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•  The powder can transit from the quasi-static to the intermediate 
regime as the shearing rate is increased 

Behavior of dense granular material  

Shear and pressure dependent 
viscosity  

 

Axial flow device 

Normal 
Sterss 
Sensor 

Rotating 
Cylinder 

Stationary 
outer wall 

Axial flow experiment  in the Couette device: spherical 
glass beads, 0.1 mm in diameter.  
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Viscoplastic flow  

 
Viscoplastic Lubricate Flow (Yield stress fluids)  

Ø  Dependent on the stress field   
Ø  Constitutive model is dependent on different flow regimes 
Ø  Non-smooth change in the constitutive relations  

Model preserving the sharp changes of the 
constitutive equations w.r.t. flow regimes     
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Thixotropy  
 

Thixotropy concept 
Ø  Based on viscosity   
Ø  Flow induced by time-dependent 
      decrease of viscosity  
Ø  The phenomena is reversible 

 
•  Aging / Build-up 

Ø  At rest  or under slow flow: fluid ages 
      Increases of the viscosity in time 

•  Rejuvenation / Breakdown 
Ø  “Faster”  flow: fluid rejuvenates 
      Decreases of viscosity with acceleration of  the flow  

Investigation of solid/liquid and liquid/solid  
transitions with non constant yield stress 
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Non-Newtonian phenomena 
 
•  Effects due to normal stresses  
•  Effects due to elongational viscosity  
•  The drag reduction phenomenon 
 

Differential models 
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Realization in FeatFlow 

Non-Newtonian flow module: 
•  generalized Newtonian model 

(Power-law, Carreau,...) 
•  viscoelastic differential model 

(Giesekus, FENE, Oldroyd,...) 

Multiphase flow module (resolved 
interfaces): 
•  l/l  – interface capturing (Level Set) 
•  s/l  – interface tracking (FBM) 
•  s/l/l  – combination of l/l  and s/l  

Numerical features: 
•  Higher order  FEM in space &  
  (semi-) Implicit FD/FEM in time 
•  Semi-(un)structured meshes with 
  dynamic adaptive grid deformation 
•  Fictitious Boundary (FBM) methods 
•  Newton-Multigrid-type solvers 

Engineering aspects: 
•  Geometrical design 
•  Modulation strategy 
•  Optimization 

Here: FEM-based tools for the accurate simulation of (multiphase) flow 
problems, particularly with complex rheology 

HPC features: 
•  Moderately parallel 
•  GPU computing 
•  Open source Hardware

-oriented 
Numerics 
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Governing equations 
 
•  Generalized Navier-Stokes equations 

 
 
 

Ø  Viscous stress 

Ø  Elastic stress 
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Quasi-Newtonian models 
 
•   Viscous stress 

 
 

Ø  Power law model 
 
 
 
Ø  Powder flow in the quasi-static and intermediate regimes 
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Quasi-Newtonian models 
 
Ø  Yield stress flow (Bingham Model) 

 
 
 
 
Ø  Thixotropic model 

 
 

Ø Structure parameter equation  
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Constitutive models 
 
•   Elastic stress 

 
 

Ø  Upper/Lower convective  derivative 
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Constitutive models 
 
•   Generalized differential constitutive model 

 
Ø  Oldroyd 

 
Ø  Giesekus 

 
Ø  Phan-Thien and Tanner 

Ø  White and Metzner 

 
 

 

⇤ + We
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Stokes problem 

•  Two-field formulation 

•  Three-field formulation 

 

 

(u, p)
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Stokes problem 
 
•  Two-field formulation 

Ø  Set 

Ø  Find                            s.t. 

 
Ø  Compatibily constraints 
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Stokes problem 
 
•  Three-field formulation 

Ø  Set 

Ø  Find                                      s.t. 

 
Ø  Compatibily constraints 
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Approximated Stokes problem 

•  Conforming approximations   
 
 
    

 
•  Non-conforming approximation 

 
 
    

•  Discrete inf-sup condition  
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Robust non-/conforming FEM  
Qr/P

disc
r�1 , r � 2

Q̃r/P
disc
r�1 , r � 2 (u, p)

(�, u, p)Qr/Qr/P
disc
r�1 , r � 2

Ju(uh, vh) = �u
X

e2Eh

2⌘↵h

Z

e
[ruh] : [rvh] d⌦

 
The family of non-/conforming FEM                            and the family of 
nonconforming FEM                              for  

Ø  Inf-sup stable  
Ø  Arbitrary order with optimal convergence order 
Ø  Discontinuous pressure 

Ø Good for the solver 
Ø Element-wise mass conservation   
                                                             

The family of conforming FEM                                  for              with 
stabilization 
 

Ø  Both Inf-sup conditions are satisfied 
Ø  Highly consistent  and symmetric stabilization, penelazing any 

spurious current,  enhancing the preconditioner, which improve  
accuracy and efficiency 

Ø  None tensorial FEM approximation for the tensorial field 
Ø Robust solver w.r.t. the monolitic approach  
Ø Efficient solver w.r.t.  multigird solver  
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Monolitic-multigrid linear solver 
 

•  Standard geometric multigrid solver  

•  Full        and           restriction and prolongation 

•  Local Multilevel Pressure Schur Complement via Vanka-like 
smoother   
 

Coupled Monolithic Multigrid Solver ! 
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Flow around cylinder Benchmark tests (by Aaqib  Afaq)  
 

Ø  Two field formulation versus three field formulation 

Ø  Consistency of the stabilization for three field formulation  
 
                                                             

 

Monolithic Multigrid Solver

Three fields Stokes vs Stokes solver in primitive variables

Level Lift Drag NL/LL Lift1 Drag NL/LL

1 0.009498 5.5550 7/2 0.009498 5.5550 9/2
2 0.010601 5.5722 7/2 0.010601 5.5722 9/2
3 0.010616 5.5776 7/2 0.010616 5.5776 9/1
4 0.010618 5.5791 7/1 0.010618 5.5791 8/1
5 0.010619 5.5794 6/2

Three field solver performance e�cient as primitive Stokes solver

Check robustness and consistency!

1Damanik. H ”FEM Simulation of Non-isothermal Viscoelastic fluids”, PhD Thesis
Motivation Governing Equations Variational Formulation Finite Element Approximation Numerical Results Summary

EO-FEM : Consistency

Consistency for case – = 0

No stabilization With stabilization
Level – Lift Drag NL/LL Lift Drag NL/LL

2 0 0.010601 5.5722 7/2 0.010702 5.5674 7/2
3 0 0.010616 5.5776 7/2 0.010619 5.5757 7/2
4 0 0.010618 5.5791 7/1 0.010617 5.5782 7/2
5 0 0.010619 5.5794 6/2 0.010618 5.5790 6/3

Edge Oriented FEM is consistent

Side e�ect neither on solution nor on the solver

Motivation Summary
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Monolithic Multigrid Solver

Three fields Stokes vs Stokes solver in primitive variables

Three-field Two-field1

Level Lift Drag NL/LL Lift Drag NL/LL

1 0.009498 5.5550 7/2 0.009498 5.5550 9/2
2 0.010601 5.5722 7/2 0.010601 5.5722 9/2
3 0.010616 5.5776 7/2 0.010616 5.5776 9/1
4 0.010618 5.5791 7/1 0.010618 5.5791 8/1

Three field solver performance e�cient as primitive Stokes solver

Check robustness and consistency!

1Damanik. H ”FEM Simulation of Non-isothermal Viscoelastic fluids”, PhD Thesis
Motivation Summary

Monolitic-multigrid linear solver 
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Flow around cylinder Benchmark tests (by Aaqib  Afaq)  

 
Ø  Robustness and efficiency of the stabilization for three field formulation 

without any viscous contribution  
 
                                                             

 

Accurate, robust and efficient monolitic-multigrid Stokes 
solver in two-field  and three-field formulations ! 

EO-FEM :Robustness

Two extreme cases
–=0 æ viscous contribution

–=1 æ no viscous contribution

No stabilization With stabilization
Level – Lift Drag NL/LL Lift Drag NL/LL

2 0 0.010601 5.5722 7/2 0.010702 5.5674 7/2
3 0 0.010616 5.5776 7/2 0.010619 5.5757 7/2
4 0 0.010618 5.5791 7/1 0.010617 5.5782 7/2
5 0 0.010619 5.5794 6/2 0.010618 5.5790 6/3
2 1 ———– —— — 0.010588 5.5520 7/2
3 1 ———– —— — 0.010600 5.5698 7/2
4 1 ———– —— — 0.010612 5.5756 7/2
5 1 ———– —— — 0.010617 5.5778 7/3

Robustness w.r.t. problem!

Consistent and grid independent solver
Motivation Summary
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Monolitic-multigrid linear solver 
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Multiphase flow problem 

 
 Incompressible N-S Equation)  
 
 
 

 
Ø  Viscous stress  

Ø  Interface boundary conditions 
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Multiphase flow problem   
 
•   New extra stress for multiphase flow 

 
 
•  Full set of equations for multiphase flow 
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Monolitic approach   

Oscillating bubble  (by Aaqib  Afaq)  
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Generalized Newton’s method  
 
 
Robust nonlinear solver based on Newton’s method following a 
specefic path of convergence using the residual’s convergence  
 
 

Ø  Robust w.r.t. starting guesses  

Ø  Dealing with Jacobian’s singularities using generalized 
deriviatives or approximated one 

Ø  Full benefit from the quadratic convergence’s region of classical 
Newton’s method 
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Newton’s method  
 
 
Let                   ,              , or                    and                be the 
continuous or the discrete  corresponding system’s residum.  
 

Ø  Update of the nonlinear iteration with the correction        i.e. 

Ø  The linearization of the residual provides 

Ø  The Newton’s method assuming invertible Jacobian 

 

(�, u, p,')U = (u, p) (�, u, p) RU (U)

�U
UN = U + �U

UN = U � J�1
⇣
U
⌘
· RU

⇣
U
⌘
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Generalized Newton’s method 
 
Jacobian calculations 
 
 
 

Ø  Exact G-Newton based on a priori  study of Jacobian’s properties 
and decompositions 

 
Ø  Inexact G-Newton based on the residum‘s convergence   

J
⇣
U
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@RU

�
U
�

@U

!
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Three-field viscoplastic application    
•   Viscoplatic constitutive law 

Ø  Bingham constitutive law 

 

Ø  New extra stress        for viscoplastic flow s.t. 
 
 
•   Three-field viscoplastic set of equations 
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Generalized Newton’s method 

Dynamic path versus static one w.r.t. number of iterations, and the 
corresponding convergence of the residium  (by Arooj Fatima)  
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Lid driven cavity benchmark 

Unyielded zone for two different yield stresses,           ,  and             
(by Arooj Fatima)  

⌧0 = 2 ⌧0 = 5
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Constitutive models 
 
•   Generalized differential constitutive model 

 
Ø  Oldroyd 

 
Ø  Giesekus 

 
Ø  Phan-Thien and Tanner 

Ø  White and Metzner 
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H = [exp (� tr(⇥))� 1]⇥

G = � (2 D : D)1/2 , H = 0
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Viscoelastic benchmark 
•  Planar flow around cylinder Oldroyd-B (by Hogenrich Damanik) 
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The numerical method do not introduce errors ! 

•  Experimental and numerical results for dry, frictional powder 
flows in the quasi-static and intermediate regimes 

 

Quasi-Newtonian model for powder flow  
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Quasi-Newtonian thixotropic model  
Ø  Viscosity model for thixotropic flow i.e. extended viscosity defined 

on all domaine s.t. 

 
 
 
Ø  Structure equation 

Ø  Full set of equations  
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Thixotropic flow  
Shear rate in a couette w.r.t. breakdown parameter (by Naheed Begum)  
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Thixotropic flow  

A. Ouazzi | Generalized quasi-Newtonian approach for complex flows  

Structure parameter in a couette w.r.t. breakdown (by Naheed Begum)  
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ü  shear history effect 

ü  time history effect 

ü Hysteresis 

ü  stress overhoots 

 

Thixotropy flow 

A quasi-Newtonian model for thixotropic phenomena 
via a time and shear dependent viscosity 
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Generalized quasi-Newtonian approach 
 

Ø  Include the non-Newtonian stress or any extra stress in diffusion 
operator  

 
Ø  Get rid of a tensorial field 

Ø  Less constraints for the choices of FE approximation 

Ø Robust and efficient numerical algorithms 

Ø Simple  evolution equations !    

 
Ø  Proof of the concept and validation 
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Laplacian operator 
 
•  Divergence form  

•  Weak form  

 
 Benefit of the weak form representation ! 

Lu =
nX

i,j=1

@

@xi

✓
aij u

@

@xi

◆

LW u =
NX

i,j=1

Aij :
⇣
r · ej ⌦r · ei

⌘
u

A. Ouazzi | Generalized quasi-Newtonian approach for complex flows  



Page 38 Page 38 

Stokes problem   
Weak form representation 2D 
 

•  Gradient formulation 

•  Deformation formulation 
 
 

 
 

 
 Different deriviatives combinations accessibilities ! 
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Generalized quasi-Newtonian approach  
Weak form representation 2D 

•  Generalized formulation I 

 
 

 
 

 

More deriviatives combinations accessibilities             
are allowed ! 
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Viscoelastic benchmark 
•  Planar flow around cylinder Oldroyd-B (by Hogenrich Damanik) 
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Drag coefficient planar flow around cylinder

H. Damanik,  PhD thesis TU Dortmund
 Generalized quasi-Newtonian approach

Genalized quasi-Newtonian approach for non-
Newtonian problem i.e.  Oldroyd-B ! 
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Summary 

New generalized quasi-Newtonian approach for modeling and  
simulating complex flows is introduced and validated.  
Based on new numerical and algorithmic tools using  

ü   Monolithic FEM two-field and three-field Stokes solver  

ü   Generalized  Newton’s method w.r.t. singularities with global  
convergent property 

ü  Edge Oriented stabilization (EO-FEM)  

ü  Fast Multigrid Solver with local MPSC smoother 
Extensively tested from numerical and physical perspectives 
via the simulations of  different flow problems in different  
formulations to motivate the  newly introduced generalized quasi- 
Newtonian approach.  
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