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Introduction



Let Ω ⊂ Rd , d = 2, 3 be the region of interest, Ωh its polygonal
bounded approximation and Th =

⋃N
i=0 Ki be a regular, conforming

discretisation of Ωh into hypercubes or simplices.
On this, we want to apply the Finite Element Method to solve some
kind of PDE. For this, we want to optimise the (potentially moving)
given mesh according to some obvious criteria like

1 Equidistribution of the domain’s volume over all cells, or
concentration of cells according to some criteria,

2 Maximisation of the minimum angle over all cells,
3 Maintaining the regularity and connectivity of a moving mesh
4 Without adding any vertices or cells.
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Example 1: Basics

Ω = [0, 1]2. According to which criteria do we move the vertex v?

v

K0 K1

K2 K3

(a) Initial partitioning.

v

(b) Equidistributing the
volume.

v

(c) Maximising the
minimum angle.

v

(d) Center of gravity of
the surrounding vertices.

v

(e) vol(K0,1) =
vol(K2)

7 =
vol(K3)

7 (non-regular).

vv ′

(f) vol(K0) =
vol(K1)

2
(non unique).
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Some Classes Of Mesh Optimisation Methods

1 Algebraic and heuristic methods (i.e. graph-based Laplacian
smoothing):
+ Easy to implement and often cheap, successful for special

purposes.
- No guarantees on mesh quality or convergence behaviour. Not
general purpose, often destroy local (h−)adaptivity.

2 PDE-based (i.e. energy minimisation-based) methods:
+ For every set of requirements, there exists a method. Very

adaptable, often existing discretisation methods and solvers
can be re-used.

- More sophisticated methods often require the solution of
nonlinear PDEs, while cheaper methods do not match the
above criteria.
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Optimal Deformations In A Variational Context

That means we are looking for an optimal deformation Φ∗ that
minimises a functional F over a set V of admissible deformations.
Let V := V(Th) be the vertices of Th. Then we have

Φ∗ =argminΦ∈DF(Φ)

D :=
{

Φ : Th → Rd : Φ ∈ C0(Th),

∀K ∈ Th : ∀x ∈ K : ∇Φ|K (x) ∈ SLd ,

∀v ∈ V : v ∈ ∂Ω⇒ Φ(v) ∈ ∂Ω}

(In practice, we need to use Optimal Variations instead, see [Rum96].)
The big advantage: We can use the same FEM tools as we do for the
original PDE if we discretise the space D to some Dh accordingly.
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Examples Of Functionals Leading To Linear Variational Problems

Motivational, in strong form, assuming sufficient regularity:
1 F(Φ) = ‖f −∆Φ‖L2(Th)

(minimisation of harmonic energy)
2 F(Φ) = ‖f −∇ · (λ∇ · Φ + µ1

2(∇Φ + (∇Φ)T )‖L2(Th)

(minimisation of linear elastic energy, assuming homogeneous
isotropic material with Lamé coefficients λ, µ.)

3 F(Φ) = ‖f −∆2Φ‖L2(Th)

(minimisation of biharmonic energy)
f is some function of sufficient regularity, in many applications f ≡ 0. In
almost all cases, Dh ⊂ P1(Th) or Dh ⊂ Q1(Th).
Which of the criteria (1) - (4) can be fulfilled or implemented?
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Computation Of Inverse Trace Operators



Assume now that the domain is moving: Ω = Ω(t)∀t ∈ [0, t̄]. Let
Ω0 =: Ω(0) be given, but at each instant t only the position of the
boundary ∂Ω(t) is known. That means we are looking for

ϕ :[0, t̄]× Ω0 → Rd ,Ω(t) := ϕ(t,Ω0),

but only

trϕ :[0, t̄]× ∂Ω0 → Rd

is known. So we have to find an inverse trace operator that extends the
boundary movement into the interior. In general, trϕ is unknown and
part of the solution to the original PDE (like the position of the free
capillary boundary, the evolution of the phase boundary etc.).
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Example 2: Moving Upper Boundary

Figure: Left: Ω0, right: Ω(t50) with interior mesh computed by a
hyperelasticity based mesh optimiser.
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Example 2

Set Ω0 := [0, 1]2, 0 = t0 < · · · < t50 = t̄ = 0.5 and let

∀x ∈ ∂Ω0 : ϕΓ(t, x) =

{
(x1, x2 + 1

2 tx2 sin(2πx1))T , x2 = 1
(x1, x2)T , else

For a given discretisation Th of a reference domain Ω̂t (assume for now
Ω̂t = Ω0) , define

V (t) =
{

v ∈ P1(Ω̂t) : v|∂Ω̂t
= ϕΓ(t)

}
,W (t) =

{
w ∈ P1(Ω̂t) : w|∂Ω̂t

= 0
}
.

∀k = 1, . . . ,N : Compute Ω(tk) = ϕ(tk , Ω̂t) by finding Φh ∈ V (t) :

∀Ψh ∈W (tk) :
∂F(Φh)

∂Ψh
= 0 and setting Ω(tk) = Φ(Ω̂t).
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Example 2: Harmonic Energy Minimisation With Fixed Reference
Domain

Let Ω̂t = Ω0 and f ≡ 0.

∂F(Φh)

∂Ψh
= (∇Φh : ∇Ψh)L2(Ω̂0) .

Because the domain is not convex,
the solution is not injective,
resulting in a non-regular mesh
(called mesh tangling in literature).
(Better idea: Minimise the energy
of Φ−1

h , but this leads to a
nonlinear system.)
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Example 2: Harmonic Energy Minimisation With Moving
Reference Domain

As an approximation to using the
inverse mapping Φ−1

h : Let
∀k : Ω̂tk := Ω(tk−1) and f ≡ 0.

∂F(Φh)

∂Ψh
= (∇Φh : ∇Ψh)L2(Ω̂tk ) .

No more mesh tangling, but no
good lower bound on the angles.
Even without exploring items (1)
and (2), this shows some
limitations.
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Example 2: Comparison Of Angles
angle

t

5◦

15◦

25◦

35◦

45◦

0 10 20 30 40 50

Harmonic, fixed ref. domain

Harmonic, moving ref. domain

Hyperelastic, fixed ref. domain

(a) Worst angles for various mesh quality
functionals.

(b) Ωt50 for the hyperelasticity
based functional.
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Why We Should Still Use Linear Variational Mesh Optimisation

Advantages:
Cheap
Sufficient in many cases
Recycling of FE knowledge
Can easily respect local
(h−)adaptivity
Some drawbacks can be
overcome (like extending it for
equidistribution or r -adaptivity)

Disadvantages:
Lack of robustness
No direct control of mesh
quality
There exist cases where it is
NOT sufficient
Overcoming the drawbacks
leads to nonlinear problems,
offsetting some of the
advantages

Additional keywords: Monitor functions, continuation methods, shear
stiffening. [GKT10, HR11]
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Nonlinear Mesh Quality Functionals



Deriving A Class Of Functionals

So far, the suitability of a functional for measuring mesh quality was
heuristic and coincidental. We now approach optimal meshes in a more
structured fashion and state our basic assumptions on a general mesh
quality functional (see [Rum96]).

1 Assumption: ∀K ∈ Th : ∃K̂ of optimal shape.
2 Axiom: F(Φ) =

∑
K∈Th µKFh(K ,Φ) (Locality).

3 Assumption: ∀c ∈ Rd : F(K ,Φ + c) = F(K ,Φ) (Translation
invariance).
⇒ ∀K ∈ Th : ∃F̃ : SLd → R : F(K ,Φ) = F̃ (K ,∇Φ).

As before, Φ should be regular (meaning det∇Φ > 0).
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Reference Mappings

Let RK : K̂ → K be the reference mapping which uniquely maps
K̂ 7→ K .

RK (Φ) := Φ ◦ RK

⇒F(K ,Φ) = F(RK (Φ))

⇒F(K ,Φ) = F̃ (∇RK (Φ))

Furthermore:

4 Assumption: ∀Q∈SOd F̃ (∇RK (Φ)) = F̃ (Q∇RK (Φ)) (Frame
indifference, implies translation invariance).

5 Assumption: ∀Q∈SOd F̃ (∇RK (Φ)) = F̃ (∇RK (Φ)Q) (Isotropy).
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Rivlin-Erikson Representation Theorem (see [Cia88]) gives the existence
of

F̃ (∇RK (Φ)) = F (‖∇RK (Φ)‖2F , ‖Cof∇RK (Φ)‖2F , det∇RK (Φ)).

(the principal invariants of a R3×3) matrix. Note that for
d = 2, ‖∇RK (Φ)‖2F = ‖Cof∇RK (Φ)‖2F ).

⇒ F(Φ) =
∑
K∈Th

µKF (‖∇RK (Φ)‖2F , ‖Cof∇RK (Φ)‖2F , det∇RK (Φ))

6 lims→0 F (·, ·, s) =∞ (Regularity property).

This already means that F cannot be convex, but has to be at least
polyconvex.
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[Rum96, Theorem 1]:
If F is polyconvex,

∑
K∈Th µk = 1, F(Id) <∞ and F satisfies the

regularity property,
(a) then there exists an optimal variation Φ∗

(b) which is globally injective iff it has no self-intersections at the
boundary.

(c) For every minimising sequence there exists a subsequence that
converges to an optimal variation.

Φ∗ is not unique in general.

This functional belongs to a class of stored-energy functionals for
isotropic hyperelastic materials, see [Cia88]. Note that the original
theorem requires Φ to be piecewise linear, but can be extended [HR11].
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Geometric Interpretation And An Example

1 ‖∇RK (Φ)‖2F measures the edge length derivation.
2 ‖Cof∇RK (Φ)‖2F measures the facet deformation.
3 det∇RK (Φ)) measures the volume change.

Example for a local functional:

F̃ (∇RK (Φ)) = cf

∫
K

(‖∇RK (Φ)‖2F − d)2dx +

∫
K

(det∇RK (Φ))pd dx

+

∫
K

cd(
det∇RK (Φ)) +

√
δ2r + (det∇RK (Φ))2

)pd
dx

The structure of the local functional determines the weighting of angles,
shape deformation and volume change.
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Important Questions

1 Does the frame independence
rule out local effects?

2 What if anisotropic meshes are
desired?

3 What is a reference cell?

Figure: r -adaptivity: Condensing a mesh
near an implicitly given surface.
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Reference Cells, Isotropic Case

In general: K̂ is different for every cell K , but every K̂ is a rotated,
scaled (and translated) normalised reference cell, i.e.

Hypercubes: K̂n = [−1, 1]d Simplices:

p0 = (0, 0) p1 = (1, 0)

p2 =
(

1
2 ,
√

3
2

)

p0 = (0, 0, 0)
p1 = (1, 0, 0)

p2 =
(

1
2 ,
√

3
2 , 0

)

p3 =
(

1
2 ,
√

3
6 ,
√

6
3

)
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Optimal Scales, Isotropic Case

Denote RK (Φ) =
RK ,n(Φ)

h(K) . Now we have ∀K ∈ Th : K̂ = h(K )K̂n. How
to find h(K )?
(Id is a local minimiser and conservation of volume)

⇒ h(K ) = d

√
λ(K )

∑
k∈Th

det∇RK ,n(Id)

where
∑
K∈Th

λ(K ) = 1

and the weights λ can be chosen according to special requirements, i.e.
according to some kind of concentration function

c : Th → R, λ(K ) =
c(K )∑

K∈Th c(K )
.
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Choosing The Weights λ

Possible choices for the concentration function:
1 c ≡ const: Equidistribution.
2 c(K ) = vol(K ): Preservation of cell volume.
3 c(K ) = bl(K), where b is the refinement base and l(K ) the

refinement level.
4 c(K ) = f (dist(sΦ∗(K), Γ)) for some set Γ, like the boundary or a

surface.
5 c(K ) = g(η(K )), where η(K ) is an a posteriori error estimate for

the residual.

But: This does make the problem to solve any easier.
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r -Adaptivity



Different Types Of Local Adaptivity

Common types of local adaptivity:
1 h-adaptivity: Locally refine cells, creating more DoFs.
2 p-adaptivity: Locally use a different FE basis.
3 r -adaptivity: Move mesh vertices.

r -adaptivity has the advantage that it does not increase the number of
DoFs or modify the adjacency structure of the underlying FE spaces,
although the cell sizes cannot be as quickly varying as with h-adaptivity.
r -adaptivity can easily be realised by choosing a suitable concentration
function c = c(K ),K ∈ Th.
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Example 3: Excentrically Rotating Screws

t = 0
t = 0.2

ω

7
6ω

Figure: Excentrically rotating screws with
different angular velocities. Geometry
courtesy of O. Mierka.

Different angular velocities
lead to large mesh
deformations if the boundary
vertices are not allowed to
move within surfaces.
Most linear variational
methods cannot deal with slip
boundary conditions.
Special purpose code can
compute rotations of about
30◦.
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Here: Chose c(K ) = f (|gapwidth|) to allow cell to drastically change
their size. Using slip boundary conditions can improve the angles, but
reduce boundary approximation quality. Functional fine tuning is
essential.

Figure: Red: Mesh with two slip
boundaries. Black: Pinned vertices at the
outer boundary

angle

t

5◦

15◦

25◦

35◦

45◦

0 0.04 0.08 0.12 0.16 0.2

Dirichlet/slip BCs

Pure slip BCs

Figure: Worst angle in the mesh over
time.
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(a) t = 0 (b) t = 0.025 (c) t = 0.05

(d) t = 0.1 (e) t = 0.15 (f) t = 0.2
Figure: Part of the domain with marked cells at different time steps.

Jordi Paul, 03.03.2016 r -Adaptivity 26/37



Mesh Alignment



Interior boundaries like a phase boundary in two phase flow or the
liquid-solid boundary in fluid-structure interactions can be represented in
different ways, including:

Implicit (i.e. levelset) based representation
+ Allows changes to the topology, fixed reference mesh.
- Only

√
h accuracy in many error estimates, interface

reconstruction needed.
Sharp interface representation
+ When using isogeometric FE, accuracy of hp is possible in

many error estimates. Easy ALE formulation.
- No topology changes possible. Needs very robust mesh
deformation methods.

Idea by S. Basting: Incorporate mesh alignment in the mesh quality
functional. [BW13]
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Defining The Penalty Term

Let H : R→ [0, 1] be a C1 regularisation of the Heaviside function and
l : Ωh → R and l0 = {x ∈ Ωh : l(x) = 0} be the implicit representation
of the surface Γh ⊂ Ωh. Define the local vertex sets vK ,i and penalty
term

∀K ∈ Th : P(K ) =
∑

vK ,i 6=vK ,j

H(−l(vK ,i )l(vK ,j)).

It is easy to see that

∀K ∈ Th : P(K ) = 0 ⇔ l|K ≥ 0 ∨ l|K ≤ 0.

l does not even have to be a distance function.

Jordi Paul, 03.03.2016 Mesh Alignment 28/37



Figure: Mesh aligned with implicit surface. Left: t = 0, right: t = 0.02.

The set of points, edges and faces (in 3d) aligned with the mesh is not
fixed and can vary whenever the underlying problem changes, i.e. the
implicit surface or the mesh moves.
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Figure: Right: Topological problem for hypercube meshes, left: Combining mesh
alignment and r -adaptivity.

In general, the topological problem for hypercubes could be overcome by

1 not penalising diagonal cuts,
2 using special, possibly locally refined meshes or
3 only approximately fulfilling the alignment condition.
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Computational Aspects



The following characteristics of the functional make it hard to treat
numerically:

1 Polyconvexity with many local minimisers.
2 Highly nonlinear, containing at the very least rational functions.
3 The gradient of the alignment condition vanishes in all local

minimisers, meaning the most sophisticated applicable method for
constrained optimisation is the quadratic penalty method.

4 The term (‖∇RK ,n‖2F − d) is needed for coercivity but already
means condF(Φ) = O(h−2).

All this means the computational cost can become prohibitive.
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Solver Details: Two different approaches
Variational derivatives (see
Appendix I) with Newton-Krylov
solvers:

Works well for computing
extension operators using
non-moving reference domains.
Becomes unstable for
non-uniformly discretised
reference domains.
Newton fails to converge for
λ(K ) 6= const.
No variational formulation of
the alignment condition.

Expressing F (∇RK ,n) directly as
functional of the vertex coordinates
xi ,j of Th, using tools from
nonlinear optimisation:

A Newton solver with
approximate Hessian tends to
converge to very near local
minima (S. Basting)
Nonlinear CG with strong
Wolfe linesearch works very
well, but difficult to
precondition.
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(a) Initial configuration.

(b) D(u) : D(v), t = 0.
(c)
D(u) : D(v), t = 0.005.

(d) Hyperelasticity,
cf = 1, pd = 1, t = 0.005.

The hyperelastiticy based method is set to conserve the volume distribution of the
initial configuration, before the boundary gets transformed to the unit circle.

Level D(u) : D(v) cf = 1, pd = 1 cf = 1, pd = 2 cf = 1
100 , pd = 1 cf = 1

100 , pd = 2
3 271 266 241 600 778
4 603 609 548 1348 1800
5 1256 1348 1207 2991 4307
6 2718 3131 2745 7548 9914

Table: Mean of the number of iterations over 50 timesteps.
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Iteration Numbers For Example 3
Mean value of the number of solver iterations over the first 2000
timesteps. In all cases pd = 2 and slip BCs on the inner boundary.
Different BCs on the outer boundary.

slip slip dirichlet dirichlet
Level Cells DoFs Q1, cf = 0.01 Q1, cf = 0.1 Q1, cf = 0.01 Q1, cf = 0.11
0 720 2160 78 86 142 153
1 2880 7200 654 169 660 528
2 11520 25920 1498 380 1461 821

Level Cells DoFs P1, cf = 0.01 P1, cf = 0.1 P1, cf = 0.01 P1, cf = 0.11
0 960 1440 86 135 144 80
1 3840 2800 2013 923 410 536
2 15360 17280 3081 1122 2027 1798
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Figure: Mesh alignment
only.

Figure: Mesh alignment
and r -adaptivity.

Figure: r -adaptivity only.

50 timesteps for different settings, mean values of the number of
nonlinear CG iterations:
cf , pd 1, 1 1, 2 1

100 , 2
Level
3 517 514 3244
4 623 637 2844
5 1183 1600 4765
6 1599 1754 4687

cf , pd 1, 1 1, 2 1
100 , 2

Level
3 930 516 208
4 717 610 1367
5 527 523 1218
6 921 853 2875

cf , pd 1, 1 1, 2 1
100 , 2

Level
3 35 31 76
4 84 85 169
5 255 248 591
6 734 773 2542
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The Verdict
1 If working special purpose code is available: Use it.
2 If a quadratic mesh quality functional gives satisfactory results: Use

it.
3 If a nonlinear extension of such a functional accomplishes what is

needed: Use it.
4 If nothing else works: Have a look at nonlinear hyperelasticity.
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Appendix I: Variational Derivatives
Let M : R→ Rn×n be a matrix valued mapping. Recall that

d
dt

detM(t) = detM(t)tr
(

M(t)−1
d
dt

M(t)
)
.

For two variations φ, η using M(t) := ∇φ+ t∇η locally on each K ∈ Th, we can
compute the following derivatives:

∂(‖∇φ‖2F − d)2

∂η
= 4

(
‖∇φ‖2F − d

)
∇φ : ∇η

∂ (det(∇φ)p)
∂η

= p det(∇φ)p−1(∇φ)−T : ∇η
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Appendix II: ∇h
We need to express F = F (∇RK ,n, h(K )) to resolve the dependency on
h.

h(T ) = d

√√√√ c(T )∑
K∈Th

∑
K∈Th

det∇RK ,n(Id)

⇒
∂h(T )

∂xij
=

1
d

 c(T )∑
K∈Th

∑
K∈Th

det∇RK ,n(Id)

 1
d −1

 c(T )∑
K∈Th

∂

∂xij

 ∑
K∈Th

det∇RK ,n(Id)



+


∂

∂xij

(
c(T )∑
K∈Th

)
+ c(T )

∑
K∈Thc(K)

∂c(K)
∂xij(∑

K∈Th
c(K)

)2

 ∑

K∈Th

∇RK ,n(Id)


 ,

where xij is the jth component of the local vertex i belonging to T .
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Appendix III: Ugly Code
grad(0,0) = DataType(2) / DataType(3) * this->_fac_det * Math::sqrt(DataType(3)) * (x(1,1) - x(2,1)) *

Math::pow(h(1), -DataType(2)) + DataType(8) / DataType(9) * this->_fac_norm * (DataType(3) *
Math::pow(h(0), DataType(2)) - DataType(2) * Math::pow(x(0,0), DataType(2)) + DataType(2) * x
(0,0) * x(1,0) + DataType(2) * x(0,0) * x(2,0) - DataType(2) * Math::pow(x(0,1), DataType(2)) +
DataType(2) * x(0,1) * x(1,1) + DataType(2) * x(0,1) * x(2,1) - DataType(2) * Math::pow(x(1,0),
DataType(2)) + DataType(2) * x(1,0) * x(2,0) - DataType(2) * Math::pow(x(1,1), DataType(2)) +
DataType(2) * x(1,1) * x(2,1) - DataType(2) * Math::pow(x(2,0), DataType(2)) - DataType(2) *
Math::pow(x(2,1), DataType(2))) * Math::pow(h(0), -DataType(4)) * (-DataType(4) * x(0,0) +
DataType(2) * x(1,0) + DataType(2) * x(2,0)) - DataType(2) * this->_fac_rec_det * Math::pow(
DataType(2) / DataType(3) * Math::sqrt(DataType(3)) * (x(0,0) * x(1,1) - x(0,0) * x(2,1) - x
(1,0) * x(0,1) + x(0,1) * x(2,0) + x(1,0) * x(2,1) - x(1,1) * x(2,0)) * Math::pow(h(1), -
DataType(2)) + Math::sqrt(DataType(9) * this->_fac_reg * this->_fac_reg + DataType(12) * Math::
pow(x(0,0) * x(1,1) - x(0,0) * x(2,1) - x(1,0) * x(0,1) + x(0,1) * x(2,0) + x(1,0) * x(2,1) - x
(1,1) * x(2,0), DataType(2)) * Math::pow(h(1), -DataType(4))) / DataType(3), -DataType(3)) * (
DataType(2) / DataType(3) * Math::sqrt(DataType(3)) * (x(1,1) - x(2,1)) * Math::pow(h(1), -
DataType(2)) + DataType(4) * Math::pow(DataType(9) * this->_fac_reg * this->_fac_reg + DataType
(12) * Math::pow(x(0,0) * x(1,1) - x(0,0) * x(2,1) - x(1,0) * x(0,1) + x(0,1) * x(2,0) + x(1,0)
* x(2,1) - x(1,1) * x(2,0), DataType(2)) * Math::pow(h(1), -DataType(4)), -DataType(1) /
DataType(2)) * (x(0,0) * x(1,1) - x(0,0) * x(2,1) - x(1,0) * x(0,1) + x(0,1) * x(2,0) + x(1,0) *
x(2,1) - x(1,1) * x(2,0)) * Math::pow(h(1), -DataType(4)) * (x(1,1) - x(2,1)));
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Appendix IV: Example n + 1: Refinement Of The Unit Circle

Boundary vertices added by refinement are moved to their appropriate
place by evaluating the analytic description of the boundary, which is
the unit circle.

Figure: Output of an adapt → refine → . . . cycle at levels 0, 3, 5.

Jordi Paul, 03.03.2016 4/9



But what if we do
not have perfect
information, but just
a reference mesh and
a boundary
parametrisation?

Figure: The reference domain and mesh for the unit circle.

Figure: Reference domain with adjusted boundary.
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Figure: Output on levels 3 and 5 using
the D(u) : D(v) functional.

Figure: Output on levels 3 and 5 using
hyperelasticity based functional.

5◦

15◦

25◦

35◦

45◦

0 1 2 3 4 5 6 7

D(u) : D(v)

Hyperel.

Perfect information, subsequent refinement

Figure: Worst angle in the mesh over different levels of refinement.
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Appendix V: Additional Nonlinearity

In example 3, we used c = c(K ), but it really should be c = c(Φ∗(K )),
introducing an additional nonlinearity.

(a) Initial configuration. (b) After one iteration. (c) End of Picard iteration.

A simple Picard Iteration setting c(K )j = c(Φj−1(K )) may fail to
converge, so ∇h has to be taken into account.
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Appendix V: Cell Distribution Quality Indicator

Figure: Mesh pre and post
optimisation.

It is ∀K ∈ Th : vol(K)
λ(K) = 1 for an

ideal mesh. So we compute

q(Φ∗) =
1
|Th|

∑
K∈Φ∗(Th)

(
1− λ(K )

vol(K )

)
.

Level q(Id) q(Φ∗)
4 7.51810E-001 2.90E-002
5 7.46550E-001 1.71464E-002
6 7.42708E-001 8.95512E-003
7 7.41402E-001 4.90519E-003
8 7.41678E-001 2.94606E-003

Table: Cell size quality indicator at
different levels.Jordi Paul, 03.03.2016 8/9



Appendix VI: Optimal Variations

Let Ω ⊂ Rd , d = 2, 3 and ∂Ω =
⊎d−1

m=0 ∂Ωm, where ∂Ω0 is a set of
singular points and ∂Ωm are relatively open, smooth m-dimensional
manifolds.
Then Φ∗ is an optimal variation of the partitioning Th of Ω with respect
to the functional F iff

F(Φ∗) = min
Φ∈V
F(Φ) where

V := {Φ : Th → Rd : Φ ∈ C0(Th),∀K ∈ Th : ∇Φ|K ∈ SLd ,

∀x ∈ V(Th) : ∀m = 0, . . . , d − 1 : x ∈ ∂Ωm ⇒ Φ(x) ∈ ∂Ωm}
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