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Why we need “good” meshes

The task

On Ω⊂ Rd with a mesh Th, use the Finite Element Method to solve some
kind of PDE, describing e.g.

1 transport phenomena,

2 deformations in solid mechanics,

3 incompressible flows.

Figure: Navier-Stokes Bench 1: Velocity field
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kind of PDE, describing e.g.

1 transport phenomena,

2 deformations in solid mechanics,

3 incompressible flows.

Figure: Navier-Stokes Bench 1: Underlying mesh



Requirements for Th

Requirement for the Finite Element Method
1. Th must be free of intersecting cells

Initial mesh. Bad: Intersecting cells. Goal: No intersections.



Requirements for Th

Reality is not polygonally bounded
2. Th must capture the geometry of Ω.

Geometry insufficiently resolved. Good resolution of the boundary.



Requirements for Th

What is “fine enough”?
3. Th must sufficiently resolve the solution uh.

Insufficient resolution of the
0-levelset.

Good resolution of the 0-levelset
by r -adaptivity.
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Generic mesh optimisation problem

For a mesh quality functional F find an optimal deformation

Φ∗ = argminΦ∈DF(Φ),D⊂
{

Φ : Ω→ Rd : ∀x ∈ Ω : det(∇Φ(x)) > 0
}

The orientation preserving property

det(∇Φ(x)) > 0 is crucial for applying the Finite Element Method.

K0

K1

(a) Initial configuration.

Φ(K0)

Φ(K1)

(b) After applying the mapping Φ.
Figure: Overlap of cells resulting from one cell changing orientation.



My goals

Find a class of mesh quality functionals F such that

1 det(∇Φ) > 0 is enforced (robustness),

2 it is applicable in 2d and 3d for both simplex and hypercube meshes,

3 optimal cell sizes can be defined directly (r -adaptivity),

4 flexible boundary conditions are possible.

Such a method is available - in “theory“1

Not for hypercube meshes.

r -adaptivity only mentioned.

Additional theory required.

Efficient nonlinear solvers not readily available.

HPC-level implementation (MPI parallel, numerically efficient) using
FEAT3.

Application to complex geometries and ”large“ problems.

1M. Rumpf. “A variational approach to optimal meshes”. In: Numerische
Mathematik (1996).
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Reference cells, isotropic case

Assumptions

1 ∀K ∈ Th there exists an optimal reference cell K̂ .

Hypercubes: K̂n = [−1,1]d Simplices:

p0 = (0,0) p1 = (1,0)

p2 =
(

1
2 ,
√

3
2

)

p0 = (0,0,0)
p1 = (1,0,0)

p2 =
(

1
2 ,
√

3
2 ,0

)

p3 =
(

1
2 ,
√

3
6 ,
√

6
3

)

Optimal shape K̂n and optimal scale h(K )

Can be individually chosen: K̂ = h(K )K̂n.



Reference mapping and local functionals

Assumptions

2 F(Φ) = ∑K∈Th
µK

∫
K L̃K (Φ) (Locality).

3 ∀c ∈ Rd : L̃K (Φ + c) = L̃K (Φ) (Translation invariance).
⇒ ∃L : L̃K (Φ) = LK (∇Φ)

K̂
RK (Φ)

Φ(K )

Φ|K

K

RK

4 limdet(∇Φ)→0LK (x ,∇Φ) = ∞ (Regularity property).

This enforces the orientation preserving property

Lk cannot be convex in ∇Φ but must be at least polyconvex



Stored energy functionals

Observation
L is a stored energy function of a hyperelastic material.

Existence theorem 2:

Let Ω⊂ R3, ∂Ω = Γ0∪Γ1, Γi dσ-measurable and vol2(Γ0) > 0,
L : Ω×SL3 with the properties of

1 Polyconvexity: ∀x ∈ Ω a.e. : ∃L̃(x , ·, ·, ·) : SL3×SL3× (0,∞)→ R :
L̃ is convex and

∀F ∈ SL3 : L(x ,F) = L̃(x ,F ,Cof(F),det(F)),

2 Stability

3 Coerciveness: ∃α ∈ R+,β ∈ R,2≤ p ∈ N, p
p−1 ≤ q ∈ N,1 < r ∈ R :

∀x ∈ Ω a.e.,∀F ∈ SL3 :

L(x ,F)≥ α(‖F‖p
F +‖Cof(F)‖q

F + det(F)r ) + β

2P. G. Ciarlet. Mathematical elasticity Vol. I: Three-dimensional elasticity. Studies in
Mathematics and its Applications. Amsterdam: North-Holland Publishing Co., 1988
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Theory

Existence theorem [2]:

Let φ0 ∈ L1(Γ0,R3) such that
/0 6= Dφ0 := {Φ ∈W 1,p(Ω) : Cof(∇Φ) ∈ Lq(Ω),det(∇Φ) ∈ Lr (Ω),

∀x ∈ Ω a.e. : det(∇Φ)(x) > 0, ∀x ∈ Γ0 dσ a.e. : Φ(x) = φ0(x)}

Let f ∈ Lp(Ω) and g ∈ Ls(Γ1) such that the linear form

l : W 1,p(Ω)→ R, l(Φ) :=
∫

Ω
f ·Φdx +

∫
Γ1

g ·Φdσ

is continuous and define

F(Φ) :=
∫

Ω
L(x ,∇Φ(x))dx− l(Φ).

If ∃Φ ∈Dφ0 : F(Φ) < +∞, there exists at least one

Φ∗ ∈Dφ0 : F(Φ∗) = inf
Φ∈Dφ0

F(Φ).



Geometric interpretation and an example

h, K̂n and RK define a material behaviour

L(∇Φ)|K = LK (∇RK (Φ))

1 ‖∇RK (Φ)‖2
F measures length change of line segments.

2 ‖Cof(∇RK (Φ))‖2
F measures the facet deformation.

3 det(∇RK (Φ)) measures the volume change.

Example for a local functional:

LK (∇RK (Φ)) = cf (‖∇RK (Φ)‖2
F −d)2 + det(∇RK (Φ))pd

+
cd(

det(∇RK (Φ)) +
√

δ2
r + (det(∇RK (Φ)))2

)pd



Other methods not enforcing det(∇Φ) > 0

1 Harmonic energy: F(Φ) = ‖f −∆Φ‖L2(Th)

2 Biharmonic energy: F(Φ) = ‖f −∆2Φ‖L2(Th)

3 Linearised elasticity:

F(Φ) = ‖f −∇ · (λ∇ ·Φ +
µ
2

(∇Φ + (∇Φ)T )‖L2(Th)

Properties
+ Numerically “cheap”

+ Well-known problems

- Orientation preserving property coincidental

- Not robust enough for surface alignment

- Efficient solvers not readily available for all cases
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Computational aspects

The hyperelasticity-based functional is hard to treat numerically:

1 Highly nonlinear.

2 Nonconvex with many local minimisers due to the polyconvexity.

3 Many local singularities.

How to find a minimiser?
Solve the Euler-Lagrange equations:

−∇ · ∂L
∂F

(x ,∇Φ(x)) = f (x ,Φ(x))

But: Strong assumptions needed for the minimiser to be a solution.

Nonlinear solver
Newton’s method not applicable because F′′ is not positive definite

Use line search based methods instead



Fréchet derivatives

Let M : R→ Rn×n.

d
dt

detM(t) = detM(t) tr

(
M(t)−1 d

dt
M(t)

)
.

Using M(t) := ∇φ + t∇η:

G1(Φ) :=(‖∇Φ‖2
F −d)2, G′1(Φ)η = 4

(
‖∇Φ‖2

F −d
)

∇Φ : ∇η,

G2(Φ) :=
(
‖Cof(∇Φ)‖2

F −d
)2

G2(Φ)′η =4(‖Cof(∇Φ)‖2
F −d) Cof(∇Φ) :[((

[(∇Φ)−1 : ∇η] Id − (∇Φ)−1
∇η
))

Cof(∇Φ)
]

G3(Φ) :=det(∇Φ)pd , G′3(Φ)η = pd det(∇Φ)pd (∇Φ)−T : ∇η



Degenerating family of meshes

(a) Th,0. (b) Th,4. (c) Φ∗(Th,4).

1 Refinement lets αmin→ 0

2 Simple problem to study mesh dependence



Degenerating family of meshes

NLCG NLSD-lBFGS
l DOF # its t[s] # its t[s]

3 290 44 6.4e−3 40 6.2e−3
4 1090 103 4.3e−2 94 3.9e−2
5 4226 208 3e−1 184 3.1e−1
6 16642 400 2.1e+0 377 3.4e+0
7 66050 1081 2.9e+1 791 3e+1
8 263170 3908 6.8e+2 1915 3.7e+2
9 1050626 1156 1.4e+3 389 5.8e+2

10 4198402 388 1.1e+3 507 4.1e+3
11 16785410 359 4e+3 759 7.4e+3

Table: Solver stagnated or stopped early .

Increasing iteration numbers and runtimes
Find PDE-based preconditioner instead.



Nonlinear Conjugate Gradient Method

Algorithm 1 Preconditioned nonlinear Conjugate Gradient (NLCG).

For a given Φ0, preconditioner B : Rd → Rd and initial search direction d(0)

do k = 0, . . . ,N:
1. Use a line search to compute α(k): F(Φ(k) + αd(k)) < F(Φ).

2. Set Φk+1 = Φ(k) + αd(k).

3. Compute a new descent direction

d(k+1) =−B−1 F′(Φ(k)) + β
(k)d(k)

Efficient line searches are non-trivial

Implementation uses FEAT3’s MPI parallel structures

Preconditioner should use the most powerful tools available (parallel
geometric multigrid)



Preconditioning with a second order operator

Recall (
‖∇Φ‖2

F −d)2)′
η = 4

(
‖∇Φ‖2

F −d
)

∇Φ : ∇η

Linear operator for preconditioning

A : Dφ0 →D′0,(AΦ,η) := (D(Φ),D(η)), D(Φ) =
1
2

(∇Φ + (∇Φ)T )

1 Another positive definite approximation for the Hessian F′′.

2 Solver for Ah defines the choice of preconditioner B = (Ãh)−1.

3 Efficient parallel solvers (e.g. PCG-MG) available.



Degenerating family of meshes

NLCG NLSD-lBFGS NLCG-Ãs,M
h

l DOF # its t[s] # its t[s] # its t[s]

3 290 44 6.4e−3 40 6.2e−3 24 2.3e−2
4 1090 103 4.3e−2 94 3.9e−2 30 9.2e−2
5 4226 208 3e−1 184 3.1e−1 32 3.8e−1
6 16642 400 2.1e+0 377 3.4e+0 36 1.7e+0
7 66050 1081 2.9e+1 791 3e+1 38 8.2e+0
8 263170 3908 6.8e+2 1915 3.7e+2 43 5.6e+1
9 1050626 1156 1.4e+3 389 5.8e+2 39 1.7e+2
10 4198402 388 1.1e+3 507 4.1e+3 76 2.1e+3
11 16785410 359 4e+3 759 7.4e+3 29 3.7e+3

Table: Solver stagnated or stopped early .

Numerical effort still considerable

1 Optimise mesh on coarser level than the PDE

2 Post-optimisation adaption necessary

3 Extrude from 2d to 3d if possible
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Software used

FEAT3
Common successor to FEAT2 and FEAST, developed since 2011

MPI-parallel high-performance cross-platform general purpose FEM
toolkit

Full (unstructured) 2d /3d support: trias, quads, tetras and hexas

C++11 standard conforming, well-documented, automated regression
testing

Very powerful (non-)linear solver framework including
mixed-arch/-prec/MKL/GPU support

Designed for academic research, student projects, HPC and industry
applications

In active development, but lacking real world applications



Robustness

Figure: t = 0.

Moving boundary
Stop when αmin < 1◦

NLCG-(Ãh)−1

Colouring from red (1◦) to green
(45◦).

ϕb : [0, t̄]×∂Ω(0)→R2,ϕb(t,x) = x + t

(
(x1−ξ1) + (x2−ξ2)3

−(x1−ξ1) + (x2−ξ2)3 + (x2−ξ2)3

)
.



r -adaptivity, surface alignment3, topology changes

Figure: t = 0.

Moving implicit surfaces Γ1,2

Optimal scales according to
distance to Γi

Cell size varies by factor of 20

Additional nonlinearity
L = L(∇RK ,n,h(K ))

Efficient preconditioner not
available

Colouring according to cell size
(blue: 5e-5, red: 1e-3)

Mesh aligned with moving
surfaces

3S. Basting and M. Weismann. “A hybrid level set front tracking finite element
approach for fluid–structure interaction and two-phase flow applications”. In: Journal of
Computational Physics (2013).



Why surface alignment?

Elliptic interface problem with different coefficients β1,2
4.

∇ · (β∇u) = f in Ω,

u = 0 on ∂Ω,

[u]Γ := (u1|Γ−u2|Γ) = 0,

[β∂νu]Γ := (β1∂ν1u1 + β2∂ν2u2) = 0 Ω1

Ω2

Γ

Figure: Domain of interest.

4J. Li et al. “Optimal a Priori Estimates for Higher Order Finite Elements for Elliptic
Interface Problems”. In: Applied Numerical Mathematics 1-2 (Jan. 2010).



Why surface alignment?

If Γ is sufficiently smooth, RK ∈ Pm(Ŝ), u ∈ H1(Ω)∩Hs(Ω1∪Ω2) for some
s ∈ [1,p + 1]

∀s ∈
[

1,
3
2

)
:‖u−uh‖1,Ω ≤ Chs−1‖u‖s,Ω1∪Ω2 ,

∀s ∈
[

3
2
,p + 1

]
∧∇u ∈ B

1
2
2,1(Ω1∪Ω2)

⇒ ‖u−uh‖1,Ω ≤ Chs−1‖u‖s,Ω1∪Ω2 +
√

δ‖∇u‖
0,B

1
2

2,1(Ω1∪Ω2)
.

Typical values for δ are

δ = O(h), (implicit representation of Γ),

δ = O(hm+1), (sharp interface representation with RK ∈ Pm(Ŝ)).



Industry-level application: Micro gear pump

Γ1

Γ2

Γ1

Γ2

Γ1

Γ2

Figure: t = 0.

Micro gear pump
Optimal scales according to gap
width

Boundaries rotate at different
speeds

Unilateral boundary conditions
of place

Extreme cell compression and
expansion

Mesh can be extruded to 3d



Unilateral boundary condition of place

For a given Γ2 ⊂ Rd require that

∀x ∈ Γ2 dσ a.e. : Φ(x) ∈ Γ2

Essential boundary condition

Can be enforced by projection

If Γ2 is not planar, the projection operator is nonlinear

Highly unstable if det(∇Φ) > 0 is not enforced directly



Industry-level application: Micro gear pump

Micro gear pump
Mesh optimisation solved on
coarser mesh than flow problem

Re ≈ 6500

No inlet or outlet⇒ Flow field
governed by incompressibility
constraint
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Summary

Theory
1 Extended class of mesh quality functionals to hypercubes

2 Direct control of det(∇Φ) results in a robust method

3 Added r -adaptivity and nonlinear boundary conditions

4 Combined this with surface alignment

Implementation using FEAT3
1 Mesh deformation and optimisation framework

2 MPI parallel NLCG and efficient line search

3 PDE-based linear preconditioner for which efficient numerical
methods are available (parallel geometric multigrid etc.)

Ready for non-academic problems.



Future Work

Theory
1 Extend preconditioner for r -adaptivity and surface alignment.

2 Variable metric preconditioners.

3 Surface alignment for hypercube meshes.

4 Anisotropic reference cells.

5 Derive mesh quality functionals from material laws.

Numerics
1 Hybrid linear/nonlinear methods.

2 GPU acceleration for nonlinear solvers.

3 Application to real world problems with complex geometries.
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Appendix: Optimal Variations

Let Ω⊂ Rd , d = 2,3 and ∂Ω =
⊎d−1

m=0 ∂Ωm, where ∂Ω0 is a set of singular
points and ∂Ωm are relatively open, smooth m-dimensional manifolds.
Then Φ∗ is an optimal variation of the partitioning Th of Ω with respect to
the functional F iff

F(Φ∗) = min
Φ∈V

F(Φ) where

V := {Φ : Th→ Rd : Φ ∈ C0(Th),∀K ∈ Th : ∇Φ|K ∈ SLd ,

∀x ∈ E0(Th) : ∀m = 0, . . . ,d−1 : x ∈ ∂Ωm⇒ Φ(x) ∈ ∂Ωm}

Back to generic mesh optimisation problem



Appendix: ∇h

We need to express L = L(∇RK ,n,h(K )) to resolve the dependency on h.

h(T ) = d

√
c(T )

∑K∈Th
∑

K∈Th

det∇RK ,n(Id)

⇒ ∂h(T )

∂xij
=

1
d

(
c(T )

∑K∈Th
∑

K∈Th

det∇RK ,n(Id)

) 1
d −1[

c(T )

∑K∈Th

∂

∂xij

(
∑

K∈Th

det∇RK ,n(Id)

)

+

 ∂

∂xij

(
c(T )

∑K∈Th

)
+ c(T )∑K∈Thc(K )

∂c(K )
∂xij(

∑K∈Th
c(K )

)2

( ∑
K∈Th

∇RK ,n(Id)

) ,
where xij is the j th component of the local vertex i belonging to T .



Appendix: Dependent Optimal Scales

Note the difference between

c1(K ) = f (dist(sΦ∗(K ),Γ)) and c2(K ) = f (dist(sK ,Γ))

(a) k = 0. (b) k = 1. (c) k = 50.

Figure: Iterates Φ(k) of a Picard iteration using c2.
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