

Numerical Simulation Techniques for the Efficient and Accurate Treatment of Local Fluidic Transport Processes Together with Chemical Reactions

Stefan Turek, Otto Mierka, <u>Maimoona Munir</u> Chair of Applied Mathematics and Numerics, LS III

DFG Priority Program 1740: Reactive Bubbly Flows **TU**

The central of the priority program is to develop new and improved methods for the analysis, modelling and computing

- \Box local hydrodynamics with turbulence,
- local concentration distribution with mass transfer / mass transport,
- $\hfill\square$ reaction progression with transport limitation

technische universität

Leading Experiment I 'Superfocus Mischer'

- Geometrically complex configuration
- Miscible fluids
- Species undergoing chemical reactions.

Leading Experiment II 'Taylor Flow Capillary'

• Combination of the achieved developments

Numerical Techniques for Convection Dominated Transport

High-resolution AFC stabilization

$$\frac{\partial c}{\partial t} + \nabla \cdot (\mathbf{v}c) - \alpha \Delta c = f(c) \qquad \text{with} \quad \alpha \to 0$$

Standard discretization face shortcomings for non-smooth solutions

- Low order methods lead to smearing
- High order methods introduce unphysical oscillations

<u>Remedy:</u> Algebraic Flux Correction method ^[1]

- Local extremum diminishing (+)
- Positivity preserving (+)
- Transforms the linear problem to a non-linear one (-)
- Robust and highly accurate (+)

technische universität

- Construction of (dynamic) monitor function related to distance, curvature, concentration **gradient**, vorticity, etc.
- Anisotropic Laplace smoothening (fast due to the algebraic realization \rightarrow no PDE)^[1]
- Arbitrary Lagrangian-Eulerian Method (ALE) for non-stationary problems
- Handling geometrically complex/dynamic problems in the framework of moving interfaces even on unstructured meshes

SuperFocusMixer application

- Scalar field transport is realized on structured meshes (via automatic mesh generator)
- Monitor function is scalar field related

+ Grid Transfer – velocity solution from unstructured onto highly deformed structured grid

[1] B"aumler K,, Simulation of single drops with variable interfacial tension, PhD Thesis, 2014, Erlangen, Friedrich-Alexander-University Erlangen-Nurnberg.

technische universität

technische universität Numerical Techniques For Fast Chemical Reactions dortmund

Simulation Strategy For Laminar Steady Flows (one way coupling \rightarrow diluted solutions):

- Compute the steady state velocity distribution on an appropriate grid
- Compute the steady concentration fields 2)
- deform the computational grid using the monitor function (concentration gradients)

- interpolate the velocity field from the original grid to the deformed one
- decouple the transport of species in space (diffusion and convection) from the reaction term

1st step PDE
in spatial dimension
$$\Delta t$$
 2nd step ODE $M\left(\frac{\Delta t}{M}\right)$
in chem. species dimension $M\left(\frac{\Delta t}{M}\right)$
 $\frac{\partial c_i}{\partial t} + \nabla \cdot (\mathbf{v}c_i) - \alpha \Delta c_i = s(c_{j=1,2,...N})$ $i = 1,2,...N$
RHS terms:

Reaction mechanism/constant specific!

Possible difficulties

terations

- Extreme resolution requirements of the chemical species
- Necessity of multiple grids for different transport problems
- Extremely different time-scales (chem. react. vs transport)

According to Reaction Engineering: $r_j = k_j \prod_{i=1,n_R} c_i^{|\nu_{j,i}|}$ for $j = 1, n_{CR}$

$\frac{dc_{\rm i}}{dt} = 2$	$\sum_{j=1,n_{CR}} v_{j,i} r_j$ and $k_j = k_{0j} e^{-E_a/RT}$
n_R	: number of reactants
n_{CR}	: number of chemical reactions
ν_i	: stechiometric coefficients
k _{0,j}	: reaction rate constants

→ OS

TUHH^[1] - Bothe et.al.^[2] – TUDO^[3]

[1] Hoffmann, M.; Schlüter M.; Räbiger N.: Experimental investigation of liquid-liquid mixing in T-shaped micro-mixers using μ-LIF and μ-PIV, Chemical Engineering Science, 61(9), pp. 2968-2976, 2006, DOI: 10.1016/j.ces.2005.11.029.

[2] Bothe D., Lojewski A., Warnecke, H.-J., Computational analysis of an instantaneous reaction in a T-microreactor, AIChE Journal, **56**, pp: 1406–1415, 2009, DOI: 10.1002/aic.12067.

[3] Mierka, O.; Munir, M.; Spille, C.; Timmermann, J.; Schlüter, M.; Turek, S.: Reactive liquid flow simulation of micromixers based on grid deformation techniques. Chemical Engineering & Technology, 2017, accepted article, <u>DOI: 10.1002/ceat.201600686</u>.

SFM-Mixer Validation

technische universität dortmund

Investigation of different levels of geometrical complexity

- Influence of velocity distribution on mixing and chemical reactions
- Geometrical description from **TUHH!**
- Mesh resolutions guaranteeing mesh convergence
- Timings for Geometry 1 and 2 :
 <1h CFD, <1d Scalar transport on 16 cores

Pure Mixing Without Chemical Reactions

- experimental validation with TUHH Geometry 1

 $D_{A,B} = 3.0 \cdot 10^{-7} \text{ cm}^2/\text{s}$

technische universität

Pure Mixing With Chemical Reactions

"For determining the reaction kinetics \dots a setup with a fast and close to ideal mixing of the Cu(I) complex and O₂ and in-situ spectroscopy is required."

 \rightarrow Reaction rates in general strongly depend on the hydrodynamics (mixing)!

[1] Schurr D., Strassl F., Liebh¨auser P., Rinke G., Dittmeyer R., Herres-Pawlis S., Decay kinetics of sensitive bioinorganic species in a SuperFocus mixer at ambient conditions, Reaction Chemistry & Engineering, 1, pp.:485-493, 2016, DOI: 10.1039/C6RE00119J.

Parameter Study Of Mixing With Chemical Reactions

Geometry 0

 $\dot{V} = 0.6 \Leftrightarrow 40.0 \ ml/min$

~residence time

technische universität

U technische universität dortmund

100% conversion (w.r.t. A), (22% C, 78% D) "selectivity"

U technische universität dortmund

100% conversion (w.r.t. A), (22% C, 78% D) "selectivity"

technische universität dortmund

U53

91% conversion (w.r.t. A), (84% C, 7% D) "selectivity"

U technische universität dortmund

L33

100% conversion (w.r.t. A), (0% C, 100% D) "selectivity"

SPP 1506 Taylor Bubble Benchmark

technische universität dortmund

Synergical effect of special numerical ingredients: Laplace Beltrami, Isoparametric FEM, Arbitrary Lagrangian Eulerian Method with Mesh Deformation

Longitudinal cut – experimental (black solid line) vs computational (grey area) results

Levelset-free Method!

No smoothening distance for physical properties and for surface tension, no reinitialization. Mesh needs to be aligned with the interface. Dramatically improved mass conservation.

Benchmark measures	DROPS	FS3D	TURBIT	OF	FFP-I2	FFP-I3	EXP	
bubble length	[mm]	7,230	7,197	7,110	7,202	7,199	7,197	7,200
min. film thickness (diagonal cut)	[mm]	0,4392	0,4362	0,4420	0,4566	0,4329	0,4325	0,4331
min. film thickness (longitudinal cut)	[mm]	0,0490	0,0477	0,0280	0,0590	0,0472	0,0473	0,0505
liquid velocity	[cm/s]	-	13,82	-	12,61	13,82	13,82	-
rise velocity	[mm/s]	206,9	197,5	207,8	205,8	197,7	199,6	?203,4?
discretization (el,dof)	[-]	320,000 v _{dof} 26,000 p _{pres}	2,100,000 el	1,200,000 el	300,000 el	8,500 el	68,000 el	-

Marschall H., Boden S., Lehrenfeld Ch., Falconi C. J. D., Hampel U., Reusken A., W⁻⁻ orner M., Bothe D., Validation of Interface Capturing and Tracking techniques with different surface tension treatments against a Taylor bubble benchmark problem, Computers and Fluids, **102**, pp.:336-352, 2014. DOI:10.1016/i compfluid.2014.06.030

Conclusions

U technische universität dortmund

From The Running Period:

- The necessary numerical components have been successfully incorporated into the CFD solver ^[1]
- Validation of the developed methods has been realized on the basis of the experimental results of TU Hamburg-Harburg (AG Schlüter)
- The reaction module has been qualitatively validated based on the experimental results of Schurr D., Strassl F., Liebhäuser P., Rinke G., Dittmeyer R., Herres-Pawlis S. Quantitave validation is being in progress with (AG Schlüter)
- A novel highly accurate Level Set-free approach has been developed for simulation of multiphase flows which has been validated on the SPP 1506 Taylor bubble benchmark

Outlook To The Next Period:

- To exploit the developed CFD based methodology in a framework of an optimization environment for determination of reaction parameters for subsequent use in CFD related environments (AG Herres-Pawlis)
- Extension of the current scalar-transport-reaction module with an "Electromigration model" being suitable for simulation of ion-related chemical systems (AG Bothe)

[1] Mierka, O.; Munir, M.; Spille, C.; Timmermann, J.; Schlüter, M.; Turek, S.: Reactive liquid flow simulation of micromixers based on grid deformation techniques. Chemical Engineering & Technology, 2017, accepted article, <u>DOI: 10.1002/ceat.201600686</u>.