both of
them are first-order accurate with respect to the time step ∆t. The method corresponding
to θ = 0.5 is known as the Crank-Nicolson scheme, which is second-order accurate.

The application of our lemma to equation (25) yields the following [11]

Positivity Theorem Any LED scheme discretized in time by the backward Euler method
is unconditionally positive. Other time-stepping schemes (0 ≤ θ < 1) preserve positivity
under the CFL-like condition

1 + ∆t(1 − θ) min
i

cii ≥ 0. (26)
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An important message delivered by this theorem is that the positivity criterion at our
disposal makes it possible to obtain rigorous estimates of the largest admissible time step
for explicit and semi-implicit schemes. Remarkably, the derivation of the upper bound
does not require any knowledge of the underlying partial differential equation and of the
employed spatial mesh. It is sufficient to examine the diagonal coefficients cii of the semi-
discrete scheme. Upper bounds for non-LED schemes can be readily derived in much the
same way.

5 Low-order discretization

To a large extent, the performance of the flux-corrected-transport procedure depends on
the quality of the underlying low-order method which is supposed to preserve positivity
and refrain from forming numerical wiggles. In the context of finite difference and finite
volume discretizations, a perfect candidate for this job certainly is the upwind scheme. At
the same time, it has been largely unclear how to perform upwinding in the finite element
framework. Most upwind-like finite element methods encountered in the literature resort
to a finite volume discretization for the convective terms [2],[29]. An alternative derivation
of the least diffusive positivity-preserving scheme can be carried out by adding discrete
diffusion depending solely on the magnitude and position of negative entries in the finite
element matrix [11].

5.1 Discrete diffusion

Let the scalar conservation law (10), (11) be discretized in space by the Galerkin method

MC

du

dt
= KHu + MCq. (27)

On the way of rendering this semi-discrete scheme positive, any implicit antidiffusion
disguised in the consistent mass matrix must be removed by performing mass lumping.
In the next step, the discrete transport operator KH has to be modified by applying a
proper amount of artificial diffusion. To this end, we define a discrete dissipation tensor D
as a symmetric matrix with zero row and column sum which is designed so as to eliminate
all negative off-diagonal entries of the high-order operator

dii = −
∑

k 6=i

dik, dij = dji = max{0,−kH
ij ,−kH

ji}, ∀i < j. (28)

In essence, this corresponds to applying one-dimensional diffusion operators associated
with the (fictitious) edges connecting the adjacent nodes. As a result, the diffusive term
can be decomposed into a sum of internodal fluxes, such that each flux is proportional to
the difference of corresponding nodal values

(Du)i =
∑

j

dijuj =
∑

j 6=i

dij(uj − ui) =
∑

j 6=i

fij. (29)

Obviously, the two participating nodes receive the same flux but with opposite sign. Thus,
the artificial diffusion operator ensures the conservation of mass. By adding the tensorial
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dissipation to the high-order transport operator its low-order counterpart KL = KH + D
is obtained.

It is worth mentioning, that if physical diffusion is strong enough the coefficients
are nonnegative from the outset, and thus no artificial diffusion is introduced. Hence,
for diffusion-dominated problems KH and KL coincide. Note that this approach can
be carried over to the Euler equations by defining the modulation parameter dij to be
proportional to the spectral radius of the Roe matrix (see below).

After the discretization in time the modified scheme reads

[ML − θ∆tKL]un+1 = [ML + (1 − θ)∆tKL]un + ∆tMCqn+θ. (30)

Note that the presence of (negative) source terms, which may originate from both chemical
reactions and the transition to spherical or cylindrical coordinates, threatens to violate
the positivity constraint. In principle, this can be overcome by following the linearizing
splitting approach proposed by Patankar [22]

q = qC + qP u, where qC ≥ 0, qP ≤ 0. (31)

Equation (30) can be transformed into the convenient form (20) with

L = ML − θ∆tKL + ∆tS−

R = ML + (1 − θ)∆tKL + ∆tS+,

where S+ and S− are diagonal matrices engendered by the source term. A splitting which
ensures that L and R possess the properties required by the lemma can readily be derived
[12].

By construction all off-diagonal entries of L are nonpositive, while R is nonnegative.
It remains to indemnify the positivity of the diagonal coefficients. Since the elements of
ML and the contributions of the source terms qC (if any) are positive this can always be
achieved by choosing the time step small enough. Dropping the source terms for simplicity,
the time step for the low-order discretization of the incompressible convection-diffusion
equation is bounded by

∆t ≤ 1

1 − θ
min

i
{−mi/k

L
ii | kL

ii < 0}, (32)

where mi denotes the diagonal entries of the lumped mass matrix. From this CFL-like
condition we get a sharp estimate of the largest admissible time step that can be used
to steer adaptive time-stepping for (semi-)explicit schemes. In essence, the upper bound
is determined by the ratio mi/k

L
ii. It follows, that excessive artificial diffusion not only

degrades the accuracy of the method but also requires taking impractically small time
steps.

5.2 1D example: Pure convection

Let us illustrate the construction of the low-order operator by considering the one-
dimensional scalar equation of pure convection with constant positive velocity

∂u

∂t
+ v

∂u

∂x
= 0. (33)
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Employing a discretization with linear elements on a uniform mesh yields the following
element matrices

M̂L =
∆x

2

[

1 0
0 1

]

, K̂H =
v

2

[

1 −1
1 −1

]

. (34)

After the global assembly, the central difference approximation of the convective terms is
recovered at the interior nodes

dui

dt
= −v

ui+1 − ui−1

2 ∆x
. (35)

In order to eliminate the negative entries of KH , the artificial dissipation has to be taken
proportional to d̂12 = v/2 to produce the least diffusive results but to ensure positivity.
Consequently, the corresponding diffusion operator restricted to one element is given by

D̂ =
v

2

[

−1 1
1 −1

]

⇒ K̂L = v

[

0 0
1 −1

]

. (36)

Putting it all together, the low-order scheme coincides with the upwind finite difference
method

dui

dt
= −v

ui − ui−1

∆x
(37)

which preserves positivity provided that the time step satisfies this CFL-like condition

v
∆t

∆x
≤ 1

1 − θ
. (38)

In a nutshell, this example demonstrates that our low-order discretization reduces to
standard upwinding for pure convection in one spatial dimension. At the same time, its
derivation based on the postprocessing of the discrete transport operator remains valid for
arbitrary meshes and multi-dimensional problems. Moreover, physical diffusion (if any)
is automatically detected, and the amount of artificial diffusion is reduced accordingly.

6 Flux-based FEM-FCT formulation

Another cornerstone of the FEM-FCT algorithm is the linear high-order method. A vari-
ety of finite element schemes employing streamline diffusion to stabilize the troublesome
convective terms were proposed in the literature, e.g. [4]. For instance, Taylor-Galerkin
methods attribute this stabilization to high-order time derivatives in the Taylor series
expansion. This leads to improved time-stepping schemes which are combined with the
standard Galerkin spatial discretization. The most popular representative of such stabi-
lized methods is the well-known Lax-Wendroff scheme. An investigation of the modified
equation for its finite element counterpart reveals that the introduced dissipation just
counterbalances the intrinsic negative diffusion which renders the explicit Euler/Galerkin
scheme unstable for pure convection problems. For an in-depth study of the Lax-Wendroff
and higher order Taylor-Galerkin methods the reader is referred to [4].

In this paper we will concentrate on implicit finite element schemes based on the
Crank-Nicolson and backward Euler time-stepping which are unconditionally stable. We
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just mention that a stabilization of convective terms is mandatory for the fully explicit
time discretization. Linear Galerkin schemes are of little use, because they are prone to
nonphysical oscillations. The incorporation of a flux limiter makes it possible to get rid of
oscillations in the framework of nonlinear Crank-Nicolson/FCT and backward Euler/FCT
methods.

The high-order transport operator can be transformed into a low-order one as ex-
plained in the previous section. For simplicity, let us omit the (linearized) source terms.
The resulting methods of high and low order discretized in time by the standard θ-scheme
are related by the following formula

[ML − θ∆tKL]uH = [ML + (1 − θ)∆tKL]un + F (uH , un), (39)

where the diffusion responsible for high spatial accuracy is given by

F (uH , un) = −
[

(MC − ML) + θ∆t
(

KL − KH
)]

uH

+
[

(MC − ML) − (1 − θ)∆t
(

KL − KH
)]

un. (40)

Here the superscript H refers to the high-order solution. If the antidiffusive term F (uH , un)
is omitted, then the positive low-order scheme will be recovered, whereas retaining it yields
the original high-order method.

It can readily be seen that all the matrices in (40) represent discrete (anti-)diffusion
operators featuring zero row and column sums. Hence, they admit the decomposition into
a sum of internodal fluxes

fij = − (mij + θ∆tdij) (uH
j − uH

i )

+ (mij − (1 − θ)∆tdij) (un
j − un

i )
fji = −fij, i 6= j (41)

These raw antidiffusive fluxes counterbalance the errors induced by mass lumping and
‘upwinding’. The coefficients mij and dij denote the entries of the consistent mass matrix
and the artificial diffusion, respectively.

The crucial step of the FCT procedure consists in adding as much antidiffusion as
possible without generating nonphysical undershoots and overshoots. Incorporating the
limiter, the implicit FEM-FCT algorithm for equation (39) reads

[ML − θ∆tKL]un+1 = MLũ + F ∗(uH , un), F ∗(uH , un) =
∑

j 6=i

αijfij (42)

where F ∗(uH , un) denotes the limited antidiffusion (αij will be defined later), while ũ
represents the positivity-preserving solution to the explicit subproblem

MLũ = [ML + (1 − θ)∆tKL]un. (43)

In essence, ũ corresponds to an intermediate solution computed at the time instant tn+1−θ

by the explicit low-order scheme which reduces to the old solution un for the backward
Euler method.

It is obvious that the success of the FCT algorithm depends on the positivity of the
provisional solution ũ and on the choice of the correction factors αij. For ũ to be positive,
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the time step must satisfy the CFL-like condition (32) unless the scheme is fully implicit.
As long as the left-hand side operator is an M-matrix, our positivity criterion ensures that
scheme (41) can be rendered positive by tuning the correction factors.

This new family of FEM-FCT schemes distinguishes itself in that it is applicable to
explicit and implicit time discretizations alike. Note that implicit schemes require solving
two nonsymmetric linear systems per time step: one for the high-order solution (which
is needed to compute the antidiffusive fluxes) and one for the final solution. However,
implicit methods are typically more efficient than explicit ones for they allow to use larger
time steps.

The majority of practical applications are described by nonlinear conservation laws.
In this case, the matrices KH and KL depend on the unknown solution, so that additional
outer iterations are necessary for implicit schemes. The simplest iterative treatment of
nonlinearities is afforded by a fixed point defect correction method. If we consider an
abstract nonlinear system of the form

S(u)u = g, (44)

then the basic nonlinear iteration can be formulated as

u(m+1) = u(m) + [C(u(m))]−1(g − S(u(m))u(m)), (45)

where m is the outer iteration counter, and C is a suitably chosen ‘preconditioner’ (an
approximate Fréchet derivative) which should be easy to invert. The iteration process is
terminated when the relative solution changes are small enough or l exceeds a given limit.
As a rule, the ‘inversion’ of C is also performed by some iterative procedure. Hence, a
certain number of inner iterations per cycle is required. It is worth mentioning that the
problem does not have to be solved very accurately at each outer iteration. A moderate
improvement of the residual (1-2 digits) is sufficient to obtain a good overall accuracy.

For a nonlinear problem of form (39), it is reasonable to use the low-order operator as
preconditioner

C(u(m)) = ML − θ∆tKL(u(m)). (46)

This yields an iterative FEM-FCT algorithm, whereby the approximate solution and the
transport operator are successively updated as follows:

[ML − θ∆tKL(u(m))]u(m+1) = [ML + (1 − θ)∆tKL(un)]un + F ∗(u(m), un). (47)

Flux correction can be performed after each outer iteration or just once after the high-
order solution has converged. In either case, positivity of the numerical solution is guar-
anteed.

7 Limiting strategy

The flux limiter is a key element of the FEM-FCT paradigm. By varying the correction
factors αij between zero and unity, it it possible to obtain the diffusive low-order solution,
the oscillatory high-order one or anything in-between. Obviously, it is desirable to uti-
lize the antidiffusive terms to the largest extent possible without generating wiggles and
violating the positivity constraint. Kuzmin and Turek [11] demonstrated that Zalesak’s
multi-dimensional limiter can be generalized to implicit time discretizations.
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7.1 Zalesak’s limiter

The multi-dimensional version of the original limiter [3] was proposed by Zalesak [30]
remaining in the realm of finite differences. Parrott and Christie [21] were the first who
utilized flux-correction in the context of finite elements. FEM-FCT reached maturity by
the efforts done by Löhner [16]. A quite comprehensive description of Zalesak’ s limiter
containing a geometrical interpretation can be found in [12]. However, the geometrical
interpretation fails if we consider implicit time discretizations. Consequently, we have to
apply the mathematical theory of positivity-preserving schemes to prove the positivity
of Zaselak’s limiter for arbitrary time-stepping. Let us just give a brief outline of the
theoretical aspects.

Considering a local maximum or minimum ũ
max

min

i , any incoming flux fij which would
accentuate the extremum has to be canceled out completely. Afterwards, we can represent
the right-hand side of our FEM-FCT scheme in the following form

RHS = miũi +
∑

j 6=i

αijfij = miũi + ciQi, ci =

∑

j 6=i αijfij

Qi

, (48)

where the intermediate solution ũ = uL(tn+1−θ) is subject to the concrete time-stepping
employed and the multiplier Qi is chosen as follows

Qi =























Q+
i = ũmax

i − ũi, if
∑

j 6=i

αijfij > 0,

Q−
i = ũmin

i − ũi, if
∑

j 6=i

αijfij < 0,

1, if
∑

j 6=i

αijfij = 0.

(49)

Keep in mind that we took the necessary precautions that all Qi 6= 0 by canceling out
the local extremum accentuating fluxes completely.

Let us consider the local extremum ũ
max

min

i to be attained at some node k adjacent to
node i. The LED property of the antidiffusive term makes it possible to rewrite the
equation at hand as

RHS = miũi + ci(ũk − ũi) = (mi − ci)ũi + ciũk, ci ≥ 0 (50)

which states that positivity is preserved as long as mi ≥ ci. Obviously, Zalesak’s limiter
picks out the proper correction factors αij for this job as can be seen from

miQ
−
i ≤ miR

−
i P−

i ≤
∑

j 6=i

αijfij ≤ miR
+
i P+

i ≤ miQ
+
i , (51)

where the sum of contributions to node i is denoted by

P±
i =

1

mi

∑

j 6=i

max

min
{0, fij}. (52)

Finally, the auxiliary quantities R±
i which determine the maximum percentage of allowable

flux into node i are defined as

R±
i =

{

min{1, Q±
i /P±

i }, if P±
i 6= 0,

0, if P±
i = 0.

(53)
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As a result, the proper correction factors have to be chosen according to

αij =

{

min{R+
i , R−

j }, if fij ≥ 0,
min{R+

j , R−
i }, if fij < 0.

(54)

7.2 Limiting for systems of equations

Despite the remarkable progress in the development of FCT schemes for scalar equa-
tions, it remained largely unclear how to apply flux correction to systems of hyperbolic
conservation laws. Neglecting the special character of coupled systems, a conventional
operator-splitting approach is feasible by treating each scalar subproblem in a block-
iterative loop. However, limiting each variable independently turned out to be of no
good. Consequently, the FCT community has devised a common limiter for the entire
system by merging individual limiters for different variables.

Flux correction for the system of Euler equations was addressed by Löhner [15],[16].
He singled out the following approaches to the design of a synchronized limiter:

• Apply correction factors corresponding to a single ‘indicator variable’.

• Apply the minimum of correction factors for a group of variables.

Some clues for a suitable choice of variables will be given in the subsequent section.

8 Application to the Euler equations

The new methodology for scalar transport equations can be generalized to hyperbolic
systems of conservation laws. Nevertheless, a rigorous positivity proof is still outstanding
and meanwhile some heuristic considerations have to be employed. In what follows, we
build on the concept of a Roe matrix to devise an efficient algorithm for the edge-by-
edge matrix assembly and discrete upwinding. Another option is to apply the Galerkin
flux decomposition and modify the numerical flux as explained above. The resulting
large nonlinear systems call for the use of a smart iteration technique to minimize the
computational costs. As in the scalar case, we resort to defect correction with a block-
diagonal low-order preconditioner.

8.1 Matrix assembly

Let us start with the conservative formulation of the Euler equations. If we apply the
Galerkin discretization to the weak formulation of equation (1) without integrating by
parts and recall that customary basis functions sum to unity, the semi-discrete problem
can be written in the following form

[

M
dU

dt

]

i

=
∑

j 6=i

kij · (Fj − Fi) =

[

kij − kji

2
+

kij + kji

2

]

· Âij(Uj − Ui)

[

M
dU

dt

]

j

=
∑

j 6=i

kji · (Fi − Fj) =

[

kji − kij

2
+

kij + kji

2

]

· Âij(Ui − Uj) (55)
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for node i and j, respectively. Here kij denotes the vector of coefficients coming from the
Galerkin discretization, i.e. −cji in the notation of section 3. In particular, kij = ±1/2
in one dimension. Integration by parts yileds the following relation (see [15], p. 195):

kij + kji = −
∫

Γ

nϕiϕj ds, (56)

where n is the outward unit normal. In equation (55), kij was decomposed into

kI
ij :=

kij − kji

2
= kij +

1

2

∫

Γ

nϕiϕj ds,

kB
ij :=

kij + kji

2
= −1

2

∫

Γ

nϕiϕj ds. (57)

Basis functions corresponding to internal nodes vanish on the boundary so that kI
ij = kij

while kB
ij = 0 in this case. For linear and multilinear finite elements we have kB

ij = −n sij/2
which is nonzero iff both nodes are on the boundary. Here sij =

∫

Γ
ϕiϕj ds denotes an

entry of the mass matrix for the surface triangulation. For instance, sij = |Γij|/6 in 2D.
Shortly we will see why the splitting of coefficients into a sum of internal and boundary
contributions is of use. In essence, it corresponds to taking the average of the discrete
operators resulting from the Galerkin discretization without and with integration by parts
(c.f. the weak form (14)).

The vector F in equation (55) denotes the nodal values of fluxes. Furthermore, the
matrix Âij is the so-called Roe matrix which is obtained by evaluating the Jacobians at
the intermediate state [24]

ρ̂ij =
√

ρiρj, v̂ij =

√
ρivi +

√
ρjvj√

ρi +
√

ρj

, ĥij =

√
ρihi +

√
ρjhj√

ρi +
√

ρj

. (58)

The resulting density-averaged quantities ρ̂ij, v̂ij and ĥij are called the Roe mean values.
While in the one-dimensional case there is only one Jacobian matrix to be assembled

for each pair of nodes, in multi-dimensions it is replaced by a suitable linear combination
of the averaged Jacobians Âxd

ij for each coordinate direction d = 1, 2, 3. To this end, we
introduce the so-called cumulative Roe matrix

aij := kij · Âij = kx1

ij Âx1

ij + kx2

ij Âx2

ij + kx3

ij Âx3

ij

which consists of the interior and boundary contributions:

aij = a
I
ij + a

B
ij, where a

I
ij := kI

ij · Âij, a
B
ij := kB

ij · Âij. (59)

Let us remark that aij can be interpreted as a projection of the multidimensional Jacobian
tensor onto the corresponding ‘numerical edge’ connecting the nodes i and j. Each edge
corresponds to a pair of basis functions with overlapping supports. Hence, the list of
edges is determined by the sparsity pattern of the global finite element matrix.

Similarly, the Roe matrix aji for the coefficient vector kji is given by

aji := kji · Âij = −a
I
ij + a

B
ij.
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For internal nodes aji = −aij since the boundary contribution a
B
ij vanishes. Hence, just

one cumulative Jacobian per edge needs to be evaluated in this case. Otherwise, the local
Roe matrices associated with the numerical edge will consist of a skew-symmetric internal
part and a symmetric boundary part.

The transition from the fluxes to the nodal values of the conservative variables in (55)
enables us to assemble finite element matrices explicitly. The connectivity of the global
matrix depends on the underlying mesh and on the type of finite element approximation.
For systems of equations, the array of edges remains the same as in the scalar case.
However, there are interactions not only between basis functions for different nodes but
also between basis functions for different variables. Hence, each coefficient of the discrete
operator turns into a matrix of size equal to the squared number of variables.

For the three-dimensional Euler equations, the contribution of a numerical edge to the
global Jacobian matrix K is represented by the following 5 × 5 blocks:

kii = −aij, kij = aij,

kji = aji, kjj = −aji.
(60)

These local Jacobians are evaluated edge-by-edge, and their entries k
kl
ij (k, l = 1, . . . , 5)

are scattered to the corresponding positions in the blocks Kkl ∈ R
N×N , where N stands

for the total number of nodes. The fully discretized high-order scheme can be written in
the compact form SHUH = GH . The constituent blocks of the overall stiffness matrix SH

and of the load vector GH are defined as

SH
kl = MC δkl − θ∆tKkl, gH

k = MC un
k + (1 − θ)∆t

∑

l

Kklu
n
l . (61)

Due to the nonlinearity of the Euler equations, the discrete system has to be solved
iteratively. Hence, it is not necessary to assemble and store the global stiffness matrix.
The contributions of edges can be inserted directly into the defect vector. If a block-
diagonal preconditioner is used (see below), the storage requirement will reduce from 25
to 5 blocks. A distinct advantage of the edge-by-edge assembly algorithm proposed in
this section is that the projection coefficients kij are typically fixed, so that the matrices
can be assembled efficiently without resorting to numerical integration.

8.2 Discrete diffusion

A usable low-order method can be constructed by adding tensorial artificial diffusion
to the local Roe matrices. In the framework of scalar theory for positivity preserving
schemes, the artificial dissipation was tailored so as to eliminate all negative off-diagonal
entries. For systems of equations, the off-diagonal entries are no longer scalar quantities
but matrices themselves. Adapting the procedure which underlies the scalar theory, we
have to design the dissipation tensor so as to render all off-diagonal matrix blocks positive
definite. To this end, we perform mass lumping and apply artificial diffusion to the edge
contributions before inserting them into the global matrix and/or the defect vector:

kii = kii − dij, kij = kij + dij,

kji = kji + dij, kjj = kjj − dij.
(62)
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As a result, the low-order scheme can be represented as SLUL = GL with the corre-
sponding block entries

SL
kl = ML δkl − θ∆t(Kkl + Dkl), gL

k = ML un
k + (1 − θ)∆t

∑

l

(Kkl + Dkl)u
n
l . (63)

In the rest of this section, we will concentrate on the specification of the quantity dij.
The hyperbolicity of the Euler equations implies that any linear combination of the

Jacobian matrices is diagonalizable with real, not necessarily distinct eigenvalues (see
above). Thus, for an arbitrary coefficient vector eij, there exists a regular matrix R̂(eij)
of right eigenvectors which diagonalizes the cumulative Roe matrix

eij · Âij = R̂(eij) Λ̂(eij) R̂(eij)
−1, (64)

where the diagonal matrix of eigenvalues is given by

Λ̂(eij) = |eij|diag(v̂ij − ĉij, v̂ij, v̂ij, v̂ij, v̂ij + ĉij). (65)

The projected mean velocity v̂ij and the characteristic speed of sound ĉij read

v̂ij =
eij · v̂ij

|eij|
, ĉij =

√

(γ − 1)ĥij − v̂2
ij/2. (66)

Recall that the Galerkin discretization with matrix assembly carried out in an edge-
by-edge fashion leads to off-diagonal Jacobian blocks which consist of skew-symmetric
internal contributions and symmetric boundary contributions:

kij = a
I
ij + a

B
ij, kji = −a

I
ij + a

B
ij. (67)

To enforce the positive definiteness of all components, we construct the tensor of artificial
diffusion in an additive way so as to eliminate the negative eigenvalues. Making use of
the characteristic decomposition procedure (64), we arrive at

dij = |aI
ij| − 〈aB

ij〉−, (68)

i.e. the interior and boundary contributions (if any) are modified by

|aI
ij| = R̂(kI

ij) |Λ̂(kI
ij)| R̂(kI

ij)
−1 (69)

and
〈aB

ij〉− = R̂(kB
ij) 〈Λ̂(kB

ij)〉− R̂(kB
ij)

−1, (70)

respectively, to achieve the ‘upwinding’ effect. Here 〈Λ(kB
ij)〉− denotes the diagonal matrix

of negative eigenvalues which is obtained by setting all positive entries of Λ(kB
ij) equal to

zero. Alternatively, we can assemble the boundary integral corresponding to a
B
ij separately

using a lumped mass matrix with entries si =
∫

Γ
ϕi ds for the surface triangulation.

For the purpose of illustration, let us consider the one-dimensional Euler equations
whereby no neighboring nodes are situated on the boundary simultaneously. In this
case, the proposed technique reduces to Roe’s approximate Riemann solver [24], which
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represents one of the most popular upwind-biased methods for the numerical solution of
the Euler equations. It can be interpreted as the replacement of the centered Galerkin
flux Gij = (Fi + Fj)/2 in decomposition (18) by the consistent numerical flux

G∗
ij =

Fi + Fj

2
+

1

2
|Âij|(Uj − Ui), (71)

where

|Âij| = R̂ij|Λ̂ij|R̂−1
ij and |Λ̂ij| = diag(|v̂ij − ĉij|, |v̂ij|, |v̂ij|, |v̂ij|, |v̂ij + ĉij|). (72)

Roe’s approximate Riemann solver and its various extensions [25] constitute fairly
good low-order methods per se but they are not to be recommended for the use in the
FEM-FCT environment due to considerable overhead costs. A much cheaper alternative
is to add scalar dissipation. The local tensor of artificial diffusion is taken to be a diagonal
matrix whose internal part is proportional to the spectral radius of the Roe matrix:

dij = dijI5, where dij = |λ̂(kI
ij)| − 〈λ̂(kB

ij)〉−. (73)

Here I5 stands for the 5×5 identity matrix, while |λ̂(kI
ij)| and λ̂(kB

ij)〉− denote the largest

in magnitude diagonal entries of |Λ̂(kI
ij)| and 〈Λ(kB

ij)〉−, respectively. According to (65),

|λ̂(kI
ij)| = (|v̂ij| + ĉij) |kI

ij|. In one space dimension the diffusion coefficient is simply
dij = (|v̂ij|+ ĉij)/2, while in the scalar case the proposed technique reduces to the ‘discrete
upwinding’ approach introduced in section 5 and illustrated by the 1D example.

Note that during the global assembly (62) the artificial diffusion operator has to be
applied only to the 5 diagonal blocks of the global matrix. Moreover, it is the same for all
components which results in considerable savings in terms of both computational costs
and storage requirements. As long as excessive artificial diffusion is removed in the flux
correction step, a slightly better accuracy of a consistent Riemann solver does not pay
off. Hence, it is expedient to treat hyperbolic systems by adding scalar dissipation.

8.3 FEM-FCT algorithm

After the discretization in time by the standard θ-scheme, the methods of high and low
order can be combined similarly to relation (39). Let us consider the resulting nonlinear
system to be given in the generic form SU = G which can be decomposed into













S11 S12 S13 S14 S15

S21 S22 S23 S24 S25

S31 S32 S33 S34 S35

S41 S42 S43 S44 S45

S51 S52 S53 S54 S55

























u1

u2

u3

u4

u5













=













g1

g2

g3

g4

g5













. (74)

Note that equation (74) is just an abstract representation and nothing to be implemented
in a real code. As pointed out earlier for the scalar case the iterative treatment of non-
linearities can be afforded by a fixed point defect correction method. As a consequence,
the update can be performed in much the same way as in equation (45):

U (m+1) = U (m) + [C(m)]−1(G − S(m)U (m)). (75)
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The choice of a suitable ‘preconditioner’ C becomes much more important for systems
than in the scalar case. Considering S as a global matrix without remembering where
it came from would result in solving one huge nonlinear and extremely ill-conditioned
system. However, recall that the abstract vector U denotes the conservative variables
which are governed by a set of strongly coupled but scalar conservation laws. The choice
of a block-diagonal ‘preconditioner’ turns out to be of great use. Let the 5 diagonal blocks
of C be given by the appropriate low-order operators

C
(m)
k = ML − θ∆t[K

(m)
kk + D

(m)
kk ], k = 1, . . . , 5 (76)

which constitutes a generalization of equation (46) to coupled systems. This kind of a
preconditioner leads to well-behaved linear systems for the solution increments.

Applying the sum of blocks Skl multiplied by ul to the defect vector in equation (75)
yields a sequence of scalar subproblems for the individual variables

C
(m)
k δu

(m)
k = MLun

k + (1 − θ)∆t
∑

l

[Kn
kl + Dn

kl]u
n
l

− MLu
(m)
k + θ∆t

∑

l

[K
(m)
kl + D

(m)
kl ]u

(m)
l + F ∗(u

(m)
k , un

k). (77)

Here the auxiliary quantity δu
(m)
k denotes the correction to be applied to the current

iterate u
(m)
k . The right-hand side of the above system is represented by the defect vector

which consists of a low-order contribution and compensating antidiffusion.
The corresponding raw antidiffusive terms are determined in much the same way as

in the scalar case (40), namely,

F (u
(m)
k , un

k) = −[(MC − ML) + θ∆tD
(m)
kk ]u

(m)
k

+ [(MC − ML) − (1 − θ)∆tDn
kk]u

n
k . (78)

At this point recall that we use scalar dissipation, so that the local diffusion operator
dij used in the edge-by-edge assembly of the global blocks Dkl is defined by a single
diffusion coefficient valid for all variables. Hence, just the diagonal blocks Dkk need to be
assembled. An approximate Riemann solver based on tensorial artificial diffusion would
require the generation of all 5 × 5 blocks. To clarify the notation, we remark that the
subscripts k and l refer to the numbers of the conservative variables, while i and j are
reserved for the numbering of mesh nodes.

Let us briefly address some implementation details. Generally speaking, the assem-
bly of fluxes is carried out following the scalar algorithm. Each nonzero entry of the
upper/lower triangular part of the global finite element matrix can be attributed to a
numerical edge. Using the sparsity pattern to determine the list of edges, we compute the
local Roe matrices and apply artificial diffusion. The resulting matrices kii,kij,kji,kjj

represent the contribution of the edge to the blocks Kkl of the global Jacobian. In a prac-
tical implementation, we abstain from manipulations with large matrices and insert edge
contributions directly into the five preconditioner blocks Ck and into the defect vector.

The array of antidiffusive fluxes is generated on the fly in the same loop over the edges
but extra efforts have to be invested into the limiting process. If the correction factors
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αk
ij were determined separately for each variable k, the lack of synchronization would

give rise to oscillations and violate the principle of mass conservation. To overcome this
drawback, a suitable combination of the limiting coefficients αij = L(α1

ij, . . . , α
5
ij) has to

be taken [15]. For highly unsteady flows taking the minimum of those for the density and
energy is recommended. By transition to the set of primitive variables the minimum of
the correction factors for the density and pressure provides a reasonable choice especially
for stationary problems.

As a matter of fact, this kind of transition can be generalized [15] to an arbitrary set
of variables U ′. For this purpose we have to pursue the following algorithm. First, convert
the intermediate solution valuies Ũi into their nonconservative counterparts Ũ ′

i := T (Ũi)Ũi.
Next, compute the associated upper and lower bounds. By considering the transformed
fluxes F ′

ij := T (Ũi)Fij for each edge, we can estimate the correction factors βk
ij and

assemble the corrected fluxes following

F ∗
i (u

(m)
k , un

k) = T (Ũi)
−1

∑

j 6=i

L(β1
ij, . . . , β

5
ij)F

′
ij. (79)

However, the skew-symmetry of the fluxes may be lost for the nonconservative variables.
The use of a synchronization procedure implies that the correction factors reduce to a
scalar quantity and thus (79) simplifies dramatically. Specifically, the coefficients βk

ij are

determined for the set of control variables Ũ ′ but applied to the conservative fluxes Fij.
As the final step of the defect correction loop, the update (75) is performed by adding

the increments to the solution from the previous iteration. A suitable underrelaxation
strategy can be employed to aid convergence

u
(m+1)
k = u

(m)
k + ω

(m)
k δu

(m)
k , u

(0)
k = un

k . (80)

9 Summary of the algorithm

As we have seen, the generalized FEM-FCT formulation in combination with Zalesak’s
limiter can be applied to a wide range of problems described by (systems of) conserva-
tion laws of the form (10). The proposed high-resolution finite element scheme can be
implemented on arbitrary unstructured grids using either the conventional or the edge-
based data structure. Let us summarize the main algorithm by describing one cycle of
the nonlinear defect correction loop:

1. Perform an edge-by-edge assembly of the diagonal preconditioner blocks C
(m)
k by

considering the low-order operator.

2. Apply the low-order contribution to the defect vector in an edge-based manner.

3. Assemble the raw antidiffusive terms F (u
(m)
k , un

k) for each node.

4. Compute the positivity preserving auxiliary solution ũk = uL
k (tn+1−θ) but only in

the first iteration step.
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5. Apply Zalesak’s limiter and synchronize the correction factors αk
ij.

6. Add the limited antidiffusive fluxes F ∗(u
(m)
k , un

k) to the defect vector.

7. Solve the sequence of linear systems for the resulting scalar subproblems.

8. Use a suitable underrelaxation strategy, apply the increments δu
(m)
k to the variables

uk and proceed to the next nonlinear iteration / time step.

A short remark is in order concerning the iterative solution of linear systems. While
for relatively small time steps the nonsymmetric linear systems engendered by implicit
schemes can be solved by a simple Jacobi-like iteration with the lumped mass matrix
as preconditioner, the matrices become increasingly ill-conditioned for larger time steps.
Hence, it is advisable to utilize BiCGSTAB or multigrid methods with basic components
like Jacobi, Gauß-Seidel or SOR smoothers. Compromising the benefits of the uncondi-
tionally positive backward Euler/FCT methods, standard smoothers and preconditioners
fail for very large time steps and aspect ratios. In our experience, an ILU-decomposition
with an appropriate renumbering scheme like Cuthill-Mckee turns out to be of great use
in this situation.

10 Numerical examples

In the examples which follow, we study the behavior of the implicit Crank-Nicolson
(CN/FCT) and the backward Euler (BE/FCT) schemes. Throughout all computations
we used quadrilateral elements Q1. However, our FEM-FCT algorithm is applicable to
triangular elements P1 as well as nonconforming elements Q̃1. Many other test problems
were considered in [11], [12] which should also be consulted especially for scalar problems.

10.1 Shock tube problem

One of the standard benchmarks for compressible flow solvers is the shock tube problem
proposed by Sod [28]. Its physical prototype is a closed tube initially filled with a quiescent
gas separated by a membrane into two regions. A higher pressure is maintained on the
left of the tube than on the right. In addition, the initial data for this two dimensional
Riemann problem are given as





ρL

vL

pL



 =





1.0
0.0
1.0



 for x ∈ [0, 0.5],





ρR

vR

pR



 =





0.125
0.0
0.1



 for x ∈ (0.5, 1].

The abrupt removal of the membrane gives rise to a motion of gas into the direction of
lower pressure initiating three distinct waves, namely a normal shock wave, a contact
discontinuity wave and a rarefaction wave. While some variables are discontinuous across
the first two waves, all variables remain continuous across the rarefaction fan. In fact,
this flow structure prevails only until the waves impinge on either the left or the right
wall.
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We computed the numerical solution displayed in Figure 1 on a uniform mesh of
129 × 129 grid points. The time step was fixed to ∆t = 10−3. All snapshots show
the solution obtained with the second order Crank-Nicolson scheme taken at the time
t = 0.231. The limiter was synchronized by taking the minimum of the correction factors
for the density and energy.
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Figure 1. Shock tube problem. Numerical solutions at t = 0.231.

The lower right plot shows a cutline for y = 0.5 through the solution. Here, the dashed
line indicates the exact solution while the dotted lines correspond to the numerical one
for all variables. For a more detailed description of this benchmark problem including a
comparison between the low order solutions obtained from scalar artificial diffusion and
from Roe’s approximate Riemann solver the interested reader is referred to [12].

Let us remark that we investigated the same benchmark with the computational do-
main rotated 45◦ counterclockwise, whereby the waves propagate along the line x = y. In
contrast to adhoc application of one-dimensional schemes by using directional splitting
our method proved to be truly multi-dimensional producing the same solution as those
shown above.
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10.2 Radially symmetric Riemann problem

The next benchmark was proposed by LeVeque [14] to assess the ability of methods to
conserve radial symmetry. At the beginning, a circular region of higher density and
pressure is embedded into a region of unit pressure and density. Initially, the medium is
at rest in both regions. In our simulation the initial data was taken to be





ρint

vint

pint



 =





2.0
0.0
15.0



 for r < 0.13,





ρext

vext

pext



 =





1.0
0.0
1.0



 otherwise.

The pressure difference induces a radially expanding shock wave whose discontinuities
have to be captured accurately. Let us remark that the ‘exact’ solution can be derived by
reducing this benchmark to a one dimensional Riemann problem with geometric source
terms [14].

Our results were computed on the same uniform mesh as in the preceding example.
The time step was fixed to ∆t = 10−3. The results displayed in Figure 2 were taken at
the instant t = 0.13.

CN/FCT

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

BE/FCT

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

density distribution along the x-axis

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

1.5

2

2.5

density distribution along the diagonal

−0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.5

1

1.5

2

2.5

Figure 2. Radially symmetric Riemann problem, t = 0.13.
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The contour plot (top) exhibits radial symmetry for both Crank-Nicolson and back-
ward Euler. However, a closer look reveals that the first order scheme is slightly more
diffusive with the result that it fails to capture the critical discontinuity near the origin
with high accuracy.

This can best be recognized when considering the density distribution along the x-axis
and the diagonal presented in Figure 2 (bottom). Moreover, the second order accurate
Crank-Nicolson scheme resolves the peaks slightly better. Nevertheless, the compari-
son between the solution structure along the different ‘axes’ confirms the fact that both
methods produce perfectly symmetric results.

10.3 Cones and wedges

Let us investigate our algorithm when applied to stationary problems. We enter this
group of benchmarks considering a supersonic flow at Mach 2.5 impinging on a corner
with an angle of 15◦. This kind of flow is understood very well and the solution to this
setup can be derived analytically from oblique shock theory [1]. For this purpose one has
to consider the so-called θ − β − M relation

tan θ = 2 cot β
M2 sin2 β − 1

M2(γ + cos2 2β) + 2
, (81)

where θ, β and M specify the deflection angle, the shock wave angle and the Mach
number in front of shock, respectively. Provided that the deflection angle remains below
some maximum θmax (which is Mach number dependent) the shock keeps attached to the
wedge. Increasing either the Mach number or the deflection angle would start detaching
the shock from the obstacle, rendering its behavior more complicated. However, the exact
solution to our benchmark problem is a weak shock with β = 36.94◦ and Mach 1.87 behind
the shock.

BE/FCT Low-order method

Figure 3. Oblique shock at Mach 2.5 with θ = 15◦.

The solution depicted in Figure 3 was computed on a structured mesh of 129 × 129
quadrilaterals without any adaptive refinement. It is worth mentioning, that we performed
the same computation on an adaptive mesh using 2.500 elements with the same accuracy.
Flux correction was performed by employing the synchronized correction factors for the
density and energy. The transition to the set of primitive variables taking the density and
pressure as indicator variables did not show any improvements.
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11 Conclusions

A new family of high-resolution finite element schemes based on the idea of flux-corrected
transport was presented. The scalar theory for positive methods was generalized to sys-
tems of equations. A new procedure for the construction of the low-order method was
proposed. By adding artificial diffusion proportional to the spectral radius of the Roe ma-
trix, the scalar strategy of eliminating all negative off-diagonal entries from the high-order
operator was mimicked by rendering all off-diagonal blocks positive definite.

We proposed a universal approach to the flux decomposition of convective and diffu-
sive terms resulting from the Galerkin discretization. This enabled us to represent the
antidiffusive terms as a sum of internodal fluxes which could be limited in an essentially
one-dimensional manner. In doing this, the skew-symmetry of the conservative fluxes
guaranteed strict mass conservation. Furthermore, we suggested an efficient algorithm for
an edge-by-edge matrix assembly.

A fixed point defect correction was employed for an iterative treatment of nonlinear-
ities. By utilizing the low-order operator as block-diagonal preconditioner, the nonlinear
system was split into a sequence of scalar subproblems. Furthermore, this relieved us from
storing huge matrices except of the 5 diagonal blocks of the sparse low-order operator.

Attention was paid to the need of synchronizing the correction factors of the flux-
limiter. As a consequence, the limiting coefficients reduced to a scalar quantity even
for systems. The idea of mixing two sets of variables in the flux-limiter amounted to
estimating the correction factors for a set of arbitrary variables and applying them to the
conservative fluxes.

Generally speaking, the unified FEM-FCT formulation encompassing both explicit and
implicit schemes has proved to be applicable to multi-dimensional hyperbolic systems
with considerable success. Nevertheless, the time step dependency of Zalesak’s limiter
is alarming. The unconditional positivity of the backward Euler cannot be duly utilized
without loss of accuracy. Further investigations will be necessary to develop an alternative
limiter.
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