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On Q C R with a mesh T, use the Finite Element Method to solve some
kind of PDE, describing e.g.

transport phenomena,
deformations in solid mechanics,
incompressible flows.




On Q C R with a mesh T, use the Finite Element Method to solve some
kind of PDE, describing e.g.

transport phenomena,

deformations in solid mechanics,
incompressible flows.

Figure: Navier-Stokes Bench 1: Underlying mesh
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Initial mesh.



2. Tp must capture the geometry of Q.

Geometry insufficiently resolved. Good resolution of the boundary.



3. Tp must sufficiently resolve the solution up,.

&( \ '\
Insufficient resolution of the Good resolution of the 0-levelset
0-levelset. by r-adaptivity.




Mesh Optimisation



For a mesh quality functional & find an optimal deformation

®* = argmingep F(®),D C {®: Q= R?: Vx € Q: det(VP(x)) > 0}

det(V®(x)) > 0 is crucial for applying the Finite Element Method.

Ko ®(Ko)

(2) Initial configuration. (b) After applying the mapping .
Figure: Overlap of cells resulting from one cell changing orientation.



det(V®) > 0 is enforced (robustness),
it is applicable in 2d and 3d for both simplex and hypercube meshes,

optimal cell sizes can be defined directly (r-adaptivity),
flexible boundary conditions are possible.

Such a method is available - in “theory*!

M. Rumpf. “A variational approach to optimal meshes”. In: Numerische
Mathematik (1996).



det(V®) > 0 is enforced (robustness),
it is applicable in 2d and 3d for both simplex and hypercube meshes,

optimal cell sizes can be defined directly (r-adaptivity),
flexible boundary conditions are possible.

Such a method is available - in “theory*!

Not for hypercube meshes.

m r-adaptivity only mentioned.

m Additional theory required.

m Efficient nonlinear solvers not readily available.
]

HPC-level implementation (MPI parallel, numerically efficient) using
FEAT3.

m_Application to complex geometries and "large”“ problems.

M. Rumpf. “A variational approach to optimal meshes”. In: Numerische
Mathematik (1996).




VK € T}, there exists an optimal reference cell K.

Hypercubes: K, = [—1,1]¢ Simplices:

Can be individually chosen: K = h(K)Kp.



Assumptions
F(P) = Lxeg, ik Jx L (P) (Locality).

Ve e RY LZZK(d) +¢) = Lk (@) (Translation invariance).

Rk

~N

Rk(®)
(K)

liMget(veo)—s0 Lk (X, V®) = oo (Regularity property).

m This enforces the orientation preserving property
m Ly cannot be convex in V& but must be at least polyconvex



L is a stored energy function of a hyperelastic material.

2P, G. Ciarlet. Mathematical elasticity Vol. I: Three-dimensional elasticity. Studies in
Mathematics and its Applications. Amsterdam: North-Holland Publishing Co., 1988



L is a stored energy function of a hyperelastic material.

Let Q C R3, 0Q =, UT, I'; do-measurable and voly(Ip) > 0
L : Q x SL3 with the properties of

I Polyconvexity: Vx € Q a.e.: L(x,-,-,-) : SLg x SL3 x (0,00) — R :
L is convex and

VFeSLg: L(x,F)=L(x,F,Cof(F),det(F)),

71 Stability

[l Coerciveness: HaeR+,BER2<pEN L-<geN/1<reR:
Vx €Qa.e.,VF eSLs:

L(x,F) = a(||F[[E +[| Cof (F)||£ + det(F)") + B

2P, G. Ciarlet. Mathematical elasticity Vol. I: Three-dimensional elasticity. Studies in
Mathematics and its Applications. Amsterdam: North-Holland Publishing Co., 1988



Let ¢p € L'(To,R®) such that
0 £ Dy, := {® € W'P(Q) : Cof(VP) € LI(Q),det(VP) € L'(Q),
Vx e Qae. :det(VP)(x) >0, Vxelgdoae. :d(x)=0do(x)}

Let f € LP(Q2) and g € L5(I1) such that the linear form
I WPQ) SR, (o) ;=/ f.¢dx+/ g-ddo
Q I
is continuous and define

F(P) = /Q £(x, VO(x))dx — I(®).

If 3® € Dy, : F(P) < +oo, there exists at least one

O € Doy : F(®7) = inf F(®).

ED%



L(V®) k= Lk(VRk(®))

| VR« (®)||% measures length change of line segments.
|| Cof(VRk(®))||2 measures the facet deformation.

det(VRk(®)) measures the volume change.
Example for a local functional:

Lk (VARK(®)) = cr(|VRk(®)|F — d)? + det(V Rk ()"
Cd

+ Pd
(det(VRK(cb)) + \/ &2+ (det(VRK(¢)))2)




Harmonic energy: F(®) = [|f — A®|| 27,
Biharmonic energy: F(®) = ||f — A%®||2(7,)
Linearised elasticity:

F(®) =l = V- (AV- &+ E(VO+ (V) ) 123,

+ Numerically “cheap”

+ Well-known problems

- Orientation preserving property coincidental

- Not robust enough for surface alignment

- Efficient solvers not readily available for all cases



Numerical Methods



The hyperelasticity-based functional is hard to treat numerically:
Highly nonlinear.
Nonconvex with many local minimisers due to the polyconvexity.
Many local singularities.

Solve the Euler-Lagrange equations:

L
—V- 2 (x, VO (x)) = f(x, 0(x))

But: Strong assumptions needed for the minimiser to be a solution.

= Newton’s method not applicable because F” is not positive definite

m Use line search based methods instead



Let M: R — R™".

gtdetM(t) = detM(t)tr (M(l‘)1 %M(f)) '

Gi(®) :=(|[VP[Z—d)?, Gi(®M=4(||VP|E—d)VP:Vn,
Go(®) = (|| Cof(VO)||2 — d)®
Go(P)M =4(]| Cof(VP) |2 — d) Cof(VD):
[(([(vo)™": V] Iy — (V®)~'Vn)) Cof(VD)]
G3(®) :=det(VO)P,  Gy(d)n = pydet(VO)P! (V)T : Vn




(@) Tho- (b) Tha-

B

[l Refinement lets Olyin — 0
Simple problem to study mesh dependence



NLCG NLSD-IBFGS
/ DoOF  #its t[s] #its t[s]
3 290 44 6.4e—3 40 6.2e—3
4 1090 103 4.3e—2 94 3.9e—-2
5 4226 208 3e—1 184 3.1e—1
6 16642 400 2.1e+0 377 3.4e+0
7 66050 1081 2.9e+1 791 3e+1
8 263170 3908 6.8e+2 | 1915 3.7e+2
9 1050626
10 4198402
11 | 16785410

Table: Solver- or stopped early .

Find PDE-based preconditioner instead.




Algorithm 1 Preconditioned nonlinear Conjugate Gradient (NLCG).

For a given ®, preconditioner B : R? — R? and initial search direction d(®)

do k=0,...,N:
_ Use a line search to compute o(¥): F(o*) + ad®)) < F(o).

2. Set &1 = oK) 4 (k).
3. Compute a new descent direction

k1) — _ g1 5 (k) 1 gR) oK)

m Efficient line searches are non-trivial
m Implementation uses FEAT3’s MPI parallel structures

m Preconditioner should use the most powerful tools available (parallel
geometric multigrid)



Recall )
(IVO|2 — d)?)'n=4(|Vo|2 —ad) Vo : v

A: Dy, = Do, (A®,m) := (D(¢),D(n)), D(P) = %(V¢+(V¢)T)

Another positive definite approximation for the Hessian F”.
Solver for A, defines the choice of preconditioner B = (4;)~".
Efficient parallel solvers (e.g. PCG-MG) available.



NLCG NLSD-BFGS | NLCG-A"
I DoF  #its t[s] #its t[s] #its t[s]
3 290 44 64e- 3| 40 62e 3| 24 2362
4 1090 103 4.3e—2| 94 39e-2| 30 9.2e-2
5 4226 208 3e—1 | 184 3.de—1| 32 3.8e—1
6 16642 400 2.1et+0 | 377 3.4e4+0 | 36 1.7e+0
7 66050 1081 2.9e+1 | 791 3e+1 | 38 8.2e+0
8 | 263170 3908 6.8e+2 | 1915 3.7e+2 | 43 5.6e+1
9 | 1050626 39 1.7e+2
10 | 4198402 41et3| 76 2.1e+3
11 | 16785410 759 7.4et3 | 29 3.7e+3

Table: Solver- or stopped early .

[l Optimise mesh on coarser level than the PDE

Post-optimisation adaption necessary

Extrude from 2d to 3d if possible



Numerical Results



Common successor to FEAT2 and FEAST, developed since 2011

= MPI-parallel high-performance cross-platform general purpose FEM
toolkit

m Full (unstructured) 2d/3d support: trias, quads, tetras and hexas

= C++11 standard conforming, well-documented, automated regression
testing

= Very powerful (non-)linear solver framework including
mixed-arch/-prec/MKL/GPU support

= Designed for academic research, student projects, HPC and industry
applications

m In active development, but lacking real world applications



m Stop when O < 1°

= NLCG-(A;)™"

= Colouring from red (1°) to green
(45°).

Figure: t=0.
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= Optimal scales according to
distance to ',

Cell size varies by factor of 20

Additional nonlinearity
L= L(VRK,,,, h(K))
Efficient preconditioner not
available

Colouring according to cell size
(blue: 5e-5, red: 1e-3)

. Mesh aligned with moving
Figure: t=0. surfaces

3S. Basting and M. Weismann. “A hybrid level set front tracking finite element
approach for fluid—structure interaction and two-phase flow applications”. In: Journal of
Computational Physics (2013).



Elliptic interface problem with different coefficients [31724.

V. (BVu) = fin Q,
u=0on 0%,
[u]r := (usjr — ugr) =0,
[Bovulr := (B19v, ur + P20y, u2) =0
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Figure: Domain of interest.

4J. Li et al. “Optimal a Priori Estimates for Higher Order Finite Elements for Elliptic
Interface Problems”. In: Applied Numerical Mathematics 1-2 (Jan. 2010).



If T is sufficiently smooth, Rk € Prn(S), u € H'(Q) N HS(Q4 UQy,) for some
sel,p+1]

3 —
Vse [175) lu=unlla < Ch*ulls.a00,,

3 1
Vs e |:§,p+1:| AVue 322’1(91 UQQ)

5,Q1UQp —|—\/S||VU|| g

= [lu—u <chMu :
lu—unll1o < I 0.8%,(21UR;)

Typical values for d are

8 = O(h), (implicit representation of I'),
8 = O(h™™), (sharp interface representation with Rk € Pp,(8)).



Figure: t=0.

= Optimal scales according to gap
width

= Boundaries rotate at different
speeds

= Unilateral boundary conditions
of place

m Extreme cell compression and
expansion

= Mesh can be extruded to 3d



For a given I, C RY require that

Vxel,doae.: q)(X) el

m Essential boundary condition

= Can be enforced by projection

m If I, is not planar, the projection operator is nonlinear
= Highly unstable if det(V®) > 0 is not enforced directly



m Mesh optimisation solved on
coarser mesh than flow problem

m Re = 6500

= No inlet or outlet = Flow field
governed by incompressibility
constraint

\Y Mognl’rude 25

#—



Conclusion



Extended class of mesh quality functionals to hypercubes
Direct control of det(V®) results in a robust method

Added r-adaptivity and nonlinear boundary conditions
Combined this with surface alignment

Mesh deformation and optimisation framework

MPI parallel NLCG and efficient line search

PDE-based linear preconditioner for which efficient numerical
methods are available (parallel geometric multigrid etc.)

Ready for non-academic problems.



Extend preconditioner for r-adaptivity and surface alignment.
Variable metric preconditioners.
Surface alignment for hypercube meshes.

Anisotropic reference cells.
Derive mesh quality functionals from material laws.

Hybrid linear/nonlinear methods.
GPU acceleration for nonlinear solvers.
Application to real world problems with complex geometries.
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Let Q C RY, d =2,3 and 9Q = [§%_1,9Q™, where 000 is a set of singular
points and dQ™ are relatively open, smooth m-dimensional manifolds.
Then ®* is an optimal variation of the partitioning T, of © with respect to
the functional F iff

F(P*) = min F(P) where
deVv
Vi={®:T, > R?: ® € C%Th),VK € Tp: VO € SLy,
Vx € E%(Tp) :Vm=0,...,d—1:x € IQ™ = &(x) € 92"}

Back to generic mesh optimisation problem



We need to express £ = L(V Rk », h(K)) to resolve the dependency on h.

h(T) = \/ o(T) Y. detV A q(id)

KETh KeTy,
-1
ah(T c( T) c(T) 9
— detVRk ,(Id — detVRk »(Id
9x; d LkeT, th hinli) YkeTy OXj th (i)
9 C(T) 9c(K)
Fr +¢(T) LkeTpe(k
Axj );Kefr €The(K) "ax; ( Z VRK,,,(Id)> ’
):KE‘Ih C(K)) KeTh

where Xxj is the jth component of the local vertex i belonging to T.



Note the difference between

c1(K) = f(dist(se+(k), ) and co(K) = f(dist(sk, "))

(a) k=0. (b) k=1. (c) k =50.
Figure: Iterates ®() of a Picard iteration using c,.
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