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Abstract

We introduce a new multimesh finite element method for direct numerical simulation of incompressible
particulate flows. The proposed approach falls into the category of overlapping domain decomposition
/ Chimera / overset grid meshes. In addition to calculating the velocity and pressure of the fictitious
fluid on a fixed background mesh, we solve the incompressible Navier-Stokes equations on body-fitted
submeshes that are attached to moving particles. The submesh velocity and pressure are used to cal-
culate the hydrodynamic forces and torques acting on the particles. The coupling with the background
velocity and pressure is enforced via (i) Robin-type boundary conditions for an Arbitrary-Lagrangian-
Eulerian (ALE) formulation of the submesh problems and (ii) a Dirichlet-type distributed interior
penalty term in the weak form of the background mesh problem. The implementation of the weak
Dirichlet-Robin coupling is discussed in the context of discrete projection methods. Detailed numeri-
cal studies are performed for standard test problems involving fixed and moving immersed objects. A
comparison with fictitious boundary methods illustrates significant gains in the accuracy of drag and
lift approximations.

Keywords: particulate flows, fictitious domains, embedded boundaries, finite element methods,
overlapping grids, Chimera domain decomposition, Dirichlet–Robin coupling

1. Introduction

Numerical methods for direct numerical simulation (DNS) of incompressible flows around mov-
ing rigid particles can be classified into fixed mesh and deforming mesh approaches [5]. Prominent
representatives of the latter family include immersed boundary methods [11, 16, 23] and fictitious do-
main formulations in which the rigid body motion inside the particles is enforced using distributed
Lagrange multipliers (DLM, [3, 4, 15]), fictitious (surrogate, shifted, unfitted) boundary methods
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[12, 25, 26, 27, 28], subspace projections [1, 17], and other non-DLM alternatives [24, 19]. The re-
solving power of such approaches can be greatly improved by using mesh deformation techniques
[1, 14, 29] or overlapping domain decomposition with moving submeshes [2, 6, 7, 8, 10]. The coupling
conditions in the overlap region can again be enforced in different ways. Houzeaux and Codina [8]
propose a Chimera method with Dirichlet/Neumann(Robin) coupling such that Dirichlet-type condi-
tions are strongly enforced at nodal points inside and around immersed objects. The multimesh finite
element method developed by Dokken et al. [2] achieves the coupling effect by incorporating suitable
stabilization terms into the discontinuous Galerkin (DG) weak forms of interacting subproblems.

A common disadvantage of all fixed-mesh algorithms that constrain the velocity of a fictitious fluid
at discrete locations is the lack of continuous dependence on the data. Indeed, a small displacement of
a particle can activate or deactivate the Dirichlet constraint. Moreover, the volume of the constrained
region changes abruptly leading to nonphysical temporal oscillations in the pressure field and, as a
consequence, in forces acting on the particles. In the present paper, we cure this deficiency of Chimera-
type domain decomposition methods by using a distributed interior penalty term instead of strongly
imposed nodal constraints. The weak form of our background mesh problem differs from the unfitted
finite element method presented in [2] in the structure of employed stabilization terms and in the way
in which they are incorporated into the discrete projection method for the Navier–Stokes system. Our
algorithm is simpler than the DG method from [2] and requires fewer degrees of freedom because we
are using a continuous approximation to the velocity field. The results of our numerical experiments
show that our modification of the Chimera method from [8] is robust and capable of delivering accurate
DNS results at a fraction of the cost that a fixed-mesh fictitious boundary method would require.

2. Fictitious domain formulation

Let Ω ⊂ Rd, d ∈ {2, 3} be a fixed fictitious domain. In our particulate flow model, Ω is filled with
an incompressible Newtonian fluid that carries a suspension of Np rigid particles (balls)

Bk(t) = {x ∈ Rd : |x−Xk(t)| < Rk}.

We subdivide Ω into Ωp(t) :=
⋃Np

k=1Bk(t) and the subdomain Ωf (t) := Ω\Ω̄p(t) occupied by the fluid.
The evolution of the fluid-particle mixture is governed by the system [14, 27]

ρf

(
∂u

∂t
+ u · ∇u

)
= −∇p+∇ · (2µfD(u)) in Ωf (t), (1a)

∇ · u = 0 in Ω, (1b)
u = U on Ω̄p(t) (1c)

of generalized incompressible Navier–Stokes equations. Here u is the velocity of the fluid, U is the
velocity of rigid body motion inside the particles, p is the pressure, and

D(u) =
1

2
(∇u+∇u⊤)
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is the deformation rate tensor. The constant density and dynamic viscosity of the fluid phase are
denoted by ρf and µf , respectively. For x ∈ B̄k(t), the velocity of the fictitious fluid is given by

U(x, t) = Uk(t) + ωk(t)× (x−Xk), (2)

where Uk is the translational velocity and ωk is the angular velocity of the kth particle. The density,
volume, and moment of inertia tensor of this particle are denoted by ρk, Vk, and Ik, respectively.

For simplicity, we assume that the particles do not collide with each other or with solid walls.
Therefore, we do not include repulsive or lubrication forces in the Newton–Euler equations

ρpVk
dUk

dt
= Fk + (ρp − ρf )Vkg, (3a)

Ik
dωk

dt
= Tk − ωk × (Ikωk), (3b)

where g is the gravitational acceleration. The hydrodynamic force Fk and torque Tk are defined by

Fk = −
∫
∂Bk

σnds, Tk = −
∫
∂Bk

(x−Xk)× (σn)ds. (4)

Here n denotes the unit outward normal and σ = −pI+ 2µfD(u), where I is the identity tensor.
The problem statement is completed by imposing appropriate initial and boundary conditions. By

default, we prescribe a given velocity profile at the inlet, the zero-stress condition at the outlet, and
the no-slip condition on solid walls. The rigid body motion constraint (1c) defines both the no-slip
Dirichlet boundary data for ∂Ωp(t) and the velocity of the fictitious fluid contained in Ωp(t).

Ω

Bk

Ωk

∂Ωk/∂Bk∂Bk

Figure 1: Schematic setup of the Chimera submesh.
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3. Chimera domain decomposition

In our multimesh numerical method for solving the coupled problems (1) and (3), we calculate Fk

and Tk using finite element approximations to u and p on the body-fitted subdomains

Ω̂k(t) = {x ∈ Rd : Rk < |x−Xk(t)| < Rk +Hk},

which are embedded into Ω as shown in Fig. 1. In this work, we assume that Ω̂k(t) ∩ Bj(t) = ∅ for
k ̸= j. The general case of overlapping domains is considered in [2, 10].

If the particle Bk(t) were a planet, the associated subdomain Ω̂k(t) could be interpreted as the
atmosphere of that planet. We denote the atmospheric velocity and pressure fields by û and p̂, respec-
tively. The parameter Hk > 0 determines the width of the atmospheric layer around Bk(t).

Following Houzeaux and Codina [8], we perform iteration by subdomains using coupling conditions
of Dirichlet–Robin type. That is, the background fields u and p influence the solution of

ρf

(
∂û

∂t
+ û · ∇û

)
= −∇p̂+∇ · (2µfD(û)) in Ω̂k(t), (5a)

∇ · û = 0 in Ω̂k(t), (5b)
û = U on ∂Bk(t), (5c)

σ̂n− α(û · n)û = σn− α(u · n)u on ∂Ωk(t)\∂Bk(t) (5d)

by providing the data of the Robin/Neumann boundary condition (5d), where α ≥ 0 is an interior
penalty parameter and σ̂ = −p̂I+ 2µfD(û) is the total stress. The consistency relation

u = û on Ω̄k(t) (6)

is satisfied by exact solutions to (1) and (5). Hence, it is appropriate to constrain a numerical approx-
imation to the background velocity u using a strong or weak form of the Dirichlet condition (6).

4. Finite element discretization

We discretize the velocity and pressure fields in space using the inf-sup stable Q2-Pdisc
1 finite el-

ement pair. The atmospheric subproblems (5) are solved on body-fitted meshes using an Arbitrary-
Lagrangian-Eulerian (ALE) formulation in the reference frame moving with the constant mesh velocity
wk(x, t) = Uk(t). Details of such moving mesh finite element (FE) methods can be found elsewhere
[1, 13, 29] and are not discussed here. The ALE-FE approximation to (û, p̂) is denoted by (ûh, p̂h).

The fictitious domain problem (1) is solved using a fixed background mesh Th that consists of
quadrilaterals (in 2D) or hexahedra (in 3D). Instead of enforcing the Dirichlet-type velocity constraints
(1c) and (6) strongly at discrete locations (as in [8, 17, 26]), we incorporate them into a weak form of
(1) using (a discrete counterpart of) the distributed interior penalty term

s(û,U;u,v) = γmax

Np∑
k=1

[∫
Ω̂k(t)

βk(u− û) · vdx+

∫
Bk(t)

(u−U) · vdx

]
(7)
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that depends on a penalty parameter γmax ≫ 1 and a damping function βk : Ω̂k ×R+
0 → [0, 1] such as1

βk(x, t) = min

(
1,max

(
0,
Rk + 0.75Hk − |x−Xk(t)|

0.25Hk

))
.

The velocity U of rigid body motion is defined by (2). In the discrete version of (7), integration is
performed over the regions Ωk,h and Bk,h that are covered by / enclosed by the ALE submesh.

Let Vh and Qh denote the finite element spaces for the velocity and pressure approximations on
Ω̄, respectively. We seek uh ∈ Vh and ph ∈ Qh such that∫

Ω
ρf

(
∂uh

∂t
+ uh · ∇uh

)
· vhdx+

µf
2

∫
Ω
D(uh) : D(vh)dx+ sh(ûh,Uh;uh,vh)

−
∫
Ω
ph∇ · vhdx = 0, vh ∈ Vh, (8a)∫

Ω
qh∇ · uhdx = 0, qh ∈ Qh. (8b)

Figure 2: Snapshot of a Chimera multimesh computation for the flow around a cylinder configuration showing the
background and particle submesh. Upper subfigure displays the velocity and the lower the respective pressure distribution.

Figure 2 shows a snapshot of the region in which the ALE mesh attached to Bk(t) intersects the
fixed background mesh. The former provides the Dirichlet data ûh for calculating sh(ûh,Uh;uh,vh)

1The nonnegative function βk determines the strength of velocity penalization. It should vanish in a neighborhood of
the interface Γk(t) = ∂Ωk(t)\∂Bk(t) to avoid interference with the Robin boundary condition (5d).
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defined by (7). The latter provides the Robin boundary data σhn−α(uh ·n)uh for updating ûh. The
hydrodynamic force Fk and torque Tk are calculated using σ̂h = −p̂hI+ 2µfD(ûh) to approximate σ
in (4). The simplicity and accuracy of integrating functions of the traction σ̂hn over ∂Bk are a key
advantage of the Chimera approach compared to one-mesh fictitious domain methods [17, 24, 26].

Remark 1. A remarkable property of the weak form (8) is that the interior penalty term (7) is well
defined even for overlapping ‘atmospheres’ Ω̂k(t) and Ω̂j(t) of non-overlapping particles Bk(t) and
Bj(t). The use of strongly imposed Dirichlet coupling conditions at background mesh nodes belonging
to the overlap region Ω̂k(t) ∩ Ω̂j(t) would require artificial averaging of submesh data. The proposed
approach performs such averaging automatically by using penalty parameters depending on βk and βj .
An extension to the case Ω̂k(t) ∩ Bj(t) ̸= ∅ is feasible but would require adding a Dirichlet penalty
term to the submesh problem for Ω̂k(t). Such extensions can be carried out following [2, 10].

5. Fractional-step method

Let tn = n∆t, where ∆t is a constant time step and n ∈ N0. Approximate solutions at the time
level tn will be referred to using the superscript n. At the beginning of each time step, we use the
old submesh approximation (ûn

h, p̂
n
h) to calculate the surface integrals (4) and the old background

mesh approximation (un
h, p

n
h) to calculate the data of the Robin boundary condition (5d). Then we

update the positions of the particles and solve the discrete saddle point problems associated with ALE
submeshes for Ω̂k(t). These problems are small and can be solved efficiently, e.g., using the local
Multilevel Pressure Schur Complement (MPSC) method [22, 20, 21]. The updated approximation
(ûn+1

h , p̂n+1
h ) can then be substituted into the interior penalty term of problem (8) for (un+1

h , pn+1
h ).

Using the two-level θ-scheme to discretize (8a) in time, we obtain a nonlinear system of the form[
A(un+1) +Dn+1 B

BT 0

] [
un+1

pn+1

]
=

[
fn + gn+1

0

]
. (9)

The contribution of the interior penalty term (7) is represented by Dn+1un+1 − gn+1, where Dn+1 is
a symmetric positive semi-definite matrix. In Appendix A below, we explicitly define all matrices and
vectors that appear in (9), as well as the lumped approximation ML to the consistent mass matrix MC

of the finite element space Vh. We use ML below for preconditioning purposes.

We solve the discrete problem (9) approximately using the following fractional-step algorithm:

1. Solve the viscous Burgers system

[A(ũn+1) +Dn+1]ũn+1 = fn + gn+1 −Bpn. (10)

2. Solve the pressure Poisson system

B⊤M−1
L B(pn+1 − pn) =

1

∆t
B⊤ũn+1. (11)
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3. Correct the intermediate velocity

[ML +∆tDn+1]un+1 = [ML +∆tDn+1]ũn+1 −∆tB(pn+1 − pn). (12)

Note that we penalize the velocity not only in the Burgers step but also in the final update. The
nonlinear system (10) is linearized about un or solved using a fixed-point iteration method [20].

Remark 2. Rearranging (12) and invoking (11), we find that the corrected velocity un+1 satisfies

B⊤un+1 = ∆tB⊤M−1
L Dn+1(ũn+1 − un+1).

Hence, un+1 is approximately divergence-free. Moreover, the residual of the constraint B⊤un+1 = 0
can be made as small as desired by performing additional outer iterations (cf. [20, 21]), in which the
right-hand side of (10) is recalculated using the latest approximation to pn+1 instead of pn.

6. Summary of the algorithm

for the sake of deeper numerical investigations we have implemented the Chimera multimesh method
in two realizations differing in the mechanism of back-coupling of the submesh on the background mesh.
In this regards we have generalized the multimesh method of Codina [8] to an instationary adaptive
mesh-patch realization (further on we do refer to this realization as "Codina method") and its smoother
alternative related to the previously described penalty method (further on we do refer to this realization
as "Penalty method"). The use of the weak Dirichlet-Robin coupling is for both of these realizations
identical, meaning that the coupling from the background mesh onto the submesh is in both cases
identical. Now, let us declare the most relevant algorithmic steps in both of these realizations starting
with the Codina method:

1. Solve (5) for the background mesh problem according to the classical Fictitious Boundary Method
(in the first iteration the FBM mesh patch stands only for the particle itself, the FBM mesh patch
is extended in higher number of iterations).

2. Solve (5) for the submesh problem using the given background velocity uh and pressure ph in the
surface integral associated with the Robin boundary condition (5d).

3. Calculate Fk and Ik for each particle using the submesh stress σ̂h in the surface integrals (4).
4. Solve the discrete versions of (3) and update the particle position, velocity, angular position, and

angular velocity.
5. Update the exchange mesh patch and interpolate the velocity to the extended mesh patch for

coupling with the background mesh and go to Step 1 with an extended Fictitious Boundary mesh
patch or continue (only for iteration 2 or more).

As it is visible above, there we re-iterate between the submesh and background mesh at least once,
so that the extended mesh patch is applied according to the Codina method.

The most relevant algorithmic steps of the Penalty method can be summarized, as follows:
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1. Calculate Fk and Ik for each particle using the submesh stress σ̂h in the surface integrals (4).
2. Solve the discrete versions of (3) and update the particle position, velocity, angular position, and

angular velocity.
3. Solve (5) for the submesh problem using the given background velocity uh and pressure ph in the

surface integral associated with the Robin boundary condition (5d).
4. Solve (5) for the background mesh problem using the penalty terms being responsible for the

backcoupling of the submesh results onto the background mesh.
5. Solve the discrete version of (8) using the updated submesh velocity ûh in sh(ûh,U;uh,vh).

Compared to the Codina realization in this case the computational overhead is lower by one Pressure-
Poisson system per time step. A momentum-like equation (8) is required to be solved in this realization
which has a similar computational cost as the solution of the second momentum equation in the Codina
realization.

7. Numerical examples

In this section, we perform numerical studies of the Chimera domain decomposition method with
strong and weak imposition of the Dirichlet coupling condition on the background mesh. The proposed
approach (Chimera-W) incorporates the interior penalty term (7) into the discretized momentum
equation (8a). The alternative that we call Chimera-S is a fictitious boundary method that enforces
pointwise Dirichlet constraints at hole nodes in B̂k(t) and fringe nodes in Ω̂k. The terminology that
we use here is adopted from the paper by Houzeaux and Codina [8]. A node xi of a mesh cell crossed
by ∂Bk(t) is treated as a hole node if xi ∈ Bk(t) and as a fringe node if xi ∈ Ω̂k(t). We prescribe
the fictitious boundary conditions uh(xi) = U(xi) and uh(xi) = ûh(xi) at hole and fringe nodes,
respectively. A detailed description of the original Chimera-S coupling can be found in [8].

7.1 DFG Benchmark 2D-2

The DFG Benchmark 2D-2 [18] is a well-established test case in computational fluid dynamics
(CFD) designed to evaluate numerical algorithms for solving the incompressible Navier-Stokes equa-
tions under laminar flow conditions. This benchmark focuses on the two-dimensional flow around a
circular cylinder at a Reynolds number (Re) of 100, where the flow exhibits periodic vortex shedding,
known as the von Kármán vortex street. For an in depth description of the benchmark we refer to the
publication [18]. We will summarize the most important parameters of the benchmark here briefly.The
computational domain consists of a two-dimensional channel with a circular cylinder obstacle. The
cylinder has a diameter of 0.1 units and is positioned at (0.2, 0.2) within a channel of length 2.2 units
and height 0.41 units. At the inlet a parabolic velocity profile is applied at the inlet to simulate fully
developed laminar flow. We measure the drag coefficient CD and lift coefficient CF which vary over
time due to the periodic vortex shedding characteristic of this flow regime. The velocity profile at the
inlet is defined as:

u(0, y) =

(
4Uy(0.41− y)

0.412
, 0

)
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This represents a parabolic velocity distribution across the channel height, characteristic of laminar
flow conditions. The maximum velocity, U , occurs at the centerline (y = 0.205) in a channel with a
height of 0.41. We compute forces with the help of the stress tensor:

σ = ν
(
∇u+ (∇u)T

)
− pI

Here, ν denotes the kinematic viscosity, ∇u is the velocity gradient, p represents the fluid pressure,
and I is the identity matrix. The drag Fd and lift Fl forces are calculated as:(

Fd

Fl

)
=

∫
S
σ · η ds

In this equation, the surface integral is taken over the surface S of the cylinder, with η representing
the outward-pointing normal vector on the surface. Using Fd and Fl we can compute the drag and lift
coefficients Cd and Cl:

Cd =
2Fd

U2
meanL

, Cl =
2Fl

U2
meanL

(13)

Where Umean is the average velocity of the fluid flow, and L is the characteristic length.
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(a) Benchmark mesh with an immersed cylinder at different levels of resolution

(b) Body-fitted submesh at different resolution levels.

Figure 3: Background mesh and submeshes for the DFG Benchmark 2D-2 configuration.

We simulated the DFG Benchmark 2D-2 using the standard fictitious boundary/domain approach
and the Codina vadiant of the above described Chimera multimesh approach. The resulting drag and
lift coefficients over time are presented in Figure 4. This approach typically leads to a sharp and often
oscillatory force response.

To assess the advantages of the Chimera submesh method and provide insights on how to calibrate
the mesh/submesh resolutions, we performed a second simulation where the cylinder is embedded in a
body-fitted submesh. The results, shown in Figure 5 and 6, present both the drag and lift coefficients
over time at various background/submesh resolutions and submesh radii. We have marked in the plots
the reference Cmin

d , Cmax
d , Cmean

d , Cmin
l , Cmax

l and Cmean
l values and the evolution zone as determined

in previous publications of our research group [18, 22]. The nomenclature for the cases is as follows
L1_110L2 corresponds to background mesh resolution L1, submesh radius r = 0.110 and submesh
resolution L2. From the simulation results we clearly see that all those three parameters have an
influence on the accuracy of the computation. The Chimera method achieves smoother force evolution
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while preserving accuracy, demonstrating its potential for improved numerical stability and efficiency
compared to the standard fictitious boundary approach.

Figure 4: Drag and lift coefficients over time using the standard fictitious boundary approach at different levels of
resolution.

Figure 5: Drag coefficients over time using the Chimera submesh method with increasing submesh resolution.
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Figure 6: Lift coefficients over time using the Chimera submesh method with increasing submesh resolution.

7.2 Flow around a moving cylinder

This benchmark involves a cylinder oscillating horizontally in a rectangular channel. The primary
quantities of interest are the time-dependent drag and lift forces and their corresponding coefficients.
The cylinder motion is sinusoidal in the x-direction, while the y and z coordinates remain fixed.

Table 1: Cylinder and domain parameters

Parameter Value

Cylinder diameter D 0.1
Initial position (X0, Y0, Z0) (1.1, 0.2, 0.1025)
Oscillation amplitude A 0.25
Oscillation frequency f 0.25
Domain size 2.2× 0.41× 0.1025

Table 2: Fluid properties

Property Value

Density ρ 1 kg/m3

Kinematic viscosity ν 10−3m2/s
Initial velocity Fluid at rest
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The cylinder’s x-position evolves as

Xc(t) = X0 +A · sin(2πft), Yc(t) = Y0, Zc(t) = Z0.

Due to the off-center y-placement, a non-zero lift force is generated. As a reference for this benchmark
we use the 2D simulations conducted by Wan, Turek and Rivkind [28], where the drag and lift were
calculated on a body-aligned mesh meaning that the circle in their case was built directly into the
mesh. In order to make the results comparable with 3D simulations the drag and lift coefficients
(see eq. 13) need to be scaled by 1

T where T is the thickness of the channel. For this particular
numerical validation case we have performed mesh resolution convergence studies for both of the
considered Chimera submesh implementations, namely the Codina and also for the Penalty method.
The respective graphical representations are organized into plots displaying the evolution of drag and
lift coefficients. These are the Figures 7 and 8 in case of the Codina submesh method and Figures 9
and 10 in case of the Penalty submesh method. In both cases we compare the Chimera submesh results
to the body-fitted reference solution of Wan [28]. As clearly shown in the results, the Penalty method
provides a smoother prediction of the evolution of the monitored force components. This behavior
is indicative of its enhanced ability to dampen oscillations caused by the changing integration point
patterns during the instationary simulation. In contrast, the Codina method reacts more stepwise,
responding primarily to significant geometric changes, such as when the exchange patch of elements
between submes and background mesh shifts. These larger changes introduce more abrupt variations,
resulting in sharper fluctuations in the force components, which are less effectively damped than with
the Penalty method.

12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0
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Figure 7: Time-dependent drag coefficients for the Chimera submesh method vs reference [28].
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Figure 8: Time-dependent lift coefficients for the Chimera submesh method vs reference [28].

The first evident key fact that we can conclude is that our implementation of the Chimera submesh
method shows systematic mesh convergence. On Levels L3 and L4 the results meet the reference within
±1 % for drag and ±5 % for lift over an entire oscillation cycle. On coarser Chimera meshes can predict
the mean drag correctly (because the leading-order contribution is large), but lift requires at least an
order of magnitude finer resolution. This is because the lift is two orders of magnitude smaller than
the drag, so a percentage level error for Cd would show up a hundred-percent error for Cl.
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Figure 9: Time-dependent drag coefficients for the Chimera submesh penalty method vs reference [28].
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Figure 10: Time-dependent lift coefficients for the Chimera submesh penalty method vs reference [28].

7.3 Motion of an Elliptical Particle Immersed in a Viscous Fluid: Jeffrey Orbits

Jeffery’s orbits describe the periodic rotational motion of ellipsoidal particles suspended in a viscous
fluid under shear flow conditions. The theory was developed for a creeping flow, so the Reynolds number
is taken to be effectively zero. In a cross-shear flow, such particles do not maintain a fixed orientation
but instead their major axis undergoes continuous rotation that traces closed periodic trajectories on
a sphere. The specific path of these orbits depends on the particle’s initial orientation and its aspect
ratio. In his work Jeffrey [9] developed an analytical solution for the time-dependent orientation of the
particle. For our validation purposes of the Chimera submesh method we reduced the configuration
to two dimensions. As a consequence the particle’s major axis is confined to the shear plane and
the rotation is reduced to the azimuthal angle (θ) which in our case is normal to the shear plane.
We compared the results to Jeffrey’s analytical solution and to the results of our own FBM particle
implementation in order to access if the Chimera submesh method can indeed offer improved quality
of result on the same background mesh. For an elliptical particle with semi-axes a and b (with aspect
ratio r = a/b), Jeffery’s analytical expressions for the time-dependent angle and angular velocity are

θ(t) = tan−1

(
b

a
tan

(
ab γ̇t

a2 + b2

))
θ̇(t) = − γ̇

a2 + b2

(
a2 cos2 θ + b2 sin2 θ

)
,

where γ̇ is the shear rate and θ is the azimuthal angle. We have depicted the basic setup of the
benchmark case in figure 11. A sample of the flow field is shown in figure 12, the numerical sizes and
mesh resolution in table 3.
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Figure 11: Schematic setup of the Jeffrey’s Orbit case.

Table 3: Overview of Domain, Mesh Resolution, and Ellipse Sizes

(a) Domain Dimensions

Dir. Range ∆

X −1 to 1 2
Y −0.5 to 0.5 1

(b) Mesh Resolution

Level Elements

0 3200
1 25600
2 204800

(c) Ellipse Sizes

Name a b

Big 0.05 0.025
Small 0.025 0.0125

Figure 12: Sample of a flow field for the Jeffrey’s Orbit simulation.
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Figure 13: Fictious Boundary Method compared to Jeffrey’s solution. Left: small particle, Right: big particle
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Figure 14: Chimera submesh method compared to Jeffrey’s solution. Left: small particle, Right: big particle

In fig. 13 we show the results of the FBM in the Jeffrey’s Orbit test case. The results were
computed for two particle sizes (see tab. 3c) and for two different refinement levels each (see tab.
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3b). As expected we notice characteristic features of the FBM: for the small particle and lower mesh
resolution (FBM[s,l1]) there is a similarity to the reference solution, but there are also oscillations and
severe jitter of the curve. The FBM solution overshoots the minimum of the reference and undershoots
the maximum. A phase shift can also be observed. Then for all other FBM solutions FBM[s,l2],
FBM[l,l1] and FBM[l,l2] we have added resolution by inscreasing the mesh refinement and/or the
particle size. We see that with increased resolution the FBM solution tracks the curve better, offers
reduced oscillation/jitter, eliminates the phase shift. Differences in the peak values are observable
even at the higher refinement levels. In fig. 14 we test the Chimera submesh method for the Jeffrey’s
Orbit case. The shape of the curves in the Chimera case is much smoother this can be attributed to
the fact that the method is essentially body-fitted and does not cut through mesh cells in the way
the FBM does. The body-fitted Chimera submesh reproduces Jeffery’s analytical orbit almost out of
the box at a coarse resolution, whereas a fictitious-boundary approach needs at least one extra global
refinement—and is still much more sensitive to particle size. This is clearly shown by the computations
on the lower level of the FBM where the error for the peak value where we observe an ≈ 9% error
whereas the Chimera submesh method has an error of ≈ 0.5%. For the small particle the FBM has an
≈ 3% error on a one level finer background mesh. This pattern is observable also for the larger particle
where the FBM has a ≈ 3% error w.r.t. the peak value on level 1 and a sub-percent error on level 2.
The Chimera submesh method already has a sub-percent error on the first level.

7.4 Segre-Silberberg Study

The Segre-Silberberg effect describes the lateral migration of particles in shear flow, particularly
in Poiseuille flow, where fluid moves through a tube or between parallel plates. Particles in such flows
do not remain near the centerline or the walls but instead migrate to a stable equilibrium position,
typically around 0.2 to 0.6 times the channel radius or half-height from the center. This migration
occurs due to a balance between two opposing lift forces: the shear-gradient lift force, which pushes
particles away from the center due to velocity variations, and the wall-induced lift force, which pushes
them away from the boundaries due to interactions with slower-moving fluid. The effect significantly
depends on the Reynolds number, where migration speed increases, and equilibrium positions change
with different Reynolds numbers, particle sizes and wall-dependent parameters. The effect has been
studied in depth by Yang et. al. [30] for a particle in a tubular channel and a circular particle between
parallel planes. For varying configurations of the Chimera method we compute the equilibrium position
of the particle for a Poiseuille flow between two parallel plates. For this case in the original publication
it was found that the equilibrium position of the particle shifts closer to the centerline of the channel.
This occurs because the shear-gradient lift force dominates, pushing the particle away from high shear
regions near the walls.
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H

L

d = 2a
rā = a

H

For two different particle sizes ā = a
H , where a is the radius of the particle, and H is the half-height

of the channel, we computed the equilibrium positions r̄e which is stated in terms of a relative height
r̄ = r

H for a range of Reynolds numbers. To analyze the influence of the domain length, we also
varied the channel length. We compared our results to those of the group Yang/Glowinski [30]. The
results of these computations are summarized for both of the implemented submesh methods, namely
for the Codina method (see Tables 4, 5) and also the for the Penalty method (see Tables 6, and 7).
Due to the stronger convergence of the Codina method there are computations performed only for
3 subsequent resolution levels. For the Penalty method the numerical studies are extended also to
higher resolution levels (even if the submeshes were not finer refined as L3) and also for different size
of the submeshes. As visible from the results the two methods are converging to the same results what
guarantees a validation of the method. Comparison of the results with available previously published
references is provided in Table 9a and 9b which reference computational results of Glowinski [30]. In
order to eliminate the dependence of the equilibrium position on the considered channel length we
have also performed some low resolution level computations in order to determine the minimal channel
length being necessary for the computations. The channel lengths have been varied in the range of
L : H = [20 : 1; 10 : 1; 5 : 1]. The results of these channel length studies are available in Table 8, which
confirm a minimal channel length on the order of L : H = [10 : 1]. The naming convention of the all
the here applied background and submeshes is following the same conventions previously introduced
in the numerical result section devoted to the moving-cylinder (see Section 7.1, particularly Figure 3).
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Re
Background

mesh
Resolution

Submesh
Resolution

Equilibrium
position %err

12
L1 160L1 0.40404 0.42
L2 130L2 0.40654 0.19
L3 110L3 0.40576

80
L1 160L1 0.21944 1.48
L2 130L2 0.21554 0.32
L3 110L3 0.21624

180
L2 130L2 0.16669 0.65
L3 110L3 0.16704 0.86
L4 060L3 0.16562

Table 4: Equilibrium particle position data for varying Reynolds numbers and mesh resolutions for particle size 2ā = 0.10
using the Codina submesh method.

Re
Background

mesh
Resolution

Submesh
Resolution

Equilibrium
position %err

18
L1 130L1 0.44584 0.21
L2 110L2 0.44676 0.00
L3 079L3 0.44678

45
L1 130L1 0.34320 0.69
L2 110L2 0.34490 0.20
L3 079L3 0.34560

180
L1 130L1 0.22008 0.07
L2 110L2 0.22002 0.10
L3 079L3 0.22024

Table 5: Equilibrium particle position data for varying Reynolds numbers and mesh resolutions for particle size 2ā = 0.15
using the Codina submesh method.
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Re
Background

mesh
Resolution

Submesh
Resolution

Equilibrium
position %err %err

(vs Codina)

12

L1 160/L1 0.40112 0.58 1.14
L2 160/L2 0.39952 0.97 1.54
L3 160/L3 0.40298 0.11 0.69
L4 160/L3 0.40122 0.55 1.12
L4 110/L3 0.40344 0.57

80

L1 160/L1 0.21700 0.73 0.35
L2 160/L2 0.21334 0.97 1.34
L3 160/L3 0.21286 1.19 1.56
L4 160/L3 0.21274 1.24 1.62
L4 110/L3 0.21542 0.38

180

L1 160/L1 0.12324 26.19 25.59
L2 160/L2 0.16533 0.98 0.17
L3 160/L3 0.16619 0.47 0.34
L4 160/L3 0.16566 0.79 0.02
L4 110/L3 0.16697 0.82

Table 6: Equilibrium particle position data for varying Reynolds numbers and mesh resolutions for particle size 2ā = 0.10
using the Penalty submesh method.
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Re
Background

mesh
Resolution

Submesh
Resolution

Equilibrium
position %err %err

(vs Codina)

18

L1 160/L1 0.44252 0.88 0.95
L2 160/L2 0.44206 0.98 1.06
L3 160/L3 0.44300 0.77 0.85
L4 160/L3 0.44318 0.73 0.81
L4 110/L3 0.44644 0.08

45

L1 160/L1 0.33550 2.36 2.92
L2 160/L2 0.33848 1.49 2.06
L3 160/L3 0.33920 1.28 1.85
L4 160/L3 0.33904 1.33 1.90
L4 110/L3 0.34360 0.58

180

L1 160/L1 0.21756 0.44 1.22
L2 160/L2 0.21600 1.15 1.93
L3 160/L3 0.21544 1.41 2.18
L4 160/L3 0.21536 1.45 2.22
L4 110/L3 0.21852 0.78

Table 7: Equilibrium particle position data for varying Reynolds numbers and mesh resolutions for particle size 2ā = 0.15
using the Penalty submesh method.

2ā Re SHORT MEDIUM LONG M. vs. S [%] M. vs. L [%]

0.10
18 0.3330 0.3427 0.3426 -2.9 -0.1
80 0.2175 0.2194 0.2189 -0.9 -0.2
180 -0.1061 0.1667 0.1579 -163.6 -5.3

0.15
18 0.4437 0.4458 0.4458 -0.5 0.0
45 0.3349 0.3432 0.3433 -2.4 0.0
180 0.1426 0.2201 0.2184 -35.2 -0.8

Table 8: Domain length dependence study (SHORT, MEDIUM, LONG) with the Codina submesh method. Equilibrium
position data for varying Reynolds numbers on L1 background mesh resolutions.

To gain further insights we not only compared the Chimera submesh method to our own FBM for
the Segre-Silberberg configuration. We not only compare the value of the equilibrium position, we also
look at oscillations in the solution to show important aspects of the Chimera submesh method. As we
can see in Fig. 15 the Chimera solution (particularly, the results of the Codina method are visualized)
has significantly less oscillations in five of the six comparision cases. The FBM converges to a value
that is close to the reference solution, but shows a periodic oscillation of O(10−3) to O(10−2) around
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its mean value. The amplitude of the oscillation seems to be correlated to the Reynolds number.
This is an intrinsic characteristic of the FBM because there is no guarantee that at the equilibrium
position there is a perfectly symmetric alignment of nodal constraints and consequently some minor
force imbalances remain even at r̄FBM

e .
It might be also important to point out that in this particular numerical example is the submesh

method of Codina more superior to the penalty method, which might be devoted to the fact that
in equilibrium position the exchange mesh patch (between submesh and background mesh) is not
subjected to any further changes.

2a=0.10

Re ref [30] pure FBM Penalty Codina

12 0.413 0.388 0.403 0.4058
80 0.222 0.225 0.215 0.2162
180 0.174 0.174 0.167 0.1656

(a) Lift-Off 2ā = 0.10 equilibrium positions.

2a=0.15

Re ref [30] pure FBM Penalty Codina

18 0.454 0.450 0.446 0.4468
45 0.359 0.351 0.344 0.3456
180 0.234 0.227 0.219 0.2202

(b) Lift-Off 2ā = 0.15 equilibrium positions.

Table 9: Converged equilibrium positions in comparison with Glowinski [30].
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Figure 15: Equilibrium Position Stability and Oscillations in Segre–Silberberg Migration

8. Conclusions

In this work, we explored the possibility of using a new weak form of Dirichlet-Robin coupling
in the context of FE simulation tools for particulate flows. The benefits of the presented Chimera
multimesh method include simplicity, efficiency, and continuous dependence of numerical solutions
on the location of moving particles. The use of body-fitted submeshes eliminates the need for mesh
deformation techniques designed to enhance the accuracy of fictitious boundary / subspace projection
algorithms with strongly imposed Dirichlet constraints [1, 14, 29]. Extension to overlapping submeshes
are feasible and can be performed by adapting the general framework developed in [2, 10] for projection
schemes using discontinuous Galerkin weak forms and a different kind of interior penalization.
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Appendix A. Matrices and vectors of the discrete problem

The finite element approximations to the background velocity and pressure are given by

uh(x, t) =

Nh∑
j=1

uj(t)φj(x), ph(x, t) =

Mh∑
k=1

pk(t)ψk(x),

where φj and ψk are basis functions spanning the spaces Vh and Qh, respectively. In our description
of discrete problems, u = (uj) and p = (pk) are vectors containing the coefficients of the above FE
approximations. Recall that the systems of equations considered in Section 5 depend on

A = (aij), B = (bik), MC = (mij), ML = (m̃ij), D = (dij).
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In view of (7) and (8), the entries of these matrices and the components of f = (fi) are defined by

aij =
mij

∆t
+ θ

[
ρf

∫
Ω
(uh · ∇φj) ·φidx+

µf
2

∫
Ω
D(φj) : D(φi)dx

]
,

bik = −
∫
Ω
ψk∇ ·φidx, mij = ρf

∫
Ω
φj ·φidx, m̃ij = ρfφj(xi) ·

∫
Ω
φidx,

dij = γmax

Np∑
k=1

[∫
Ω̂k,h

βkφj ·φidx+

∫
Bk,h

φj ·φidx

]
,

fi =

Nh∑
j=1

(
mij

∆t
− (1− θ)

[
ρf

∫
Ω
(uh · ∇φj) ·φidx+

µf
2

∫
Ω
D(φj) : D(φi)dx

])
uj .

In the formula for m̃ij , we denote by xi the nodal point associated with the basis function φi.
The data of the weakly imposed Dirichlet constraints is built into g = (gi) with

gi = γmax

Np∑
k=1

[∫
Ω̂k,h

βkûh ·φidx+

∫
Bk,h

Uh ·φidx

]
.
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