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Abstract

Dense particle suspensions are promising candidates for next-generation Concentrated Solar Power
(CSP) receivers, enabling operating temperatures above 800 °C. However, accurate modeling of the
rheological behavior of granular flows is essential for reliable computational fluid dynamics (CFD) sim-
ulations. In this study, we develop and assess numerical methodologies for simulating dense suspensions
pertinent to CSP applications.

Our computational framework is based on Direct Numerical Simulation (DNS), augmented by
lubrication force models to resolve detailed particle-particle and particle-wall interactions at volume
fractions exceeding 50%. We conducted a systematic series of simulations across a range of volume
fractions to establish a robust reference dataset.

Validation was performed via a numerical viscometer configuration, permitting direct comparison
with theoretical predictions and established benchmark results. Subsequently, the viscometer arrange-
ment was generalized to a periodic cubic domain, serving as a representative volume element for CSP
systems. Within this framework, effective viscosities were quantified independently through wall force
measurements and energy dissipation analyses. The close agreement between these two approaches
substantiates the reliability of the results.

Based on these findings, effective viscosity tables were constructed and fitted using polynomial and
piecewise-smooth approximations. These high-accuracy closure relations are suitable for incorporation
into large-scale, non-Newtonian CFD models for CSP plant design and analysis.
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1. Introduction

Concentrated Solar Power (CSP) represents a critical pillar in the transition toward sustainable
energy systems, offering not only the capability to convert solar radiation into electricity but also a
practical solution for thermal energy storage. Unlike photovoltaic technologies that generate electricity
directly from sunlight, CSP systems rely on optical concentrators to focus solar radiation onto a receiver,
where the energy is absorbed and transformed into heat. This heat is then used to drive conventional
power cycles, typically steam or gas turbines, for electricity production. A key advantage of CSP lies
in its intrinsic potential to store thermal energy efficiently, thereby decoupling energy collection from
power generation and enabling dispatchable electricity supply during cloudy periods or after sunset.

Among various thermal storage media explored for CSP systems, dense particle suspensions have
garnered significant attention as a next-generation heat transfer and storage medium. Comprising
solid particles—such as ceramic bauxite or sintered sand—either suspended in a gas or used in pure
particulate form, these suspensions exhibit superior thermal stability and energy density compared to
traditional molten salts [12]. More importantly, they enable operation at temperatures exceeding 800◦C
[11], a threshold that opens pathways to high-efficiency thermodynamic cycles such as the supercritical
CO2 Brayton cycle.

However, the deployment of dense suspensions in CSP introduces new modeling and engineer-
ing challenges. The inherently complex dynamics of dense granular flows—characterized by intense
particle–particle and particle–fluid interactions—demand advanced numerical tools for analysis and
system design. In this context, Computational Fluid Dynamics (CFD) has emerged as an indispens-
able tool, enabling the simulation of multiphase flows in CSP receivers, transport channels, and storage
units. Through CFD, engineers can probe heat and momentum transfer mechanisms, assess flow sta-
bility, optimize geometry, and predict system performance under realistic conditions.

Yet, the accurate numerical simulation of dense suspensions remains a formidable task. The consti-
tutive behavior of such mixtures is strongly nonlinear and non-Newtonian, particularly at high particle
concentrations. One of the central challenges is the proper modeling of the effective viscosity of the
suspension—a macroscopic parameter that encapsulates the microscale rheological effects due to par-
ticle interactions and hydrodynamic forces. This viscosity depends sensitively on the local particle
volume fraction, shear rate, and temperature, necessitating robust closure models for incorporation
into macroscopic-level CFD solvers.

Recent advances have proposed hybrid methodologies combining high-fidelity Direct Numerical
Simulations (DNS) at the particle scale with coarse-grained Eulerian models. In particular, Discrete
Network Approximations (DNA) and Arbitrary Lagrangian–Eulerian (ALE) finite element methods
have shown promise in resolving the motion of rigid particles while retaining computational efficiency
[5, 6, 17]. By performing extensive offline simulations across a range of operating conditions, researchers
can derive polynomial or piecewise-smooth fits for the effective viscosity, thus supplying high-quality
closures for use in large-scale, non-Newtonian CFD models.

Moreover, technological advances in high-performance computing have significantly boosted the
capabilities of traditional Euler–Euler multiphase flow methods. The increased parallelism of modern
hardware architectures, higher processor speeds, and the availability of massively parallel compute
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clusters have enabled Euler–Euler approaches to handle dense suspensions with unprecedented accu-
racy and efficiency. Today, these methods allow not only for stable and robust simulation of highly
concentrated particle flows but also for the accurate computation of critical quantities such as effec-
tive viscosity, shear stress distributions, and particle volume fractions. This leap in computational
feasibility positions Euler–Euler modeling strategies as a practical and reliable tool for the design,
optimization, and operation of next-generation CSP plants utilizing dense particle suspensions.

In sum, the integration of dense suspensions into CSP plants presents both a compelling opportunity
and a modeling frontier. Understanding and predicting the behavior of these complex multiphase
systems is essential for the design of efficient, reliable, and economically viable solar thermal power
plants capable of meeting future energy demands.

To systematically address these challenges, the remainder of this paper is structured as follows:
Section 2 formalizes the coupled fluid-particle model governing dense suspension flows, detailing the
underlying physics and mathematical formulations. Sections 3, 4 and 5 outline the numerical method-
ologies employed, including the finite element discretization and the implementation of lubrication force
models. Validation of the computational framework is presented in Section 6, where simulation results
are compared against theoretical predictions and benchmark data. In Subsection 6.2, we generalize
the viscometer configuration to a periodic domain to derive effective viscosity closures pertinent to
CSP applications. Finally, Section 7 summarizes the key findings and discusses their implications for
large-scale CFD simulations in CSP plant design.

2. Physical and Mathematical Modeling

Adopting the Finite Element Method–Fictitious Boundary Method (FEM–FBM) approach to direct
numerical simulation [26], we consider a coupled system of governing equations for the fluid and N
solid particles. These equations are solved in the fictitious domain

ΩT = Ωf ∪
N⋃
i=1

Ωi,

where Ωf denotes the subdomain occupied by the fluid and Ωi, i ∈ {1, . . . , N} is the subdomain
occupied by the i-th particle.

2.1 Fluid Flow

The motion of the incompressible fluid is governed by the Navier–Stokes equations

ρf

(
∂u

∂t
+ u · ∇u

)
−∇ · σ = 0, (Momentum equation) (1)

∇ · u = 0, (Continuity equation) (2)

where u is the fluid velocity field, ρf is the fluid density, and σ is the Cauchy stress tensor. These
equations are valid in the fluid domain Ωf (t), which depends on the time t. The Cauchy stress tensor
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for a Newtonian fluid is defined as

σ = −pI + µf

[
∇u+ (∇u)T

]
. (3)

Here, p is the pressure, I is the identity tensor, and µf is the fluid dynamic viscosity. The corresponding
kinematic viscosity is given by ν = µf/ρf .

2.2 Particle Motion

Each rigid particle Ωi undergoes translational and rotational motion governed by the Newton–Euler
equations. Let Ui(t) and ωi(t) denote the translational and angular velocities of the i-th particle,
respectively. The equations of motion read

Mi
dUi

dt
= ∆Mig + Fi + Fcol

i , (4a)

Ii
dωi

dt
+ ωi × (Iiωi) = Ti, (4b)

where

• Mi is the mass of the i-th particle,

• Ii is the moment of inertia tensor,

• ∆Mi = Mi − ρf |Ωi| is the effective buoyant mass,

• g is the gravitational acceleration,

• Fi and Ti are the hydrodynamic force and torque acting on the particle,

• Fcol
i accounts for collisions with particles or walls and includes forces that model close-range

lubrication effects.

The hydrodynamic force and torque are computed from the stress distribution on the particle
boundary ∂Ωi as follows:

Fi = −
∫
∂Ωi

σ · n dΓ, (5)

Ti = −
∫
∂Ωi

(x−Xi)× (σ · n) dΓ, (6)

where Xi is the center of mass and n denotes the unit outward normal to ∂Ωi.
The particle’s position and orientation are determined by the ordinary differential equations

dXi

dt
= Ui, (7)

dθi
dt

= ωi, (8)
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where θi denotes the rotational state, e.g., the rotation vector depending on the chosen representation.
On the fluid–particle interface ∂Ωi, the velocities satisfy the no-slip boundary condition

u(x) = Ui + ωi × (x−Xi) ∀x ∈ ∂Ωi (9)

corresponding to the rigid body motion in Ωi.

3. Multigrid FEM Fictitious Boundary Method

The Multigrid Finite Element Method–Fictitious Boundary Method (FEM–FBM) provides an effi-
cient approach for simulating particulate flows by avoiding remeshing and enabling parallel scalability
[26, 27]. The central idea is to run simulations on a single, fixed background mesh that covers the en-
tire computational domain ΩT = Ωf ∪

⋃N
i=1Ωi. The method is closely related to the fictitious domain

approaches presented in [13, 14, 18].

3.1 Fictitious Domain Formulation
The FEM-FBM methodology extends the Navier–Stokes equations to the full domain ΩT , incor-

porating the rigid particle constraint via an explicit enforcement of the no-slip condition within the
particle regions. The governing equations are formulated as:

∇ · u = 0, in ΩT , (10a)

ρf

(
∂u

∂t
+ u · ∇u

)
−∇ · σ = 0, in Ωf , (10b)

u(x) = Ui + ωi × (x−Xi), in Ωi, i = 1, . . . , N. (10c)

Here, the constraint (10)c enforces rigid body motion inside each particle domain Ωi, effectively
transforming the problem into a single-domain formulation with implicitly embedded moving obstacles.

3.2 Hydrodynamic Force Calculation via Volume Integration
To avoid reconstructing particle surfaces at each time step, the FBM computes hydrodynamic forces

and torques via a volume-integral approximation. Define the indicator function αi : ΩT → {0, 1} by

αi(x) =

{
1, if x ∈ Ωi,

0, otherwise.

The interface is implicitly represented through the gradient ∇αi, which is non-zero only near ∂Ωi. The
hydrodynamic force Fi and torque Ti are then computed as

Fi = −
∫
ΩT

σ · ∇αi dx, (11)

Ti = −
∫
ΩT

(x−Xi)× (σ · ∇αi) dx. (12)

This volume-based formulation is particularly well suited for structured meshes, as it requires integra-
tion only over a narrow band of cells surrounding each particle.
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3.3 Numerical Strategy

The multigrid FEM–FBM algorithm advances the fluid–solid mixture in time using the following
steps at each time level:

1. Solve the fluid equations (10)a and (10)b over ΩT , imposing the rigid-body constraints via (10)c.
2. Compute the hydrodynamic forces and torques using the representation as volume integrals.
3. Update translational and angular velocities of the particles by solving the Newton–Euler equa-

tions (4).
4. Update particle positions and apply new rigid-body constraints to the fluid field.

The background grid remains fixed, and particles move freely through it. The multigrid solver effi-
ciently handles the pressure–velocity coupling and nonlinearities introduced by convection, maintaining
optimal performance even for large numbers of particles.

4. Finite Element Discretization

4.1 Time Integration: Fractional-Step-θ Scheme

The coupled fluid–solid system is discretized in time using the fractional-step-θ scheme [7, 28],
which is strongly A-stable and particularly effective for stiff, transient flow problems. The scheme
introduces minimal numerical dissipation and supports accurate resolution of oscillatory behavior.

Let un and pn denote the fluid velocity and pressure at time tn, and let K = tn+1 − tn denote the
time step size. In our description of the time-stepping method, we will use the operator notation

N (v)u := −ν∇ ·
(
∇u+∇u⊤

)
+ v · ∇u

for the sum of the convective and viscous terms in the discretized momentum equations.
The update from tn to tn+1 is performed in three substeps. The degree of implicitness for individual

steps is determined by the parameters

θ = 1−
√
2

2
, θ′ = 1− 2θ, α =

1− 2θ

1− θ
, β = 1− α.

The first two steps of the following algorithm produce intermediate velocities un+θ and un+1−θ. The
third step yields the final velocity un+1.

Step 1: First Intermediate Velocity

[
I + αθKN (un+θ)

]
un+θ + θK∇pn+θ = [I − βθKN (un)]un, (13)

∇ · un+θ = 0. (14)
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Step 2: Second Intermediate Velocity

[
I + βθ′KN (un+1−θ)

]
un+1−θ + θ′K∇pn+1−θ =

[
I − αθ′KN (un+θ)

]
un+θ, (15)

∇ · un+1−θ = 0. (16)

Step 3: Final Velocity Update

[
I + αθKN (un+1)

]
un+1 + θK∇pn+1 =

[
I − βθKN (un+1−θ)

]
un+1−θ, (17)

∇ · un+1 = 0. (18)

Rigid Body Motion Constraint

After each velocity update, the velocity of the fictitious fluid is constrained to satisfy the constraint

un+1(x) = Un+1
i + ωn+1

i ×
(
x−Xn+1

i

)
, ∀x ∈ Ωi (19)

of rigid body motion in the particle domain Ωi. In our FEM-FBM method, this constraint is imposed
in a strong sense by extending the Dirichlet boundary condition (9) into the interior Ωi of the particle.
At the fully discrete level, condition (19) is enforced at the nodal points that belong to Ω̄i. This
approach eliminates the need for using body-fitted grids or distributed Lagrange multipliers.

A Note on Implementation

Each substep results in a nonlinear saddle-point problem that can be solved using fixed-point
iteration or linearization (e.g., Oseen approximation). The pressure updates may be performed using
discrete projection methods and multigrid solvers [23].

Space Discretization with the Q2/P
disc
1 Element Pair on Hexahedral Meshes

We discretize the incompressible Navier–Stokes equations in three spatial dimensions using a back-
ground mesh of conforming hexahedra.

Finite Element Spaces

Let Th denote a shape-regular family of hexahedral elements covering the extended computational
domain ΩT ⊂ R3. We define the discrete velocity and pressure spaces as:

HQ2

h :=
{
vh ∈ C0(ΩT )

3
∣∣ vh|T ∈ Q2(T )

3 ∀T ∈ Th, vh = 0 on ∂ΩT

}
,

L
Pdisc
1

h :=
{
qh ∈ L2

0(ΩT )
∣∣ qh|T ∈ P1(T ) ∀T ∈ Th

}
,

where Q2(T ) denotes the space of triquadratic polynomials and P1(T ) the space of linear polynomials
on each element T of the mesh.
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Bilinear and Trilinear Forms

For uh,vh,wh ∈ HQ2

h and ph ∈ L
Pdisc
1

h , we define

ah(uh,vh) :=
∑
T∈Th

∫
T
∇uh : ∇vh dx,

bh(ph,vh) := −
∑
T∈Th

∫
T
ph (∇ · vh) dx,

nh(uh,vh,wh) :=
∑
T∈Th

∫
T
[(uh · ∇)vh] ·wh dx.

Streamline-Diffusion Stabilization
To stabilize the convective terms, we use the modified trilinear form

ñh(uh,vh,wh) := nh(uh,vh,wh) +
∑
T∈Th

δT

∫
T
(uh · ∇vh)(uh · ∇wh) dx,

with the local stabilization parameter

δT := δ∗
hT

∥u∥ΩT

· 2ReT
1 + ReT

, ReT :=
∥u∥T · hT

ν
,

where hT is the element diameter, ∥u∥T is a local norm (e.g., L2), and δ∗ ∈ [0.1, 1] is a user-chosen
constant.

Fully Discrete Saddle Point Problems
In each stage of the fully discrete fractional-step method for the Navier-Stokes system, we compute

a finite element approximation (uh, ph) ∈ HQ2

h × L
Pdisc
1

h such that

(uh,vh) + θ1K [ah(uh,vh) + ñh(uh,uh,vh)] + θ2K bh(ph,vh) = (f ,vh) ∀vh ∈ HQ2

h ,

bh(qh,uh) = 0 ∀ qh ∈ L
Pdisc
1

h .

The use of discrete projection methods as iterative solvers for the corresponding nonlinear saddle-point
problems makes it possible to update the velocity and pressure in a segregated manner [23].

Fictitious Boundary Conditions
Given the coordinates of the center of mass Xi(t), the translational velocity Ui(t), and angular

velocity ωi(t) of a rigid particle Ωi(t), we constrain the velocity degrees of freedom at all nodal points
xDOF ∈ Ω̄i(t) to satisfy the fictitious boundary conditions

uh(xDOF) := Ui(t) + ωi(t)× (xDOF −Xi(t)) , xDOF ∈ Ω̄i(t).

That is, we treat xDOF in the same way as a Dirichlet boundary node.
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Hydrodynamic Force Evaluation

The total hydrodynamic force acting on particle i is computed via

Fi := −
∫
ΩT

σ(uh, ph) : ∇αi dx, αi(x) =

{
1, x ∈ Ωi(t),

0, otherwise,

where the Cauchy stress tensor is defined as

σ(uh, ph) = −phI+ 2νD(uh), D(uh) :=
1

2

(
∇uh +∇u⊤

h

)
.

For the details of the solution scheme and efficiency considerations, we refer to [23, 24].

5. Hard-Sphere Particle Model and Lubrication Forces

5.1 Contact Formulation

We use a semi-implicit time-stepping method for frictional contact between rigid bodies, combining
contact detection, impulse computation, and constraint projection based on the formulations by Stewart
& Trinkle [20] and Anitescu & Potra [1]. The employed framework supports both sequential and
distributed execution. Contacts between rigid bodies are modeled as point-wise constraints using a
local frame {n, t,o} aligned with the normal n and two tangential directions. The computation of
contact impulses pi = (pn, pt, po) ensures that non-penetration and Coulomb friction are enforced:

ġi = Wipi + bi, pi ∈ Ki,

where Wi is the Delassus operator (or Schur complement), and Ki is the local friction cone: ∥pt∥ ≤
µpn, pn ≥ 0.

The normal component of the velocity is stabilized using the Baumgarte correction [4], which
modifies the target velocity to counteract constraint drift.

5.2 Solver Structure

We employ two contact solvers:

• Approximate Decoupled Solver: Updates normal and tangential impulses separately (as in
[15]). Normal impulses are projected onto the positive half-line; tangential ones are projected
into a disk of radius µpn.

• Orthogonal Projection Solver: Based on Anitescu & Tasora [2], updates the full impulse and
projects the result onto the friction cone. This retains coupling between normal and tangential
impulses and improves robustness.

Both solvers operate within an iterative loop, updating one contact at a time and accumulating the
resulting velocity changes. This structure naturally leads to the Projected Gauss–Seidel (PGS)
method [10, 29].
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5.3 Projected Gauss–Seidel (PGS)

The PGS algorithm is an iterative solver for contact impulses:

pk+1
i = ΠKi

(
pk
i − ωW−1

ii ġi

)
,

where ΠKi is the projection onto the admissible set (e.g., friction cone) and ω ∈ (0, 1] is a relaxation
parameter.

Unlike matrix solvers, this method loops over contacts, immediately updating the bodies’ velocities.
This "local and sequential" structure is what makes it a Gauss–Seidel variant — but adapted to
inequality-constrained dynamics.

Parallelization with Domain Decomposition

Although PGS is inherently a sequential algorithm in the sense that each contact update depends
on the latest values of neighboring contacts, it can be effectively used in parallel simulations via domain
decomposition.

In a distributed contact solver, the simulation domain is partitioned into subdomains assigned to
different processors. Bodies that lie near domain boundaries are duplicated as ghost bodies (or shadow
copies) on neighboring subdomains. Each domain then proceeds with its own local PGS loop over its
contact set. Consistency across domains is maintained as follows:

• After each full PGS iteration (i.e., one sweep over all contacts), each subdomain synchronizes the
velocities of ghost bodies with their host domain.

• This synchronization ensures that when a neighboring domain continues its sweep, it sees the
latest velocity updates from contacts affecting shared bodies.

• Communication can be implemented via MPI or other inter-process protocols and typically in-
volves only boundary data.

This simple synchronization strategy allows the PGS solver to operate in a Gauss–Seidel fashion
within each domain, while enabling globally consistent evolution of contact dynamics across all domains.
In this way the CFD solver and the Particle solver can both run in parallel using the same domain
decomposition, which makes this approach an excellent fit for our purposes.

5.4 Lubrication Forces

The lubrication model that we use for near-contact interactions in viscous suspensions is compatible
with rigid body solvers based on hard contact formulations. It follows the approach of Kroupa et al. [16]
and Dance & Maxey [9, 30], adapted to match the variable conventions of the hard contact solver.

The variables and symbols that appear below in the formulas for individual forces are specific to
bilateral particle interactions. For a complete explanation of these quantities, we refer to Appendix
A, which summarizes their definitions and the context.
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Normal Force

F lub
n = −6πµfRpġn

(
1

ϵ
− 9

40
log ϵ− 3

112
ϵ log ϵ

)
. (20)

Tangential (Sliding) Force

F lub
t = −6πµfRp

[
vt

(
−1

6
log ϵ

)
+ vct

(
−1

6
log ϵ− 1

12
ϵ log ϵ

)]
. (21)

Sliding Torque

M lub
t = −8πµfR

2
p

[
(n× vt)

(
−1

6
log ϵ− 1

12
ϵ log ϵ

)
+ (n× vct)

(
−1

5
log ϵ− 47

250
ϵ log ϵ

)]
. (22)

Twisting Torque

M lub
n = −8πµfR

2
p [(ωi − ωj) · n]n

(
1

8
ϵ log ϵ

)
. (23)

Slip Regularization

To avoid singularity as ϵ → 0, we apply the slip correction factor

f∗ =
h

3hc

[(
1 +

h

6hc

)
ln

(
1 +

6hc
h

)
− 1

]
(24)

from [25]. The corrected lubrication force and torque are given by

F lub, corrected = f∗F lub, M lub, corrected = f∗M lub.

If h < hc, we set h = hc and ϵ = ϵc = hc/Rp beforehand.

Particle-Wall Interactions

Interactions with solid walls are modeled using the same formulas with vj = 0,ωj = 0, and h being
the distance between the particle surface and the wall. We use a slight tweak of the fractional terms,
as outlined in [16].
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6. Numerical Viscometry and Validation Framework

6.1 Numerical Rotational Viscometer

In order to characterize the rheological properties of particle-laden incompressible flows, we simulate
a classical concentric cylinder (Couette-type) rotational viscometer. This configuration is widely used
as a benchmark for measuring the effective viscosity of suspensions at various volume fractions of the
particulate phase. A brief description of the experimental/computational setup is given below. The
details can be found in the publication of Prignitz and Baensch [19].

Geometry and Operating Principle
The simulated device consists of two concentric cylinders: the outer cylinder (referred to as the cup)

is set into rotation with angular velocity ω, while the inner cylinder (referred to as the bob) remains
stationary. The annular gap between the two cylinders is filled with either a Newtonian reference fluid
or a dense suspension. The torque exerted by the fluid on the inner cylinder provides a measure of the
suspension’s effective viscosity. A sketch of the experimental setup is shown in Figure 1.

Fluid region

O
ut

er
w

al
l

In
ne

r
w

al
l

ri
ra

Figure 1: Experimental setup and simulation with particle volume fraction of 35% in the Numerical Viscometer.

Shear Rate and Shear Stress
Under the assumption of steady, axisymmetric flow in the narrow-gap limit, the azimuthal velocity

profile is approximately linear. The shear rate γ̇ at the outer wall is approximated by

γ̇ =
duϕ
dr

≈ 2πraω

ra − ri
, (25)

where ri and ra denote the inner and outer cylinder radii, respectively.
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The corresponding wall shear stress τ can be related to the measured torque T via

τ =
T

2πr2a
. (26)

Effective Viscosity Estimation
Using the definitions above, the dynamic viscosity µ of the fluid or suspension is computed from

the measured torque as

µ =
T (ra − ri)

4π2ωr3a
. (27)

This expression confirms that the viscosity is directly proportional to the measured torque for fixed
geometry and rotation rate.

Relative and Effective Viscosity
To assess the impact of suspended particles on the rheology, we define the dimensionless relative

viscosity µ∗ as the ratio of the effective viscosity of the suspension µeff to that of the pure fluid µ:

µ∗ =
µeff

µ
=

Teff

T
, (28)

where Teff is the torque measured for the suspension and T is the reference torque obtained for the New-
tonian fluid. In the numerical implementation, Teff is computed by integrating the torque contribution
from hydrodynamic stresses over the surface of the outer cylinder. Using formula (28), we calculated
the effective viscosity µeff corresponding to the results of our numerical torque measurements.
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Figure 2: Time evolution of the torque measurements for volume fractions of 30%, 35% and 40%.

14



0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Volume Fraction 

1.0

1.2

1.4

1.6

1.8

re
l =

ef
f

Einstein Prediction
Baensch: radius 0.04
Baensch: radius 0.02
FF: radius 0.04
FF: radius 0.02

Figure 3: Numerical Viscometer, 3D simulation results obtained with the FEM-FBM method (FF) vs. Einstein’s effective
viscosity formula and 2D simulation results from [19].

We observe an interesting behavior of our FEM-FBM approach to numerical viscometry in Fig. 2:
In the initial stage of the simulation, a large overshoot (compared to the final value) is followed by a
sharp drop. Then the measured torque increases again before beginning to settle and converge with
minor oscillations around the mean in a "landing zone". We take this mean as the final value. This
behavior of the method is also visible in our computations in a periodic cubic domain.

In Fig. 7, we plot the results of our numerical viscometer simulation vs. effective viscosities com-
puted by Prignitz and Baensch [19] using a similar fictitious domain method. Additionally, we show the
effective viscosities calculated using Einstein’s formula. We see that for relatively low volume fractions,
the effective viscosity increases linearly in accordance with Einstein’s theory. Another observation is
that the results of both numerical simulations start to deviate from the linear behavior for volume
fractions around 20-25%. This confirms that dense suspensions of particles behave as non-Newtonian
fluids. Remarkably, our simulations produce the same results for particle of different radii, but with
the same volume fraction. In summary, the presented FEM-FBM results are in very good agreement
with existing theory and reference data. In particular, the response of the effective viscosity to an
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increase in the volume fraction of particles is captured correctly by our 3D simulation.

6.2 Cubic RVE for Dense Suspensions

In this section we validate the core component of our effective viscosity toolbox: measuring the
effective viscosity in a cubic RVE using DNS.

Validation Using Wall Force Balance Method

In addition to the energy-dissipation based evaluation of µeff on the periodic RVE domain, we
cross-validated our results by implementing a wall-driven shear configuration as presented in Kroupa
et al. [16]. This approach computes the effective viscosity via direct force balance on a moving wall in
a simple shear cell.

Computational Setup

The domain is a cube of size L×L×L with periodic boundary conditions in the x and z directions.
The bottom wall is fixed, while the top wall moves at a constant velocity Ux, thereby imposing a known
shear rate γ̇ = Ux/L. The suspension is sheared between these walls, and the top wall simultaneously
acts as a probe surface for measuring the drag force.

Force Decomposition

The total shear stress τ acting on the upper wall is determined as

τ =
Fdrag,x

A
, (29)

where Fdrag,x is the x-component of the total drag force exerted by the suspension on the upper wall
and A = L2 is the wall area.

This drag force comprises two contributions:

• The hydrodynamic force FH,x, obtained by integrating the fluid stress µf∂ux/∂y at y = L;

• The particle-wall lubrication force FL,x, evaluated by summing lubrication interactions from
particles in near-contact with the top wall.

The corresponding components of the effective viscosity are given by

µH =
FH,x

Aγ̇
, µL =

FL,x

Aγ̇
, µeff = µH + µL. (30)
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Interpretation and Consistency

This method yields a fully mechanical definition of viscosity consistent with Newton’s law of vis-
cosity,

τ = µeffγ̇,

and provides an independent way of estimating µeff that complements the energy-based formulation
used in our RVE analysis.
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Figure 4: Time evolution of the relative viscosity.

Table 1: Comparison of relative viscosities µ∗ = µs/µf from simulations and Krieger–Dougherty (K–D) model predictions
at different solid volume fractions ϕ. Two variants of the K–D model are considered: ϕkd

m and the random close packing
ϕkd,rcp
m . We compare our results (FF) with the simulations of Kroupa et al. [16].

ϕ Kroupa et al. FF K–D µ∗ (ϕm = ϕkd
m ) K–D µ∗ (ϕm = ϕkd,rcp

m )

0.28 3.20 2.70 2.56 2.51
0.34 4.40 3.80 3.49 3.36
0.43 6.70 6.08 6.53 5.95
0.50 10.20 10.50 14.14 11.38
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Figure 5: Plots corresponding to the values in Table 1.

We verified that for the same particle configuration, the two approaches yield effective viscosities in
excellent agreement. Moreover, both formulations exhibit the expected overshoot–relaxation behavior
during start-up shear before stabilizing in a quasi-steady "landing zone", as seen in Fig. 4 and the
results in [16].

Furthermore, we evaluated the effective viscosity in the above simulations using a dissipation-based
definition, which compares the dissipation in the particle-laden suspension to that of a reference shear
flow:

µeff = µ

∫
Ωsus

D(u) : D(u) dx∫
Ωcoarse

D(ū) : D(ū) dx

Here, D(u) = 1
2

(
∇u+∇u⊤

)
denotes the strain-rate tensor, and the numerator measures the total

viscous dissipation in the suspension domain Ωsus. The denominator represents the dissipation in a
coarse-scale reference flow field ū that would arise in a pure fluid domain with the same imposed shear
rate γ̇.

For the special case of a cubic RVE under simple shear, this reference dissipation evaluates to:∫
Ωcoarse

D(ū) : D(ū) dx = 1
2 γ̇

2 |Ω|,

which corresponds to the dissipation in a uniform Newtonian fluid of viscosity µ sheared at constant
rate γ̇ across the volume Ω. This expression serves as a normalization factor, allowing the ratio
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to quantify how much the presence of particles increases the energy dissipation — and thereby the
apparent viscosity — relative to the pure fluid.
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Figure 6: Comparison of effective viscosity calculation using energy dissipation (ED) and wall force balance (WFB).

We compare the results of the energy dissipation (ED) approach to the results achieved using wall
force balancing (WFB) in fig. 6. We observe excellent agreement between the two approaches. Besides
giving further evidence of the correct setup of our RVE measurements this also tells us that our DNS
resolution is sufficient to capture the steep velocity gradients between closely spaced particles which
is the expected dominant source of viscous dissipation in this configuration. This test confirms the
robustness of our lubrication-augmented hard-contact model and the consistency of both techniques
for calibration and validation of coarse-grained viscosity closures.

6.3 Effective Viscosity Closures
The final component of our numerical toolbox for effective viscosity evaluations is a polynomial fit

obtained from steady-state RVE simulations that cover the desired input space sufficiently. We then
fit a bivariate polynomial of the form

µeff(α, γ̇) =

nk∑
k=0

nl∑
l=0

ckl α
k γ̇l, (31)

where ckl are the coefficients to be determined by least-squares fitting. This expression represents a
tensor-product polynomial basis of degree nk in α and nl in γ̇. For numerical efficiency, the polynomial
can be evaluated using the nested Horner scheme

Pk(γ̇) =

nl∑
l=0

ckl γ̇
l, (32)

µeff(α, γ̇) =

nk∑
k=0

αk Pk(γ̇). (33)
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The fitting using the above scheme can be done using Rep instead of γ̇ to combine different carriers
inside the plateau regime as well as data points that are outside of this regime. In order to align the
RVE to the operating conditions of CSP systems we choose γ̇ in the range of 10− 400 [s−1]. We take
an air carrier fluid with µ = 0.0185 [mPa s] which corresponds to the CSP setup in [3]. We include a
water-based carrier and an intermediate carrier for comparison purposes. In the targeted configuration
the particle Reynolds number remained well below 0.1:

Rep =
ρfR

2
pγ̇

µ
<< 0.1

In this low Reynolds number regime, known as the creeping flow regime, the effective viscosity
becomes independent of shear rate, resulting in a viscosity plateau that depends solely on the solid
volume fraction α. This behavior is consistent with findings in the literature [21, 22].

To validate our closure model, we conducted simulations across various carrier fluids (air, interme-
diate viscosity fluids, and water) and solid volume fractions (30%, 40%, 45%, and 50%). The results,
summarized in Table 2, confirm that under CSP operating conditions, the flow remains within the
shear-rate-independent viscosity plateau. This validation supports the applicability of our polynomial
closure model for predicting effective viscosity in macroscopic simulations of CSP systems.

Table 2: Summary of effective viscosity results across carrier fluids, volume fractions ϕ, and regimes (plateau vs. inertial).

Carrier Case ϕ (%) d (mm) Rep µeff (mPa·s) µr γ̇

Air
µ = 0.018,
ρ = 1.2

A0 30 0.1 0.0074 0.054 3.01 50
A1 40 0.1 0.0074 0.096 5.38 50
A2 45 0.1 0.0074 0.134 7.47 50
A3 50 0.1 0.0074 0.197 10.95 50

Intermed.
µ = 0.10,
ρ = 1000

I0 30 0.224 0.0125 0.297 2.97 100
I1 40 0.224 0.0125 0.554 5.54 100
I2 45 0.224 0.0125 0.788 7.88 100
I3 50 0.224 0.0125 1.114 11.14 100

Water
µ = 1.00,
ρ = 1000

W0 30 0.04 0.040 2.86 2.86 100
W1 40 0.04 0.040 5.24 5.24 100
W2 45 0.04 0.040 7.32 7.32 100
W3 50 0.04 0.040 10.51 10.51 100
W4 40 0.04 0.12 5.54 5.54 300
W5 40 0.04 0.16 5.65 5.65 400
W6 40 0.04 0.20 5.79 5.79 500
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Figure 7: Fitted Closure µeff(α, log10(Rep)) based on steady-state RVE simulations.

Figure 7 illustrates the effective viscosity maps generated from our simulations in table 2, providing
a comprehensive view of the viscosity behavior across different operating conditions. These maps serve
as a valuable resource for predicting flow behavior in CSP systems and related applications. With the
help of the proposed scheme custom maps can be generated for different operating conditions.

Mild Inertia Regime and Viscosity Correction Model

With our data points W4-W6 we have actually gradually left the viscosity plateau regime in which
the effective viscosity µeff of a dense suspension is independent of the imposed shear rate γ̇, and
depends solely on the particle volume fraction ϕ. As Rep increases toward O(0.1), small but finite
inertial effects emerge. This regime is called the mild inertia regime, characterized by deviations from
the Stokes solution while the bulk flow remains laminar. These effects are due to fluid inertia at the
particle scale. To quantify the rise in viscosity in this regime, Boyer et al. [8] and Trulsson et al. [22]
proposed a first-order correction to the relative viscosity:

µeff
r (ϕ,Rep) = µr(ϕ)

(
1 +

C(ϕ)

µr(ϕ)
Rep

)
,

or, equivalently,

µeff = µf µr(ϕ)

(
1 +

C(ϕ)

µr(ϕ)
Rep

)
,

where C(ϕ) is an empirical coefficient dependent on the volume fraction ϕ, and encapsulates the
strength of inertial microstructural interactions.
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The increase in relative viscosity is then expressed as:

∆ :=
µeff
r

µr
− 1 =

C(ϕ)

µr(ϕ)
Rep,

which is linear in Rep for small-to-moderate values, typically Rep ≲ 0.6.
In the work of Boyer et al. [8] and Trulsson et al. [22] we find that for ϕ = 0.40 to 0.50, DNS

and experiments report C(ϕ) ∈ [1.5, 3.0], depending on the definition of µr, surface friction, and the
Rep fitting window. The mild inertia model is validated up to Rep ≈ 0.6, beyond which nonlinear
effects begin to dominate and the stress scales more closely as γ̇2. From our data points W4-W6 we
can conclude that our DNS approach can capture the mild inertia regime and the data suggests that
for our approach C(0.4) is 2.5∼2.7. This is consistent with observations from Boyer and Trulsson
that there can be a statistical noise and micro-structural differences between runs that contribute to
±5–10% variance.

7. Conclusion

We have proposed and validated an accurate DNS-based toolbox for numerical viscometry. The
approach has been validated using different carriers, domain geometries and evaluation techniques.
Our method is able to capture phenomena like viscosity plateaus and predict the effects of onsetting
inertia in the mild inertial regime.

Acknowledgments

This work was supported by the German Research Foundation (DFG) under grant KU 1530/28-
1 (TU 102/77-1) with project number 446888252. The authors gratefully acknowledge collaboration
on this project with Prof. Yuliya Gorb (National Science Foundation) and Prof. Alexey Novikov
(Pennsylvania State University).

Appendix A. Notation and Variable Definitions

This appendix summarizes the key symbols and expressions used in the lubrication force model
(Section 5.4) for bilateral interactions in viscous suspensions. These definitions align with the hard-
contact solver framework and are valid for both particle-particle and particle-wall interactions.

• µf : Dynamic viscosity of the fluid.

• Rp: Radius of a spherical particle.

• h: Surface-to-surface distance between particle centers minus 2Rp, h = |xi − xj | − 2Rp.

• ϵ = h/Rp: Dimensionless surface gap.

22



• n: Unit normal vector pointing from particle j to particle i.

• vr = vi − vj : Relative translational velocity between particles.

• ġn = vr · n: Normal component of relative velocity (positive for separating motion).

• vt = vr − ġnn: Tangential sliding velocity.

• ωi,ωj : Angular velocity vectors of particles i and j.

• rk = Rpn: Contact point vector on particle k ∈ {i, j}.

• vc,k = ωk × rk: Surface velocity at the contact point due to rotation.

• vct = vc,i − vc,j : Tangential slip due to differential rotation.

• log ϵ: Natural logarithm of the dimensionless gap, appearing in asymptotic expansions of hydro-
dynamic forces.
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