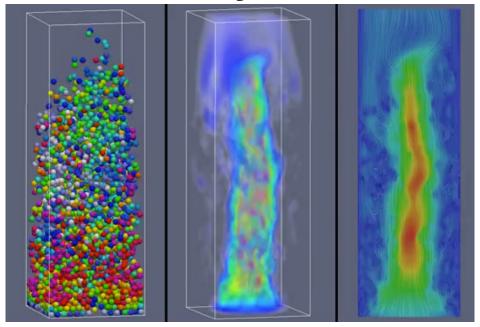


Particulate Flow Simulations with Complex Geometries using the Finite Element-Fictitious Boundary Method



Raphael Münster, Otto Mierka, Stefan Turek Institut für Angewandte Mathematik, TU Dortmund

Related Multiphase Flow Solver

Basic CFD tool – **FEATFLOW** (robust, parallel, efficient)

HPC features:

- Massively parallel
- GPU computing
- Open source

Numerical features:

- Higher order Q2P1 FEM schemes
- FCT & EO FEM stabilization techniques
- Use of unstructured meshes
- Fictitious Boundary (FBM) methods
- Dynamic adaptive grid deformation
- Newton-Multigrid solvers

Non-Newtonian flow module:

- generalized Newtonian model (Power-law, Carreau, ... etc.)
- viscoelastic model (Giesekus, Oldroyd B, ...etc.)

Multiphase flow module (resolved interfaces):

- |/| interface tracking (Level Set)
- g/l interface capturing (FBM)
- g/l/l combination of l/l and g/l

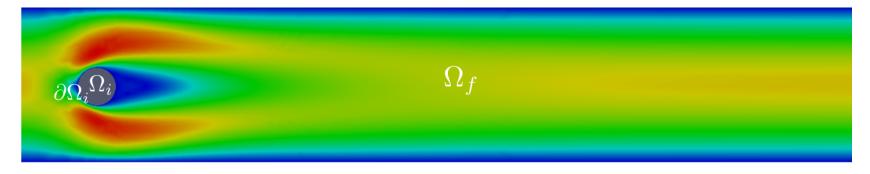
Engineering aspects:

- Geometrical design
- Modulation strategy
- Optimization

FEM-based simulation tools for the accurate prediction of multiphase flow problems, particularly with liquid-(rigid) solid interfaces

Liquid-(Rigid) Solid Interfaces

Consider the flow of N solid particles in a fluid with density ρ and viscosity μ . Denote by $\Omega_f(t)$ the domain occupied by the fluid at time t, by $\Omega_i(t)$ the domain occupied by the ith-particle at time t and let $\overline{\Omega} = \overline{\Omega}_f \cup \overline{\Omega}_i$.



The fluid flow is modelled by the **Navier-Stokes equations**:

$$\rho \left(\frac{\partial u}{\partial t} + u \cdot \nabla u \right) - \nabla \cdot \sigma = f, \quad \nabla \cdot u = 0$$

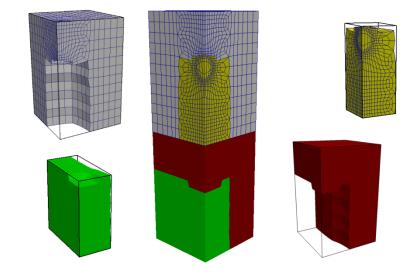
where σ is the total stress tensor of the fluid phase:

$$\sigma(X,t) = -pI + \mu[\nabla u + (\nabla u)^T]$$

Mesh Setup

technische universität dortmund

- Hierachical unstructured meshes
- Domain decomposition:
 - → Grid hierarchy on each subdomain
- Mapping from spatial coordinates to mesh cells (indices) generally not possible for unstructured meshes



$$f:p(x,y,z) \rightarrow cellIndex$$

- Overlay an additional structured grid layer (hashed uniform grids) to obtain position to mesh cell mapping
- Direct mapping from positions crucial for fast computations involving the mesh or the geometry represented by the mesh

Numerical Solution Scheme

Solve for velocity and pressure applying FBM-conditions

$$NSE(u_f^{n+1}, p^{n+1}) = BC(\Omega_i^n, u_i^n)$$

Calculate hydrodynamic force, torque and apply

Contact force calculation $F_{c,i}^{n+1}$

Compute new velocity and angular velocity

$$u_{i}^{n+1} = u_{i}^{n} + \Delta t (F_{c,i}^{n+1}/M_{i}) \omega_{i}^{n+1} = \omega_{i}^{n} + \Delta t I_{i}^{-1} (r \times F_{c,i})$$

Position update

$$X_i^{n+1} = X_i^n + \Delta t u_i^n$$
 $\theta_i^{n+1} = \theta_i^n + \Delta t \omega_i^n$

Equations of Motion (I)

The motion of particles can be described by the **Newton-Euler equations**. A particle moves with **a translational velocity** U_i and **angular velocity** ω_i which satisfiy:

$$M_{i} \frac{dU_{i}}{dt} = F_{i} + F_{i}' + (\Delta M_{i})g, \qquad I_{i} \frac{d\omega_{i}}{dt} + \omega_{i} \times (I_{i}\omega_{i}) = T_{i,}$$

- M_i: mass of the i-th particle (i=1,...,N)
- I_i: moment of inertia tensor of the i-th particle
- ΔM_i: mass difference between M_i and the mass of the fluid
- F_i: hydrodynamic force acting on the i-th particle
- T_i: hydrodynamic torque acting on the i-th particle

Equations of Motion (II)

The position and orientation of the i-th particle are obtained by integrating the **kinematic equations**:

$$\frac{dX_{i}}{dt} = U_{i} , \frac{d\theta_{i}}{dt} = \omega_{i} , \frac{d\omega_{i}}{dt} = I_{i}^{-1}T_{i}$$

which can be done numerically by an explicit Euler scheme:

$$X_i^{n+1} = X_i^n + \Delta t U_i^n \quad \omega_i^{n+1} = \omega_i^n + \Delta t \left(I_i^{-1} T_i^n \right) \quad \theta_i^{n+1} = \theta_i^n + \Delta t \omega_i^n$$

Boundary Conditions

We apply the velocity u(X) as no-slip boundary condition at the interface $\partial \Omega_i$ between the i-th particle and the fluid, which for $X \in \Omega_i$ is defined by:

$$u(X) = U_i + \omega_i \times (X - X_i)$$

Hydrodynamic Forces

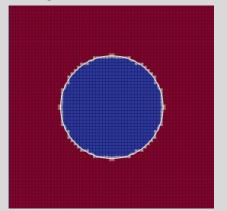
Hydrodynamic force and torque acting on the i-th particle

$$F_i = -\int_{\partial\Omega_i} \sigma \cdot n_i d\Gamma_i, \quad T_i = -\int_{\partial\Omega_i} (x - x_i) \times (\sigma \cdot n_i) d\Gamma_i$$

Force Calculation with Fictitious Boundary Method

The FBM can only decide:

- 'INSIDE'(1) and 'OUTSIDE'(0)
- Only first order accuracy



Alternative:

Replace the surface integral by a volume integral

Numerical Force Evaluation

Define an *indicator function* α_i :

$$\alpha_i(x) = \begin{cases} 1 \text{ for } x \in \Omega_i \\ 0 \text{ for } x \in \Omega_f \end{cases}$$

Remark: The gradient of α_i is zero everywhere except at the surface of the i-th Particle and approximates the normal vector (in a weak sense), allowing us to write:

$$F_i = -\int_{\Omega_T} \sigma \cdot \nabla \alpha_i d\Omega, \ T_i = -\int_{\Omega_T} (x - x_i) \times (\sigma \cdot \nabla \alpha_i) d\Omega$$

On the finite element level we can compute this by:

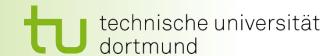
$$F_{i} = -\sum_{T \in T_{h,i}} \int_{\Omega_{T}} \sigma_{h} \cdot \nabla \alpha_{h,i} d\Omega$$

$$T_{i} = -\sum_{T \in T_{h,i}} \int_{\Omega_{T}} (x - x_{i}) \times (\sigma_{h} \cdot \nabla \alpha_{h,i}) d\Omega$$

 $\alpha_{h,i}(x)$: finite element interpolant of $\alpha(x)$

T_{h.i}: elements intersected by i-th particle

Grid Deformation and ALE

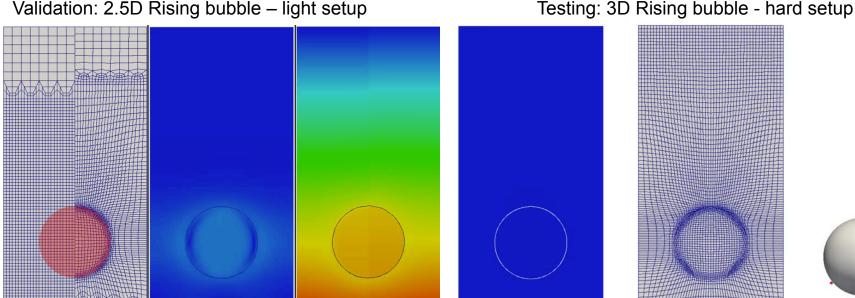


Advantages:

- Constant mesh/data structure → GPU
- Increased resolution in regions of interest
- PDE approach is **not** necessary \rightarrow anisotropic 'umbrella' smoother
- Straightforward usage in 3D unstructured meshes

Quality of the method depends on the construction of the monitor function

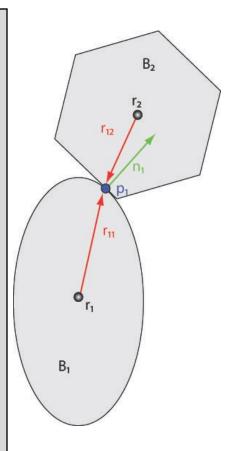
- Geometrical description (solid body, interface triangulation)
- Monitor function based on distance information
- Field oriented description (steep gradients, fronts) → numerical stabilization



Testing: 3D Rising bubble - hard setup

Contact Force Calculation

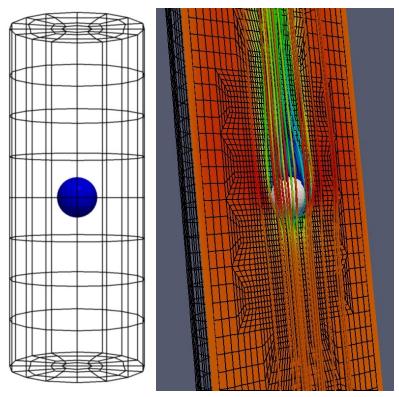
- Contact force calculation realized as a three step process
 - → Broadphase
 - → Narrowphase
 - → Contact/Collision force calculation
- Worst case complexity for collision detection is O(n²)
 - → Computing contact information is expensive
 - → Reduce number of expensive tests → Broad Phase
- Broad phase
 - → Simple rejection tests exclude pairs that cannot intersect
 - → Use hierarchical spatial partitioning
- Narrow phase
 - → Uses Broadphase output
 - → Calculates data neccessary for collision force calculation
 - ➤ Special single, resp., multibody collision models (as linear complementarity problems) on GPUs



Benchmarking and Validation (I)

Free fall of particles:

- Terminal velocity
- Different physical parameters
- Different geometrical parameters



Münster, R.; Mierka, O.; Turek, S.: Finite Element fictitious boundary methods (FEM-FBM) for 3D particulate flow, IJNMF, 2011

$d_{s} = 0$	0.3,	$\rho_s =$	1.14
-------------	------	------------	------

ν	$U_{featflow}$	U_{exp}	Relative error (%)
0.02	5.885	6.283	6.33
0.05	4.133	3.972	4.05
0.1	2.588	2.426	6.66
0.2	1.492	1.401	6.50

 $d_s = 0.2, \quad \rho_s = 1.14$

0.02 4.370 4.334 0.05 2.699 2.489	0.83
0.05 2.699 2.489	
	8.44
0.1 1.649 1.552	6.25
0.2 0.946 0.870	8.74

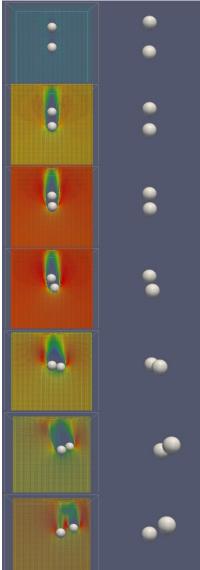
 $d_s = 0.3, \quad \rho_s = 1.02$

	· ·		,
ν	$U_{featflow}$	U_{exp}	Relative error (%)
0.01	2.167	2.107	2.84
0.02	1.495	1.436	4.11
0.05	0.809	0.749	8.01
0.1	0.402	0.404	0.44
0.2	0.218	0.216	1.02

 $d_s = 0.2, \quad \rho_s = 1.02$

ν	$U_{featflow}$	U_{exp}	Relative error (%)
0.01	1.4660	1.4110	3.90
0.02	0.9998	0.9129	9.52
0.05	0.4917	0.4603	6.82
0.1	0.2637	0.2571	2.57
0.2	0.1335	0.1317	1.37

Source: Glowinski et al. 2001



Sedimentation Benchmark

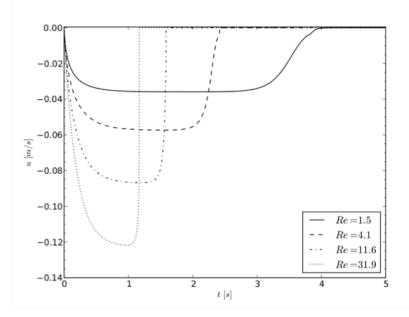
Setup

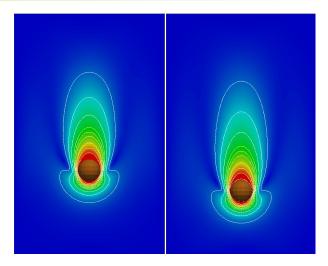
Computational mesh:

- 1.075.200 vertices
- 622.592 hexahedral cells
- Q2/P1:
 - → 50.429.952 DoFs

Hardware Resources:

32 Processors

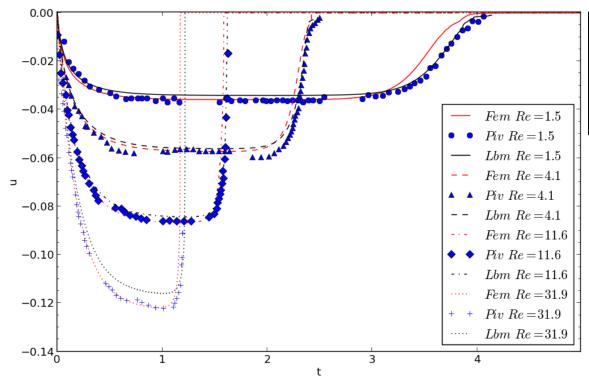




Re	u_{max}/u_{∞}	u_{max}/u_{∞}	u_{max}/u_{∞}
		ten Cate	exp
1.5	0.945	0.894	0.947
4.1	0.955	0.950	0.953
11.6	0.953	0.955	0.959
31.9	0.951	0.947	0.955

Tab. 1 Comparison of the u_{max}/u_{∞} ratios between the FEM-FBM, ten Cate's simulation and ten Cate's experiment

Comparison



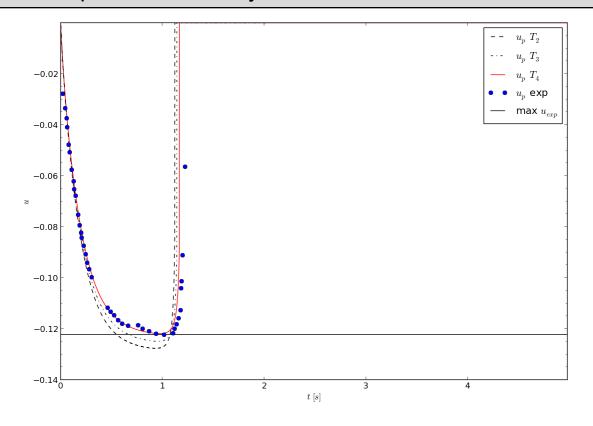
Comparison of FEM-FBM and the experimental values and the LBM results of the group of Sommerfeld

Source: 13th Workshop on Two-Phase Flow Predictions 2012 Acknowledgements: Ernst, M., Dietzel, M., Sommerfeld, M.

Multi-level Analysis

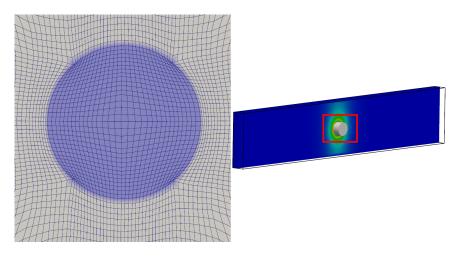
FEM-Multigrid Framework

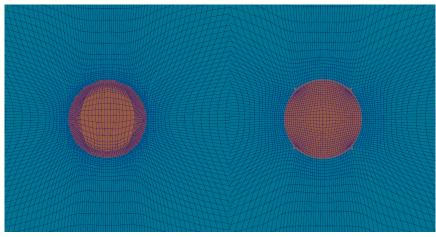
- Increasing the mesh resolution produces more accurate results
 Test performed at different mesh levels
 - Maximum velocity is approximated better
 - Shape of the velocity curve matches better



Oscillating Cylinder

- Measure Drag/Lift Coefficients for a sinusoidally oscillating cylinder
- Compare results for FBM, adapted FBM and adapted FBM + boundary projection/parametrization

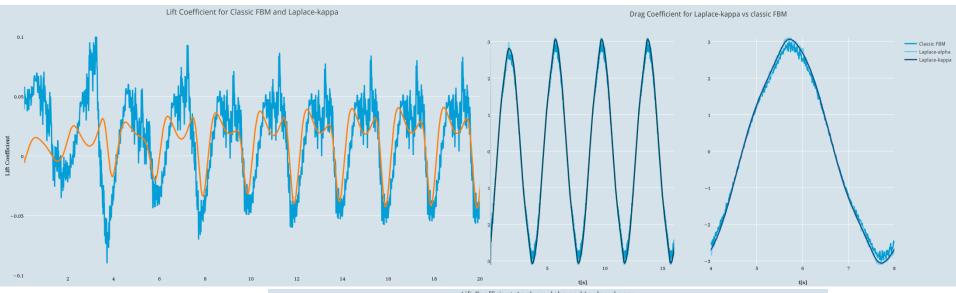




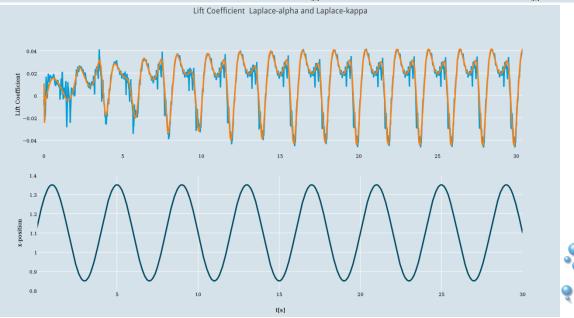
Nodes concentrated near liquid-solid interface

Nodes projected and parametrized on boundary plus concentration of nodes near boundary

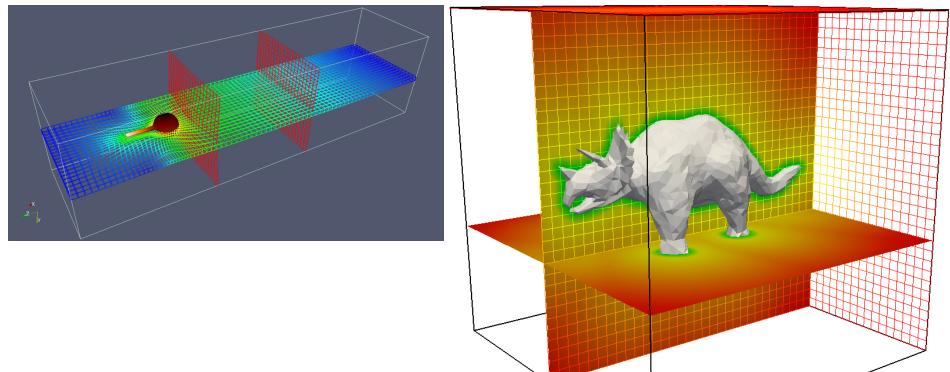
Oscillating Cylinder Results



Highly smooth results when the vertices are projected directly onto the geometry



Distance Maps for Fast MinDist

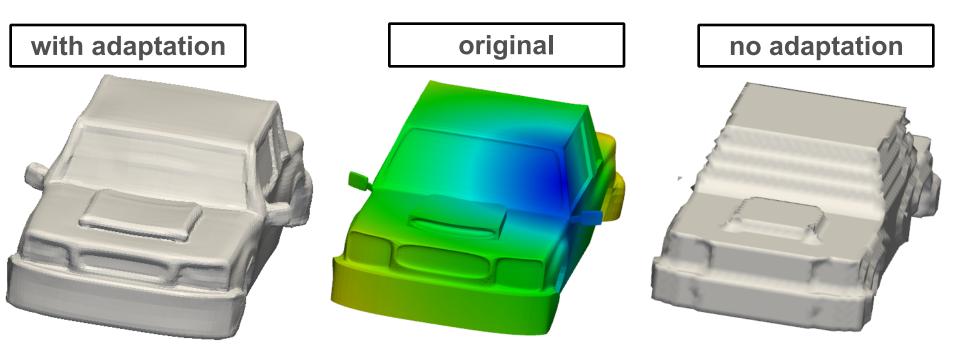


- Data structure for fast distance calculation
- Equidistant structured mesh surrounding the object
- Precompute and store distance, normals
- Transform quantities into distance map, use precomputed values
- Algorithm maps excellently to the GPU
- Provides fast distance computation and collision queries for complex geometries

Influence of Mesh Adaptation



Car representation by the computation mesh



- Details may be lost without adaptation
- Better resolution with the same number of DOFs
- Mesh adaptation equivalent to at least one refinement level

Example: Virtual Wind Tunnel

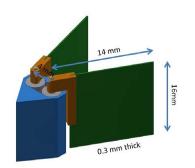
- Numerical simulation of complex geometries
- Use of a regular base mesh
- Resolution of small scale details by mesh adaptation

Streamline visualization of the flow field around a car Mesh Slices with and without adaptation

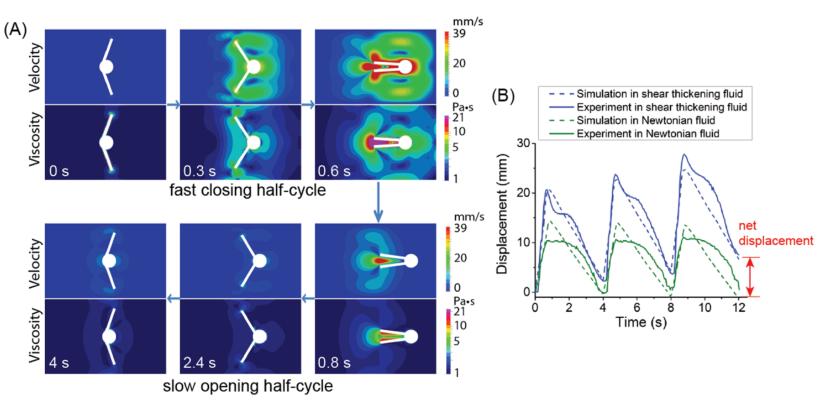
Microswimmer Example

Swimming by Reciprocal Motion at Low Reynolds Number

Tian Qiu, Tung-Chun Lee, Andrew G. Mark, Konstantin I. Morozov, Raphael Münster, Otto Mierka, Stefan Turek, Alexander M. Leshansky and Peer Fischer



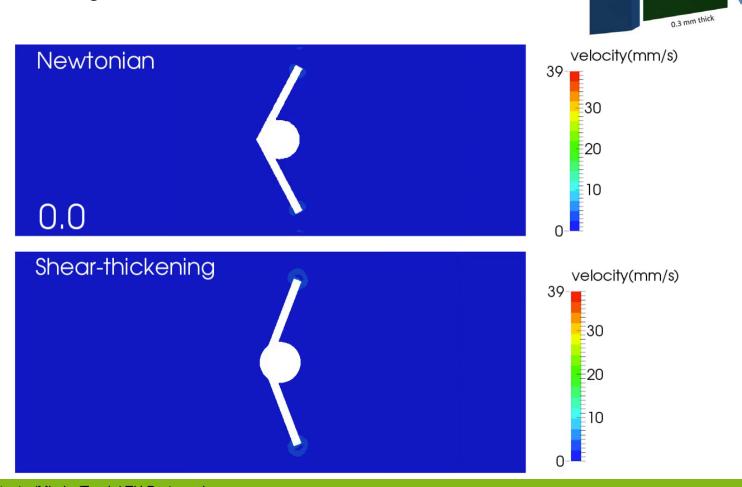
Nature Communications, November 2014

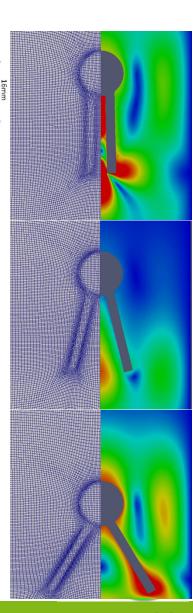


Microswimmer Example(II)

Application to microswimmers:

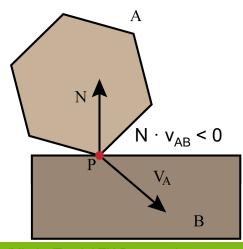
- Exp: Cooperation with Prof. Fischer (MPI IS Stuttgart)
- Analysis with respect to shear thickening/thinning
- Use of grid deformation to resolve s/l interface

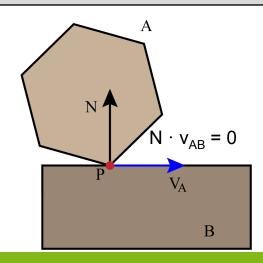


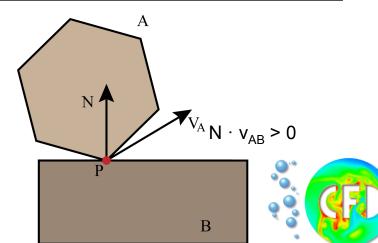


Contact/Collision Modelling

- Contact determination for rigid bodies A and B:
 - \rightarrow Distance d(A,B)
 - \rightarrow Relative velocity $v_{AB} = (v_A + \omega_A \times r_A (v_B + \omega_B \times r_B))$
 - \rightarrow Collision normal N = (X_A (t) X_B (t))
 - \rightarrow Relative normal velocity N · ($v_A + \omega_A \times r_A (v_B + \omega_B \times r_B)$)
- distinguishes three cases of how bodies move relative to each other:
 - \rightarrow Colliding contact : N · v_{AB} < 0
 - → Separation : $N \cdot v_{AB} > 0$
 - \rightarrow Touching contact : N · $v_{AB} = 0$







Single Body Collision Model

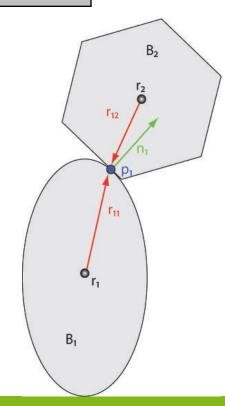
For a single pair of colliding bodies we compute the impulse f that causes the velocities of the bodies to change:

$$f = \frac{-(1+\epsilon)(n_1(v_1-v_2)+\omega_1(r_{11}\times n_1)-\omega_2(r_{12}\times n_1))}{m_1^{-1}+m_2^{-1}+(r_{11}\times n_1)^T l_1^{-1}(r_{11}\times n_1)+(r_{12}\times n_1)^T l_2^{-1}(r_{12}\times n_1)}$$

Using the impulse f, the change in linear and angular velocity can be calculated:

$$v_1(t + \Delta t) = v_1(t) + \frac{fn_1}{m_1}, \omega_1(t + \Delta t) = \omega_1(t) + I_1^{-1}(r_{11} \times fn_1)$$

$$v_2(t + \Delta t) = v_2(t) - \frac{fn_1}{m_2}, \omega_2(t + \Delta t) = \omega_2(t) - I_2^{-1}(r_{12} \times fn_1)$$



Multi-Body Collision Model(I)

In the case of **multiple colliding bodies** with *K* **contact points** the impulses influence each other. Hence, they are combined into a **system of equations** that involves the following matrices and vectors:

- N: matrix of contact normals
- C: matrix of contact conditions
- M: rigid body mass matrix
- f: vector of contact forces (f_i≥0)
- fext: vector of external forces(gravity, etc.)

$$\left| \frac{N^T C^T M^{-1} C N}{A} \cdot \frac{\Delta t f^{t+\Delta t}}{x} + \frac{N^T C^T (u^t + \Delta t M^{-1} + f^{ext})}{b} \right| \ge 0, f \ge 0$$

A problem of this form is called a **linear complementarity problem (LCP)** which can be solved with efficient iterative methods like the **Projected Gauss-Seidel solver (PGS)**.

Kenny Erleben, Stable, Robust, and Versatile Multibody Dynamics Animation

Multi-Body Collision Model (II)

Sequential Impulses

Apply pairwise impulses iteratively

Normal impulse

$$P_n = \max\left(\frac{-\Delta \overline{\mathbf{v}} \cdot \mathbf{n}}{k_n}, 0\right)$$

Tangential (frictional) impulse

- $v_{t} = \Delta \mathbf{v} \cdot \mathbf{t}$
- $-\mu P_n \le P_t \le \mu P_n$

- Impulses become small
- Iteration limit is reached

$$P_{t} = \text{clamp}(\frac{-\Delta \overline{\mathbf{v}} \cdot \mathbf{t}}{k_{t}}, -\mu P_{n}, \mu P_{n})$$

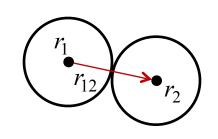
$$k_{t} = \frac{1}{m_{1}} + \frac{1}{m_{2}} + \left[I_{1}^{-1}\left(\mathbf{r}_{1} \times \mathbf{t}\right) \times \mathbf{r}_{1} + I_{2}^{-1}\left(\mathbf{r}_{2} \times \mathbf{t}\right) \times \mathbf{r}_{2}\right] \cdot \mathbf{t}$$

Details: Guendelman, Nonconvex rigid bodies with stacking

Multi-Body Collision Model (III)

Collision forces

- Use a DEM approach that can be easily evaluated in parallel
- Consider only the 3x3x3 neighbouring cells for each particle

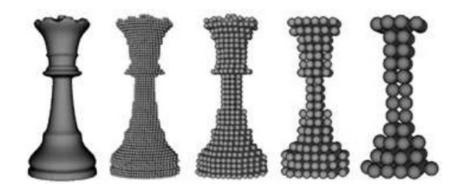


Forces acting on each particle

$$F_{i,s} = -k \left(d - \left| r_{ij} \right| \right) \frac{r_{ij}}{\left| r_{ij} \right|} \qquad F_{i,d} = \eta \cdot u_{ij}$$

$$F_{i,t} = k_t \cdot u_{ij,t} \qquad u_{ij,t} = u_{ij} - \left(u_{ij} \cdot \frac{r_{ij}}{\left| r_{ij} \right|} \right) \frac{r_{ij}}{\left| r_{ij} \right|}$$

$$k,\eta: \text{ material constants}$$



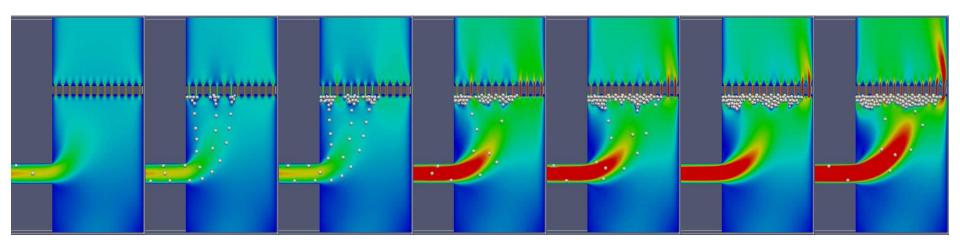
Sum up for each collision

$$F_{i,c} = \sum_{\text{collisions}(i)} (F_{i,s} + F_{i,d} + F_{i,t})$$

$$T_{i,c} = \sum_{\text{collisions(i)}} (r_i \times (F_{i,s} + F_{i,d} + F_{i,t}))$$

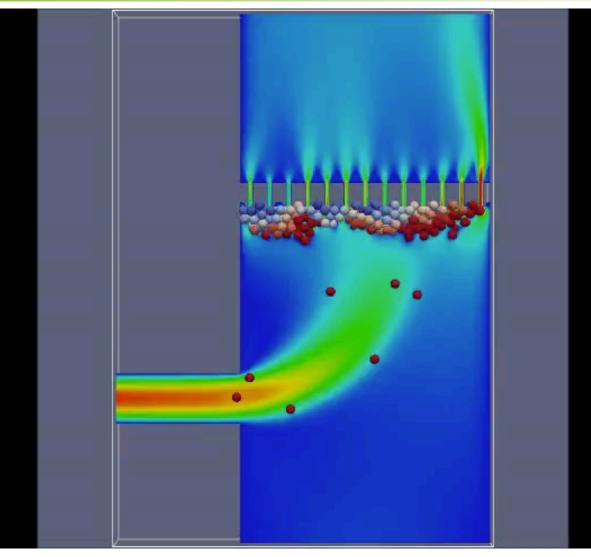
- Can be extended to rigid bodies
- Details: GPU Gems 3 (Takahiro Harada)

Examples

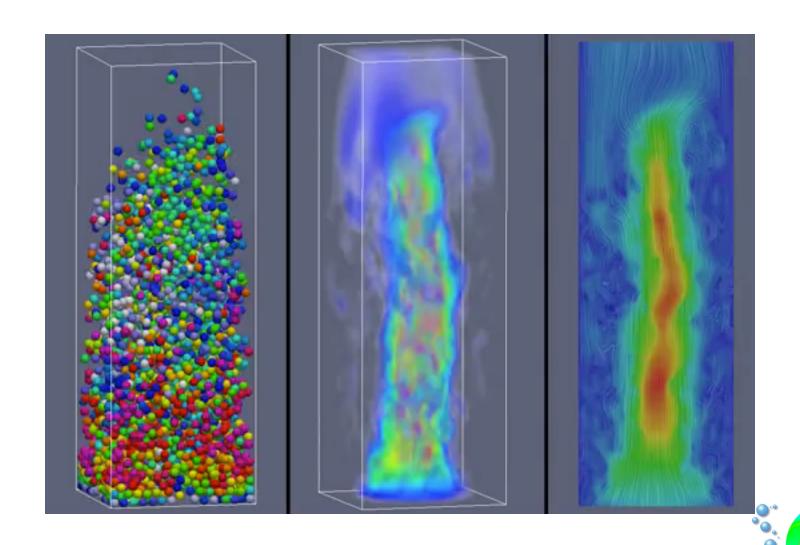




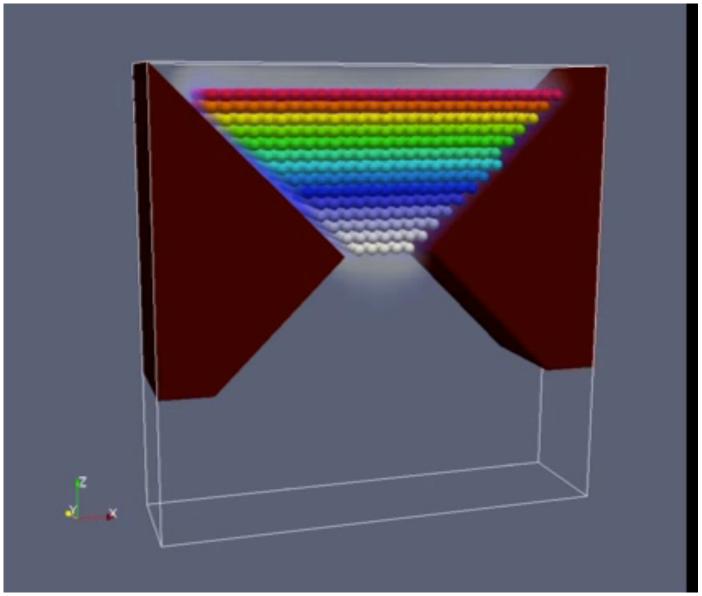
Examples



Fluidized Bed Example



DGS Configuration



Extensions & Future Activities

Fluidics

- Viscoelastic fluids
- Turbulence
- Multiphase problems
 - → Liquid-Liquid-Solid
 - → Liquid-Gas-Solid

Hardware-Oriented Numerics

- Improve parallel efficiency of collision detection and force computation on GPU
- Implement core CFD-Solver Modules on GPU
- Complete dynamic grid adaptation on GPU
- Hydrodynamic forces on GPU

