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Related Multiphase Flow Solver 

Basic CFD tool – FeatFlow 
(robust, parallel, efficient) 

Non-Newtonian flow module: 
• generalized Newtonian model 

(Power-law, Carreau, ... etc.) 
• viscoelastic model       

(Giesekus, Oldroyd B, …etc.) 

Multiphase flow module (resolved interfaces): 
• l/l  – interface tracking (Level Set) 
• s/l  – interface capturing (FBM) 
• s/l/l  – combination of l/l  and s/l  

Numerical features: 
• Higher order Q2P1 FEM schemes 
• FCT & EO FEM stabilization techniques 
• Use of unstructured meshes 
• Fictitious Boundary (FBM) methods 
• Dynamic adaptive grid deformation 
• Newton-Multigrid solvers 

Engineering aspects: 
• Geometrical design 
• Modulation strategy 
• Optimization 

FEM-based simulation tools for the accurate prediction of multiphase 
flow problems, particularly with liquid-(rigid) solid interfaces 

HPC features: 
• Massively parallel 
• GPU computing 
• Open source 
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Liquid–(Rigid) Solid Interfaces 

The fluid flow is modelled by the Navier-Stokes equations:  
 
 
 

where σ is the total stress tensor of the fluid phase: 
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• Hierachical unstructured meshes 
• Domain decomposition: 

→ Grid hierarchy on each subdomain 
 

• Mapping from spatial coordinates to mesh 
cells (indices) generally not possible for 
unstructured meshes 
 
 
 

 
 
 
 

Mesh Setup 

• Overlay an additional structured grid layer (hashed 
uniform grids) to obtain position to mesh cell mapping 

• Direct mapping from positions crucial for fast 
computations involving the mesh or the geometry 
represented by the mesh 
 
 

 
 
 
 

( ) cellIndex→zy,x,p :f
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Numerical Solution Scheme 

Solve for velocity and pressure applying FBM-conditions 
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Equations of Motion (I) 

The motion of particles can be described by the Newton-Euler equations. 
A particle moves with a translational velocity Ui  and angular velocity ωi 

which satisfiy: 
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• Mi    : mass of the i-th particle (i=1,...,N) 
• Ii      : moment of inertia tensor of the i-th particle 
• ΔMi  : mass difference between Mi and the mass of the fluid 
• Fi     : hydrodynamic force acting on the i-th particle 
• Ti     : hydrodynamic torque acting on the i-th particle 
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Equations of Motion (II) 

The position and orientation of the i-th particle are obtained by integrating the  
kinematic equations: 
 
 
 
which can be done numerically by an explicit Euler scheme: 
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We apply the velocity u(X) as no-slip boundary condition at the 
interface ∂Ωi between the i-th particle and the fluid, which for X ϵ Ωi is 
defined by: 

 ( ) ( )iii XXωUXu −×+=

Boundary Conditions 
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Hydrodynamic Forces 
Hydrodynamic force and torque acting on the i-th particle 

∫∂ ⋅−=
iΩ iii ,d ΓnσF ( ) ( )∫∂ ⋅×−−=

iΩ iii d ΓnσXXT

Force Calculation with Fictitious Boundary Method 
 

 
      

 

Alternative: 
Replace the surface integral by a 

volume integral 
 

The FBM can only decide: 
• `INSIDE`(1) and `OUTSIDE`(0) 
• Only first order accuracy 
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Numerical Force Evaluation 
Define an indicator function αi: 
 
 
 
Remark: The gradient of αi is zero everywhere except at the surface of the i-th 
Particle and approximates the normal vector (in a weak sense), allowing us to  
write: 
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On the finite element level we can compute this by: 
 
 
 
 
 
αh,i (x) : finite element interpolant of α(x)  
Th,i      : elements intersected by i-th particle 
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Grid Deformation and ALE 
Advantages: 
• Constant mesh/data structure  GPU 
• Increased resolution in regions of interest 
• PDE approach is not necessary  anisotropic ‘umbrella’ smoother 
• Straightforward usage in 3D unstructured meshes 
Quality of the method depends on the construction of the monitor function 
• Geometrical description (solid body, interface triangulation) 
• Monitor function based on distance information  
• Field oriented description (steep gradients, fronts)  numerical stabilization 

Validation: 2.5D Rising bubble – light setup Testing: 3D Rising bubble - hard setup 
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Contact Force Calculation 

• Contact force calculation realized as a three step process 
→ Broadphase 
→ Narrowphase 
→ Contact/Collision force calculation 

 

• Worst case complexity for collision detection is O(n2) 
→ Computing contact information is expensive 
→ Reduce number of expensive tests → Broad Phase 

• Broad phase 
→ Simple rejection tests exclude pairs that cannot intersect 
→ Use hierarchical spatial partitioning 

• Narrow phase 
→ Uses Broadphase output 
→ Calculates data neccessary for collision force calculation 

 
►Special single, resp., multibody collision models (as 

linear complementarity problems) on GPUs 
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Benchmarking and Validation (I) 

02.1,2.0 == ssd ρ

02.1,3.0 == ssd ρ

14.1,2.0 == ssd ρ

Münster, R.; Mierka, O.; Turek, S.: Finite 
Element fictitious boundary methods (FEM-
FBM) for 3D particulate flow, IJNMF, 2011 

Free fall of particles: 
• Terminal velocity 
• Different physical parameters 
• Different geometrical parameters 

14.1,3.0 == ssd ρ

Source: Glowinski et al. 2001 
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Sedimentation Benchmark 

Re umax/u∞ umax/u∞ umax/u∞  
  ten Cate exp  

1.5 0.945 0.894 0.947  
4.1 0.955 0.950 0.953  
11.6 0.953 0.955 0.959  
31.9 0.951 0.947 0.955  

Tab. 1 Comparison of the umax/u∞ ratios between the 
FEM-FBM, ten Cate's simulation and ten Cate's 
experiment 
 

Setup 
Computational mesh: 
• 1.075.200 vertices 
• 622.592 hexahedral cells 
• Q2/P1: 

→ 50.429.952 DoFs 
 
Hardware Resources: 
• 32 Processors 
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Comparison 

Comparison of FEM-FBM and 
the experimental values and 
the LBM results of the group 
of Sommerfeld 

Source: 13th Workshop on Two-Phase Flow Predictions 2012 
Acknowledgements: Ernst,M., Dietzel,M., Sommerfeld,M. 
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Multi-level Analysis 

FEM-Multigrid Framework 
• Increasing the mesh resolution produces more accurate results 
    Test performed at different mesh levels 

• Maximum velocity is approximated better  
• Shape of the velocity curve matches better  
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Oscillating Cylinder 
• Measure Drag/Lift Coefficients for a sinusoidally oscillating cylinder 
• Compare results for FBM, adapted FBM and adapted FBM + boundary 

projection/parametrization 

Nodes concentrated near  
liquid-solid interface 

        Nodes projected and  
parametrized on boundary       

plus concentration of    
nodes near boundary 
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Oscillating Cylinder Results 

• Highly smooth 
results when the 
vertices are 
projected directly 
onto the 
geometry  
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Distance Maps for Fast MinDist 

• Data structure for fast distance calculation 
• Equidistant structured mesh surrounding the object 
• Precompute and store distance, normals 
• Transform quantities into distance map, use precomputed values 
• Algorithm maps excellently to the GPU 
• Provides fast distance computation and collision queries for comlex 

geometries 



Page 19 Page 19 Turek/Münster/Mierka | TU Dortmund  

Influence of Mesh Adaptation 

• Details may be lost without adaptation 
• Better resolution with the same number of DOFs 
• Mesh adaptation equivalent to at least one refinement level 

Car representation by the computation mesh 

with adaptation original no adaptation 
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• Numerical simulation of complex geometries 
• Use of a regular base mesh 
• Resolution of small scale details by mesh adaptation 

Example: Virtual Wind Tunnel  

Mesh Slices with and without adaptation 

Streamline visualization of the flow field 
around a car 
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Microswimmer Example 
Swimming by Reciprocal Motion at Low Reynolds Number 
 
Tian Qiu, Tung-Chun Lee, Andrew G. Mark, Konstantin I. Morozov , 
Raphael Münster , Otto Mierka , Stefan Turek, 
 Alexander M. Leshansky and Peer Fischer  
 
Nature Communications, November 2014 



Page 22 Page 22 Münster/Mierka/Turek | TU Dortmund  

Microswimmer Example(II) 

Application to microswimmers: 
• Exp: Cooperation with Prof. Fischer (MPI IS Stuttgart) 
• Analysis with respect to shear thickening/thinning 
• Use of grid deformation to resolve s/l interface 
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Contact/Collision Modelling 

• Contact determination for rigid bodies A and B: 
→ Distance d(A,B) 
→ Relative velocity vAB = (vA + ωA ×rA– (vB + ωB ×rB)) 
→ Collision normal  N = (XA (t) – XB (t)) 
→ Relative normal velocity N · (vA + ωA ×rA– (vB + ωB ×rB)) 

• distinguishes three cases of how bodies move relative to each other: 
→ Colliding contact   :  N · vAB < 0 
→ Separation            :  N · vAB > 0 
→ Touching contact  :  N · vAB = 0 

 
 

 
 

N · vAB < 0 N · vAB = 0 N · vAB > 0 
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For a single pair of colliding bodies we compute the impulse f that causes 
the velocities of the bodies to change:  

 

 

 

Single Body Collision Model 
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Using the impulse f, the change in linear and angular velocity 
can be calculated: 
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Multi-Body Collision Model(I) 

In the case of multiple colliding bodies with K contact points the impulses 
influence each other. Hence, they are combined into a system of equations 
that involves the following matrices and vectors: 

• N: matrix of contact normals 
• C: matrix of contact conditions 
• M: rigid body mass matrix 
• f: vector of contact forces (fi≥0) 
• fext: vector of external forces(gravity, etc.) 

 

( )
b                          x                          A

0 f 0,fΔ

tMuCNΔ

tfCNMCN ext1tTTΔ

tt-1TT ≥≥+++⋅ −+

A problem of this form is called a linear complementarity problem 
(LCP) which can be solved with efficient iterative methods like the 
Projected Gauss-Seidel solver (PGS). 
Kenny Erleben,Stable, Robust, and Versatile Multibody Dynamics Animation 
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Multi-Body Collision Model (II) 

 
• Apply pairwise impulses iteratively 

 
• Normal impulse 

 
 

• Tangential (frictional) impulse 
 
 

• Terminate when: 
• Impulses become small 
• Iteration limit is reached 

 
 

 
 

 
Details: Guendelman, Nonconvex rigid bodies with stacking 

Sequential Impulses 
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Multi-Body Collision Model (III) 

 
• Use a DEM approach that can be easily evaluated in parallel 
• Consider only the 3x3x3 neighbouring cells for each particle 

 

Collision forces 
1r

2r12r

Forces acting on each particle 

Sum up for each collision 

k,η: material constants 
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• Can be extended to rigid bodies 
• Details: GPU Gems 3 (Takahiro Harada) 
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Examples 
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Examples 
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Fluidized Bed Example 
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DGS Configuration 
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Extensions & Future Activities 

• Viscoelastic fluids 
• Turbulence 
• Multiphase problems 

→ Liquid-Liquid-Solid 
→ Liquid-Gas-Solid 

 
• Improve parallel efficiency of collision 

detection and force computation on GPU 
• Implement core CFD-Solver Modules on 

GPU 
• Complete dynamic grid adaptation on 

GPU 
• Hydrodynamic forces on GPU 
 

Hardware-Oriented Numerics 

Fluidics 
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