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Related Multiphase Flow Solver

Basic CFD tool – FeatFlow 
(robust, parallel, efficient)

Non-Newtonian flow module: 
• generalized Newtonian model 

(Power-law, Carreau, ... etc.) 
• viscoelastic model       

(Giesekus, Oldroyd B, …etc.)

Multiphase flow module (resolved interfaces): 
• l/l  – interface tracking (Level Set) 
• s/l  – interface capturing (FBM) 
• s/l/l  – combination of l/l  and s/l 

Numerical features: 
• Higher order Q2P1 FEM schemes 
• FCT & EO FEM stabilization techniques 
• Use of unstructured meshes 
• Fictitious Boundary (FBM) methods 
• Dynamic adaptive grid deformation 
• Newton-Multigrid solvers

Engineering aspects: 
• Geometrical design 
• Modulation strategy 
• Optimization

FEM-based simulation tools for the accurate prediction of multiphase 
flow problems, particularly with liquid-(rigid) solid interfaces

HPC features: 
• Massively parallel 
• GPU computing 
• Open source
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Liquid–(Rigid) Solid Interfaces

The fluid flow is modelled by the Navier-Stokes equations:  

where σ is the total stress tensor of the fluid phase: 
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Mesh Setup
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• Hierachical unstructured meshes 
• Domain decomposition: 

→ Grid hierarchy on each subdomain 

• Mapping from spatial coordinates to mesh cells 
(indices) generally not possible for unstructured 
meshes 

• Overlay an additional structured grid layer (hashed 
uniform grids) to obtain position to mesh cell mapping 

• Direct mapping from positions crucial for fast 
computations involving the mesh or the geometry 
represented by the mesh 

( ) cellIndex→zy,x,p :f
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Numerical Solution Scheme
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Solve for velocity and pressure applying FBM-conditions 
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Equations of Motion (I)

The motion of particles can be described by the Newton-Euler equations. 
A particle moves with a translational velocity Ui  and angular velocity ωi 

which satisfiy:
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• Mi    : mass of the i-th particle (i=1,...,N) 
• Ii      : moment of inertia tensor of the i-th particle 
• ΔMi  : mass difference between Mi and the mass of the fluid 
• Fi     : hydrodynamic force acting on the i-th particle 
• Ti     : hydrodynamic torque acting on the i-th particle 
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Equations of Motion (II)

The position and orientation of the i-th particle are obtained by integrating the  
kinematic equations: 

which can be done numerically by an explicit Euler scheme:
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We apply the velocity u(X) as no-slip boundary condition at the interface 
∂Ωi between the i-th particle and the fluid, which for X ϵ Ωi is defined by: 

( ) ( )iii XXωUXu −×+=

Boundary Conditions
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Hydrodynamic Forces
Hydrodynamic force and torque acting on the i-th particle

8

Force Calculation with Fictitious Boundary Method 

      

Alternative: 
Replace the surface integral by a 

volume integral 

The FBM can only decide: 
• `INSIDE`(1) and `OUTSIDE`(0) 
• Only first order accuracy 
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Numerical Force Evaluation
Define an indicator function αi: 

Remark: The gradient of αi is zero everywhere except at the surface of the i-th 
Particle and approximates the normal vector (in a weak sense), allowing us to  
write:

9

On the finite element level we can compute this by: 

αh,i (x) : finite element interpolant of α(x)  
Th,i      : elements intersected by i-th particle
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Grid Deformation and ALE
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Advantages: 
• Constant mesh/data structure ! GPU 
• Increased resolution in regions of interest 
• PDE approach is not necessary ! anisotropic ‘umbrella’ smoother 
• Straightforward usage in 3D unstructured meshes 
Quality of the method depends on the construction of the monitor function 
• Geometrical description (solid body, interface triangulation) 
• Monitor function based on distance information  
• Field oriented description (steep gradients, fronts) ! numerical stabilization

Validation: 2.5D Rising bubble – light setup Testing: 3D Rising bubble - hard setup
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Contact Force Calculation

• Contact force calculation realized as a three step process 
→ Broadphase 
→ Narrowphase 
→ Contact/Collision force calculation 

• Worst case complexity for collision detection is O(n2) 
→ Computing contact information is expensive 
→ Reduce number of expensive tests → Broad Phase 

• Broad phase 
→ Simple rejection tests exclude pairs that cannot intersect 
→ Use hierarchical spatial partitioning 

• Narrow phase 
→ Uses Broadphase output 
→ Calculates data neccessary for collision force calculation 

►Special single, resp., multibody collision models (as linear 
complementarity problems) on GPUs

11
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Benchmarking and Validation (I)

02.1,2.0 == ssd ρ

02.1,3.0 == ssd ρ

14.1,2.0 == ssd ρ

Münster, R.; Mierka, O.; Turek, S.: Finite 
Element fictitious boundary methods (FEM-
FBM) for 3D particulate flow, IJNMF, 2011
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Free fall of particles: 
• Terminal velocity 
• Different physical parameters 
• Different geometrical parameters

14.1,3.0 == ssd ρ

Source: Glowinski et al. 2001
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Sedimentation Benchmark
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Re umax/u∞ umax/u∞ umax/u∞  
  ten Cate exp  

1.5 0.945 0.894 0.947  
4.1 0.955 0.950 0.953  
11.6 0.953 0.955 0.959  
31.9 0.951 0.947 0.955  

Tab. 1 Comparison of the umax/u∞ ratios between the 
FEM-FBM, ten Cate's simulation and ten Cate's 
experiment 
 

Setup 
Computational mesh: 
• 1.075.200 vertices 
• 622.592 hexahedral cells 
• Q2/P1: 

→ 50.429.952 DoFs 

Hardware Resources: 
• 32 Processors
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Comparison

14

Comparison of FEM-FBM and 
the experimental values and 
the LBM results of the group 
of Sommerfeld

Source: 13th Workshop on Two-Phase Flow Predictions 2012 
Acknowledgements: Ernst,M., Dietzel,M., Sommerfeld,M.
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Multi-level Analysis

15

FEM-Multigrid Framework
• Increasing the mesh resolution produces more accurate results 
    Test performed at different mesh levels 

• Maximum velocity is approximated better ✓ 
• Shape of the velocity curve matches better ✓
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Oscillating Cylinder
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• Measure Drag/Lift Coefficients for a sinusoidally oscillating cylinder 
• Compare results for FBM, adapted FBM and adapted FBM + boundary 

projection/parametrization

Nodes concentrated near  
liquid-solid interface

        Nodes projected and  
parametrized on boundary       

plus concentration of    
nodes near boundary
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Oscillating Cylinder Results
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• Highly smooth 
results when the 
vertices are 
projected directly 
onto the geometry 
✓
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Distance Maps for Fast MinDist

• Data structure for fast distance calculation 
• Equidistant structured mesh surrounding the object 
• Precompute and store distance, normals 
• Transform quantities into distance map, use precomputed values 
• Algorithm maps excellently to the GPU 
• Provides fast distance computation and collision queries for complex 

geometries

18



Münster/Mierka/Turek | TU Dortmund 

Influence of Mesh Adaptation
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• Details may be lost without adaptation 
• Better resolution with the same number of DOFs 
• Mesh adaptation equivalent to at least one refinement level

Car representation by the computation mesh

with adaptation original no adaptation
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Example: Virtual Wind Tunnel 

20

• Numerical simulation of complex geometries 
• Use of a regular base mesh 
• Resolution of small scale details by mesh adaptation

Mesh Slices with and without adaptation

Streamline visualization of the flow field around 
a car
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Microswimmer Example
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Swimming by Reciprocal Motion at Low Reynolds Number 

Tian Qiu, Tung-Chun Lee, Andrew G. Mark, Konstantin I. Morozov , 
Raphael Münster , Otto Mierka , Stefan Turek, 
 Alexander M. Leshansky and Peer Fischer  

Nature Communications, November 2014
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Microswimmer Example(II)

22

Application to microswimmers: 
• Exp: Cooperation with Prof. Fischer (MPI IS Stuttgart) 
• Analysis with respect to shear thickening/thinning 
• Use of grid deformation to resolve s/l interface
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Contact/Collision Modelling

• Contact determination for rigid bodies A and B: 

→ Distance d(A,B) 
→ Relative velocity vAB = (vA + ωA ×rA– (vB + ωB ×rB)) 

→ Collision normal  N = (XA (t) – XB (t)) 

→ Relative normal velocity N · (vA + ωA ×rA– (vB + ωB ×rB)) 
• distinguishes three cases of how bodies move relative to each other: 

→ Colliding contact   :  N · vAB < 0 

→ Separation            :  N · vAB > 0 

→ Touching contact  :  N · vAB = 0

23

N · vAB < 0 N · vAB = 0 N · vAB > 0
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For a single pair of colliding bodies we compute the impulse f that causes 
the velocities of the bodies to change:  

Single Body Collision Model

24
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Using the impulse f, the change in linear and angular velocity 
can be calculated: 
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Multi-Body Collision Model(I)
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In the case of multiple colliding bodies with K contact points the impulses 
influence each other. Hence, they are combined into a system of equations 
that involves the following matrices and vectors:

• N: matrix of contact normals 
• C: matrix of contact conditions 
• M: rigid body mass matrix 
• f: vector of contact forces (fi≥0) 
• fext: vector of external forces(gravity, etc.) 

A problem of this form is called a linear complementarity problem (LCP) 
which can be solved with efficient iterative methods like the Projected 
Gauss-Seidel solver (PGS). 
Kenny Erleben,Stable, Robust, and Versatile Multibody Dynamics Animation
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Multi-Body Collision Model (II)
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• Apply pairwise impulses iteratively 
• Normal impulse 

• Tangential (frictional) impulse 

• Terminate when: 
• Impulses become small 
• Iteration limit is reached 

Details: Guendelman, Nonconvex rigid bodies with stacking

Sequential Impulses
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Multi-Body Collision Model (III)
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• Use a DEM approach that can be easily evaluated in parallel 
• Consider only the 3x3x3 neighbouring cells for each particle 

Collision forces
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2r12r

Forces acting on each particle

Sum up for each collision
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• Can be extended to rigid bodies 
• Details: GPU Gems 3 (Takahiro Harada)
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Examples

28
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Examples

29
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Fluidized Bed Example

30
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DGS Configuration

31
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Extensions & Future Activities

• Viscoelastic fluids 
• Turbulence 
• Multiphase problems 

→ Liquid-Liquid-Solid 
→ Liquid-Gas-Solid

32

• Improve parallel efficiency of collision 
detection and force computation on GPU 

• Implement core CFD-Solver Modules on 
GPU 

• Complete dynamic grid adaptation on 
GPU 

• Hydrodynamic forces on GPU 

Hardware-Oriented Numerics

Fluidics


