

 No. 573 June 2017

Preconditioning for hyperelasticity-based
mesh optimization

J. Paul

ISSN: 2190-1767

Preconditioning for hyperelasticity-based mesh optimisation

Jordi Paul∗

Institute of Applied Mathematics (LS III),
TU Dortmund University, Vogelpothsweg 87, D-44227 Dortmund, Germany

June 30, 2017

Summary

A robust mesh optimisation method is presented that directly enforces the resulting deformation to be
orientation preserving. Motivated by aspects from mathematical elasticity, the energy functional of
the mesh deformation can be related to a stored energy functional of a hyperelastic material. Formu-
lating the functional in the principal invariants of the deformation gradient allows fine grained control
over the resulting deformation. Solution techniques for the arising nonconvex and highly nonlinear
system are presented. As existing preconditioners are not sufficient, a PDE-based preconditioner is
developed.

Keywords: Mesh optimisation, hyperelasticity, nonconvex optimisation, preconditioning, finite ele-
ments

1 Introduction

For the numerical solution of partial differential equations, the finite element method is a widely
used discretisation technique which requires a mesh on the (computational) domain [11, 15, 47].
Very often, the domain of interest and thus the mesh is not stationary, but moves due to various
reasons. This might be a free capillary surface (see [2, 5, 23] for examples) for flow problems,
fluid-structure interactions (e.g. [8, 45,51]) or even phase transformations (e.g. [6, 7, 21]).

A moving mesh introduces the problem of geometric stability, which means that intersections
of cells (which are fatal for the finite element solution) cannot be ruled out a priori. This is
sometimes called mesh tangling in the literature, and has to be avoided by employing a suitable
mesh optimisation technique. One of the most common scenarios is that the movement of one or
more boundaries is known and this movement has to be extended to the interior of the domain (to
adjust the vertices) by constructing an extension (or inverse trace) operator. This is called mesh
smoothing by some authors.

Mesh optimisation is a large field of research (see [34] and the references therein), ranging from
combinatorial methods explicitly formulated in vertex movements to general purpose methods
using different elliptic or parabolic PDEs, or algebraic notions of mesh quality. One recurring
aspect is for methods to ensure that the mesh deformation is orientation preserving by different
means (e.g. note the definition of the element condition number in [22]) as this rules out cell
intersections. However, most methods do not try to enforce this property directly and thus cannot
ensure that it holds in general.

The focus of this work is variational mesh optimisation by minimising a functional that expresses
the energy required to deform well-shaped cells into their configuration in the current mesh. In
[46], a mechanical model is derived that relates the deformation energy for simplex meshes to a
polyconvex stored energy function of a hyperelastic material. As this directly enforces the orien-
tation preserving property, it can guarantee geometric stability and has recently been generalised
to quadrilateral and hexahedral meshes [41] using theory from mathematical elasticity [3, 14]. In

∗Email: jordi.paul@math.tu-dortmund.de

1

this work, the method will be derived in a more general manner and solution techniques from
large scale nonconvex optimisation will be presented for the minimisation of the resulting highly
nonlinear functional. Efficient PDE-based multilevel preconditioning techniques will be presented
and an application to solving the incompressible Navier-Stokes equations on a complex moving
domain will be shown.

2 Variational optimisation of moving meshes

Let Ω ⊂ Rd, d = 2, 3 be the region of interest, Ωh its polygonally bounded approximation and
Th be a regular, conforming discretisation of Ωh into intervals (d = 1), triangles or quadrilaterals
(d = 2) or (in the case d = 3) tedrahedra or hexahedra. The general task will be to approximately
solve some PDE on Ω by discretising it with the Finite Element Method using the mesh Th.

Assume now that the domain is moving: Ω = Ω(t)∀t ∈ [0, t̄]. Let Ω0 =: Ω(0) be given, but at
each instant t only the position of the boundary ∂Ω(t) is known. That means we are looking for
ϕ : [0, t̄] × Ω0 → Rd,Ω(t) := ϕ(t,Ω0), but only trϕ : [0, t̄] × ∂Ω0 → Rd is known. So we have to
find an inverse trace operator that extends the boundary movement into the interior, which can
be formulated as

For t ∈ [0, t̄] find Φ : Ω0 → Rd : ∀x ∈ ∂Ω0 : Φ(x) = trϕ(t, x).

In general, trϕ is unknown and part of the solution to the PDE (like the position of the free
capillary boundary (see e.g. [4]), the evolution of the phase boundary (e.g. [7]) etc.). On the
discrete level, this can be formulated as

For t ∈ [0, t̄] find Φh : Ωh(0)→ Rd : ∀x ∈ ∂Ωh(0) : Φh(x) = trϕ(t, x).

The important part is now to ensure that ∀t ∈ [0, t̄], the moving mesh Th(t) = Φh(Th) has
the necessary properties for use in a FE discretisation of the original PDE. In particular, cell
intersections (also called mesh tangling [34, Chapter 1.6]) must be ruled out as a requirement for
the construction of parametric FE spaces on Th(t). However, this is impossible to do a priori if
the boundary movement is unknown (see Figure 1).

(a) t = 0.15 (b) t = 0.5

Figure 1: Moving mesh with eventually intersecting cells.

For this, the mapping Φ will be required to come from a space of admissible deformations, or
rather a further restricted subspace to account for boundary conditions. It is then easy to show
that the mesh resulting from such a deformation is free of intersecting cells.

2

Because the formulation will be done for the continuous and the discrete case of deformations at
the same time, a few definitions are needed so that meshes can be expressed by means of mappings
of reference cells.

2.1 Geometric entities and meshes

In the following, s-dimensional simplex means intervals, triangles or tetrahedra for s = 1, 2, 3 and
s-dimensional hypercube means intervals, quadrilaterals or hexahedra for s = 1, 2, 3 for the sake of
brevity, where s is the shape dimension.

Definition 1 (Reference cells).

1. The s-dimensional standard simplex is Ŝs := {x̂ ∈ Rd : ∀i = 1, . . . , s : x̂i ≥ 0,
∑s
i=1 x̂

s ≤ 1}.

2. The s-dimensional hypercube is Q̂s := [−1, 1]s ⊂ Rs.

In the following, a reference cell of either shape type shall be denoted by K̂s or simply K̂. All
reference cells are always assumed to be positively oriented, meaning vol(K̂) > 0. E0(K̂) denotes
the vertices of the reference cell K̂. For s ≥ 2, E1(K̂) denotes the (relatively open) edges of K̂ and
for s = 3, E2(K̂) its (relatively open) faces.

Definition 2 (First order reference mappings).

1. A set of points a0, . . . , as ⊂ Rd is said to form a non-degenerate s-simplex K iff the P1

reference mapping RK : Ŝs → Rd, R(x̂) = a0 +
∑s
i=1 x̂

iai has the property ∀x ∈ Ŝs :
det(∇RK)(x̂) 6= 0.

2. If φ̂i, i = 1, . . . , 2s are the standard s-linear Lagrangian basis functions on Q̂s with regard
to its vertices, the vertices a1, . . . , a2s ⊂ Rd form a non-degenerate hypercube K iff the Q1

reference mapping RK : Q̂s → Rd, R(x̂) = a0 +
∑2s

i=1 φ̂(x̂i)ai has the property ∀x ∈ Q̂s :
det(∇RK)(x̂) 6= 0.

Without loss of generality, it can be assumed that in both cases ∀x ∈ K̂s : det(∇RK)(x̂) > 0
(otherwise, the local vertex numbering of K can be permuted).

Note that the vertices of the mapped cell are simply the images of the reference cell’s vertices
under RK : E0(K) = RK(E0(K̂)) (edges and faces are analogously).

Higher order reference mappings are possible but will not be discussed in this work. Note that
the non-degeneracy condition already rules out parametrised cells K with vol(K) = 0, and also
nonconvex hypercubes or e.g. quadrilaterals degenerated to triangles. Also note that the edges
of a mapped cell K will always be straight, but the faces of a 3-hypercube will in general not be
planar. If a mapped cell K of shape dimension s > 1 is non-degenerate, its (s − 1)-dimensional
faces are also non-degenerate mapped cells of shape dimension (s− 1).

Definition 3 (Mesh). Let Ωh ⊂ Rd, d = 2, 3 be a polygonally bounded domain. A finite set Th of
d-simplices or d-hypercubes is called partitioning of Ωh or mesh on Ωh iff Ω̄h =

⋃
K∈Th K.

This partitioning is called conforming or proper iff

1. ∀K0,K1 ∈ Th,K0 6= K1 : K̊0 ∩ K̊1 = ∅,

2. ∀K0 ∈ Th : ∀ (d− 1)-dimensional sub-simplices or sub-hypercubes K ′: K ′ ⊂ ∂Ωh or ∃!K1 ∈
Th \ {K0} such that K ′ is a (d− 1)-dimensional sub-simplex or sub-hypercube of K1.

Furthermore

1. ∀K ∈ Th : K̊ is called a (d-)cell of Th and Ed(Th) := {K̊ : K ∈ Th} is the set of all d-cells.

2. For s ∈ {1, . . . , d−1}, the s-dimensional sub-hypercubes or sub-simplices K ′ are called s-cells
and Es(Th) =

⋃
K∈Th E

s(K) is the set of all s-cells of Th.

3. E0(Th) =
⋃
K∈Th E

0(K) is the set of all vertices of Th.

3

For all d = 1, 2, 3 we will call d-cells simply cells and (d− 1)-cells facets. Note that all s-cells

are open, meaning that we have a disjoint partitioning Ωh =
⊎d
s=0 Es(Th).

Definition 4 (Lagrange-1 spaces). Let Ωh as in Definition 3 with conforming mesh Th. Then
define

Vh(Th) := {v ∈ C0(Ωh) : ∀K ∈ Th : v ◦R−1
K ∈

{
P1(Ŝ), K̂ = Ŝ

Q1(Q̂), K̂ = Q̂
}.

As degrees of freedom, the values in the vertices E0(Th) are taken.

2.2 Orientation preserving mappings and admissible deformations

Let Ω ⊂ Rd, d = 2, 3 and ∂Ω ∈ C0,1 with a decomposition ∂Ω =
⊎d−1
m=0 ∂Ωm, where ∂Ω0 is a set

of singular points and ∂Ωm are sets of relatively open, smooth m-dimensional manifolds. Also let
Ωh be a polygonal approximation of Ω with mesh Th.

Definition 5 (Orientation and boundary preserving mappings). Let Φ : Ω→ Rd.

1. Φ is orientation preserving iff ∀x ∈ Ω : ∇Φ(x) ∈ SLd := {A ∈ Rd×d : det(A) > 0}.

2. Φ is boundary preserving iff ∀x ∈ ∂Ω : Φ(x) ∈ ∂Φ(Ω).

3. Φ is boundary part preserving iff ∀m = 0, . . . , d− 1 : ∀Γ ∈ ∂Ωm : ∀x ∈ Γ : Φ(x) ∈ Γ.

Definition 6 (The spaces of admissible deformations).

1. The space of admissible deformations of Ω is

D̃(Ω) := {Φ : Ω→ Rd : Φ is orientation and boundary preserving} (1)

and its discretisation
D̃h(Ω, Th) := D̃(Ω) ∩ Vh(Th). (2)

2. The space of admissible variations of Ω is

D(Ω) := {Φ : Ω→ Rd : Φ is orientation and boundary part preserving} (3)

and its discretisation
Dh(Ω, Th) := D(Ω) ∩ Vh(Th). (4)

To these spaces, boundary conditions can be applied. In this work, only the situation Γ1,Γ2 ⊂ ∂Ω,
vold−1 (∂Ω \ (Γ1 ∪ Γ2)) = 0 will be considered with:

3. Displacement boundary condition: If φ1 : Γ1 → Rd is sufficiently smooth, require that

∀x ∈ Γ1 dσ a.e. : Φ(x) = φ0(x). (5)

4. Unilateral boundary condition of place: Require that

∀x ∈ Γ2 dσ a.e. : Φ(x) ∈ Γ2. (6)

The notion of boundary part preserving mappings and variations was introduced in [46] and is
very useful for dealing with smooth parts of the boundary. Note that in the definition above, the
boundary preserving property of Φh ∈ Dh(Ω, Th) is still with regard to the real domain Ω. This
can be weakened to use Ωh in practice (e.g. if a smooth parametrisation of ∂Ω is not available), if
∂Ωh is a sufficiently good approximation of ∂Ω.

Lemma 1. With Ω,Ωh and Th above, let Φh ∈ D(Ω, Th). If Th is a conforming mesh on Ωh, so is
the mapped mesh Φh(Th).

4

Proof. Two properties need to be verified.

1. ∀Φh(K0) ∈ Φh(Th) : ∀ (d−1)-dimensional sub-simplices or sub-hypercubes Φh(K ′): Φh(K ′) ⊂
∂Ωh or ∃!Φh(K1) ∈ Φh(Th) \ {Φh(K0)} such that Φh(K ′) is a (d − 1)-dimensional sub-
simplex or sub-hypercube of Φh(K1).

If K ′ ⊂ ∂Ωh, all associated vertices lie on ∂Ω and are thus again mapped to Ω by Φh (since
it it boundary preserving) so that Φh(K ′) ∈ ∂Φh(Ωh).

If K ′ is a a (d − 1)-dimensional sub-simplex or sub-hypercube of K̄1, the same is true for
Φh(K ′) and Φh(K1) = Φh(K̄1) because of the continuity of Φh.

That there is no other K2 6= K1 such that Φh(K ′) ⊂ Φh(K2) follows from the next property.

2. ∀Φh(K0),Φh(K1) ∈ Φh(Th),K0 6= K1 : Φh(K0) ∩ Φh(K1) = ∅.
This immediately follows from the orientation preserving property of Φh, as a violation would
require at least one cell of negative oriented volume.

3 Computing orientation preserving deformations

Given a boundary deformation, computing an extension into the interior of the domain is not
a difficult task and can be done with a plethora of linear methods, even in moderately complex
geometries. However, ensuring that the deformation is orientation preserving is very difficult.

Let Ω,Ωh and Th as in Section 2.2 and assume for now that only displacement boundary
conditions (Definition 6.3) are to be imposed. For this, let φ1(∂Ω) be the new, known position of
the boundary ∂Ω. To this new position, a deformation of the whole mesh Th is to be computed to
obtain T ′h and thus Ω′h.

3.1 Convex functionals not enforcing the orientation preserving prop-
erty

Let
a : H1(Ω)d ×H1(Ω)d → R (7)

be a coercive and continuous bilinear form. A popular way to compute extension operators is to
discretise (7)

ah : Vh(T)d × Vh(Th)d → R (8)

and minimise the energy of a deformation in the energy norm induced by ah by finding Ψ ∈ Vh(Th)
such that Ψ|∂Ωh = φ1|∂Ωh

and Ψ∗ = 1
2 argminΨ∈Vh(Th) ah(Ψ,Ψ).

Examples for the bilinear form a(·, ·) are:

1. a(Ψ, η) =
∫

Ω
(∇Ψ : ∇η)dx In this case, the functional is quadratic and measures the har-

monic energy of the deformation. This is computationally cheap, gives d decoupled equations
and very efficient numerical methods like geometric multigrid are available. However, the
decoupling of the components together with the known maximum principles for harmonic
functions [19, Chapter 2.2] often results in a violation of the orientation preserving property
in the case of large boundary deformations and/or nonconvex domains. In fact, Figure 1
shows meshes generated with this functional.

2. a(Ψ, η) =
∫

Ω
(D(Ψ) : D(η))dx with the symmetric part D(Ψ) = 1

2 (∇Ψ + (∇Ψ)T) of the
deformation gradient. This can be seen as minimising finite strain energy without incom-
pressibility constraint. The d components are coupled, resulting in considerable more effort,
but still efficient numerical methods are available. Coupling the components makes the
meshes generated by this functional less prone to cell intersections if the domain becomes
nonconvex.

5

3. a(Ψ, η) =
∫

Ω
(∆Ψ : ∆η)dx In this case, the functional measures the biharmonic energy of

the deformation and requires at least Ψ, η ∈ H2(Ω). It has successfully been used for mesh
optimisation (see e.g. [51]) but trying to take advantage of the ability to impose boundary
conditions for ∂νΨ to control the spacing in a boundary layer (see [30]) leads to boundary
conditions of the third kind. In this case, a mixed formulation becomes coupled and is
challenging to solve numerically [29,38].

These examples have in common that they do not enforce the orientation preserving property
directly, so it is entirely coincidental if it holds.

3.2 A class of nonlinear functionals enforcing the orientation preserving
property directly

The class of nonlinear mesh quality functionals first presented in [46] expanded is to be exanded
here. A mesh quality functional is already discrete, but in the process it is easy to see how its
construction carries over to a continuous version, which can be exploited.

We are looking for a functional F : D(Ω)→ R, so it is natural so assume it can be written as

F(Φ) =

∫
Ω

L(x,Φ)dx, (A1)

which is already a (sensible) assumption on the regularity and takes the form of a strain energy.
In practice, we need Fh : Dh(Ω, Th) → R, so the basic axiom is formulated (as in [46]) stronger
still:

Axiom 1 (Locality). A mesh quality functional Fh of a variation Φh ∈ Dh(Ω, Th) should be a
weighted sum of local functionals of the form

Fh(Φh) =

∫
Ω

L(x,Φh)dx =
∑
K∈Th

µK

∫
K

LK(x,Φh)dx, (A2)

where the weights fulfil ∀K ∈ Th : µK > 0,
∑
K∈Th µK = 1.

This already implies locality in the sense that the functional value is comprised of local func-
tionals independent of each other, meaning the quality of a cell only depends on that cell itself.

Define the local functionals by

Fh(K,Φh) :=

∫
K

LK(x,Φh)dx.

The next assumption is translation invariance, which means that the quality of a cell only
depends on its shape, not its position.

∀c ∈ Rd : Fh(K,Φh + c) = Fh(K,Φh) (A3)

⇒ ∀K ∈ Th : ∃LGK : K × SLd → R : LK(·,Φh) = LGK(·,∇Φh)

From now on, LGK(·,∇Φh) will be just denoted by LK(·,∇Φh) again and L(·,∇Φh) will be used
in place of L(·,Φh).

Assume that K is given by the reference cell K̂ and the reference mapping RK : K̂ → K. We
have the relations Φ : Th → Φ(Th), Φ|K(x) = Φ(RK(x̂)), where RK(x̂) = x and Φ ◦ RK : K̂ →
Φ(RK(K̂)), RK(Φ) = Φ ◦RK , see Figure 2.

Ruling out any other dependencies, we deduce that

LK(·,∇Φ) = L(∇RK(Φ)(·)).

Furthermore, frame indifference is assumed, which means that a cell’s quality does not depend
on the observer’s position:

∀Q ∈ SOd : L (∇RK(Φ)(·)) = L (Q∇RK(Φ)(·)) . (A4)

6

K̂

RK(Φ)

Φ(K)

Φ|KK

RK

Figure 2: The relations of the mapping RK .

Finally, the last assumption is the stability property

lim
det(A)→0

LK(·, A) =∞, (A5)

which forces minimising sequences to stay in the space of orientation preserving mappings. Note
that the assumptions (A1) to (A5) are also valid for the continuous case, replacing the piecewise
constant coefficients µ by a function of suitable integrability.

The task is now to establish the existence of a minimiser for this class of functionals (with
further assumptions).

3.3 Relation to hyperelastic materials, polyconvexity

The simplest case is that the integrand L of the continuous functional F is convex in the sense
that ∀x ∈ Ω : L(x, ·) : SLd → R is convex. If it is furthermore strictly convex, the strain energy
(A1) has at most one stationary point. In fact, all the functionals in Section 3.1 were convex, and
the assumptions (A1) to (A4) hold, but (A5) does not.

However, the property limdet(A)→0 L(x,A) = +∞, A ∈ SLd is critical for the deformation to
be orientation preserving, and [14, Theorem 4.8-1] shows that convexity of L contradicts this
behaviour.

Apart from the mathematical reasoning, there is also a physical argument from elasticity theory.
It turns out that the class of mesh quality functionals presented in Section 3.2 is nothing more
than a special case of a stored energy functional of a compressible, hyperelastic material.

The first assumption was translation invariance (A3), so the local integrand only depends on
∇Φ(x). Since we then ruled out any further dependencies and further assumed frame indifference,
we basically assumed that the underlying Piola-Kirchhoff stress tensor is of the form

∃T̂ : Ω× SLd : ∀x ∈ Ω : T (x) = T̂ (x,∇Φ),

which means it describes an elastic material. Prior to this, assumption (A1) was that the functional
value (which is the strain energy of the deformation Φ) can be expressed in integral form. This
carries the assumption that the response function T̂ is related to a stored energy function L(x,∇Φ)
by

∀A ∈ SLd : T̂ (x,A) =
∂L
∂A

(x,A),

which means the material is already hyperelastic. This makes the constitutive equation

∀x ∈ Ω : −div

(
∂L
∂A

(x,∇Φ(x))

)
= 0

formally equivalent to the equations

∀η : Ω̄→ R, η|Γ0
= 0 : F ′(Φ∗)η = 0 (9)

7

and that a minimiser of the total energy (which is the same as the strain energy in our case without
body or surface forces) is a solution of the boundary value problem defined by the constitutive
equations, see [14, Theorem 4.1-2] for the details. Since we do not pose the incompressibility
condition det(∇Φ) = 1, the material is compressible.

In this context the stability property (A5) is the physically motivated notion that “infinite stress
must accompany extreme strains” [1] and consequently that volumes can only be annihilated by
infinite force, which is not possible if L is convex. Strict convexity would also imply the uniqueness
of the stationary point, which contradicts the lack of uniqueness of solutions to elasticity problems
observed in physical situations see [27,40] for examples.

So indeed it is not feasible to work with a convex stored energy function L. However, Ball [3]
was able to replace this by the weaker requirement that L is polyconvex and prove the existence
theorems stated in Section 3.4.

Definition 7 (Polyconvexity).

1. Define the finite dimensional space E = Ed × R, where

E1 := ∅, E2 := R2×2, E3 := R3×3 × R3×3.

2. Define the map ι : Rd×d → E by

ι(A) =


A, d = 1

(A,det(A)), d = 2

(A,Cof(A),det(A)), d = 3

.

3. A stored energy function L : Ω̄× SLd → R is called polyconvex, iff

∀x ∈ Ω̄ : ∃Lc(x, ·) : E → R convex : ∀A ∈ SLd : L(x,A) = Lc(x, ι(A)). (10)

Remark 1. Going into the details of polyconvex stored energy functions is beyond the scope of this
work and the reader is referred to [3,14]. Important cases of materials with polyconvex stored energy
functions are Ogden’s materials, compressible neo-Hookian materials, compressible Mooney-Rivlin
materials and Hadamard-Green materials, see [14, Chapter 4.10].

With the notion of polyconvexity, it is now possible to apply the theoretical results from [3,
Theorems 7.3 and 7.6] or from [14, Theorems 7.7-1, 7.7-2, 7.8-1, 7.8-2] to establish the existence
of minimisers.

3.4 Existence of minimisers

The following is Theorem 7.7-1 from [14] and for the case d = 3 only, as the other cases are easier
to prove (see the proof of [3, Theorem 7.3]).

Theorem 1 (Existence of minimisers for pure displacement problems). Assume Ω ⊂ R3 to be a
given domain such that ∂Ω = Γ0 ∪ Γ1, Γi dσ-measurable and vol2(Γ0) > 0. Assume further that
we have L : Ω× SL3 → R with the following properties:

1. Polyconvexity:

∀x ∈ Ω a.e. : ∃Lc(x, ·) : ι(A) : L(x,A) = Lc(x, ι(A)),

where ∀(F,H, δ) ∈ ι(A) : Lc(·, F,H, δ) ∈ L1(Ω).

2. Stability:
∀x ∈ Ω a.e : lim

det(A)→0
L(x,A) = +∞.

3. Coerciveness:

∃α ∈ R+, β ∈ R, 2 ≤ p ∈ N,
p

p− 1
≤ q ∈ N, 1 < r ∈ R :

∀x ∈ Ω a.e.,∀A ∈ SL3 :

L(x,A) ≥ α(‖A‖pF + ‖Cof(A)‖qF + det(A)r) + β.

8

Let φ0 ∈ L1(Γ0,R3) such that

∅ 6= Dφ0
:= {Φ ∈W 1,p(Ω) : Cof(∇Φ) ∈ Lq(Ω),det(∇Φ) ∈ Lr(Ω),

∀x ∈ Ω a.e. : det(∇Φ)(x) > 0, ∀x ∈ Γ0 dσ a.e. : Φ(x) = φ0(x)}.

Let f ∈ Lp(Ω) and g ∈ Ls(Γ1) such that the linear form

l : W 1,p(Ω)→ R, l(Φ) :=

∫
Ω

f · Φdx+

∫
Γ1

g · Φdσ

is continuous and define

F(Φ) :=

∫
Ω

L(x,∇Φ(x))dx− l(Φ).

Under the assumption that ∃Φ ∈ Dφ0
: F(Φ) < +∞, there exists at least one

Φ∗ ∈ Dφ0
: F(Φ∗) = inf

Φ∈Dφ0
F(Φ).

Proof. See [14, Theorem 7.7-1] and the corresponding proof.

Remark 2.

1. As the result is from mathematical elasticity, it contains a right hand side f , which has not
been used in this work.

2. The condition Dφ0 6= ∅ is a condition on φ0, as in general, the traces of W 1,p(Ω) func-
tions might not have enough regularity [14, Theorem 6.1-7]. In the context of deformations,
the boundary deformation still has to admit some orientation preserving deformation of Ω,
meaning it should not lead to self-intersections of the boundary.

3. If vol2(Γ1) = 0, the resulting problem is a pure displacement problem.

4. The minimiser is not unique in general, which is observed for hyperelastic materials in prac-
tice.

5. Results for more general boundary conditions (e.g. unilateral boundary conditions of place)
are available, see [14, Theorems 7.8-1 and 7.8-2].

Remark 3 (Euler-Lagrange equations). As 1 does not prove the existence of minimisers in a
constructive manner, how to compute them in practice is an open problem. One possibility is to
use the Euler-Lagrange equations ∀θ ∈ C∞(Ω), θ|Γ1=0 :∫

Ω

∂L
∂A

(x,∇Φ(x)) : ∇θdx =

∫
Ω

fdx, (11)

but this is only equivalent to the equations

F ′(Φ∗)θ = 0. (12)

under very restricting growth assumptions on L [3, Theorem 7.12] or the a priori assumption
Φ∗ ∈W 1,∞, as noted in [14, Chapter 7.10]. To the best of this author’s knowledge, no progress has
been made in establishing realistic assumptions that guarantee sufficient regularity of the minimiser
Φ∗. However, the existence results are formulated for very general boundary and load data, which
might exhibit cavitation or fracture where the minimiser cannot be expected to lie in W 1,∞(Ω).

If a critical point is found using the implicit function theorem, it cannot be guaranteed that it
is indeed a local minimiser in W 1,p(Ω) for 1 ≤ p <∞ [44].

In practice, discretising the functional F to Fh also restricts the solution space to a subspace of
W 1,∞(Ω). In some cases, the minimiser might not lie in the solution space, so the Euler-Lagrange
equations might not be solvable. In the field of mesh optimisation, this is generally not fatal, as
having an orientation preserving mapping is more important than finding the optimal mesh.

9

4 Mesh quality functionals optimising cell shape and size

In this section, mesh quality functionals that are of practical use are to be derived.

4.1 Optimal cells

Up to this point, the standard reference mapping RK : K̂ → K was used to define the integrands
LK , where K̂ = Ŝ or K̂ = Q̂ depending on the mesh’s shape type.

Apart from being orientation preserving, no requirements have been made for Φ∗.While it is
possible to then construct LK such that the mesh defined through the minimiser Φ∗ consists of
well-shaped and scaled cells, it is easier and more intuitive to follow the approach of [46] and define
optimal reference cells.

The idea is that for every cell K ∈ Th, an optimal reference cell K̂R can be defined. That
means for every cell functional LK , obviously

Q id+ c = argminL(∇RKR(Φ)) (13)

since this implies Φ(K) = QK̂R + c where Q ∈ SOd := {A ∈ Rd×d : |det(A)| = 1}, meaning Φ(K)
is just a rotated and translated version of K̂R.

The question is now how to choose the reference cells K̂R. One very important class are
reference cells in which all edges have the same length, all interior angles are the same and they
are normalised in some sense (also see Figure 3).

Hypercubes :

Q̂n = [−1, 1]d = Q̂. (14)

Simplices :

Ŝn =

{
x ∈ Rd : x =

s∑
i=0

λiai, where ∀i ∈ {1, . . . , s} : λi ∈ R≥0,

s∑
i=0

λi = 1

}
(15)

witha0 = (0, 0)T , a1 = (1, 0)T , a2 =
(

1
2 ,
√

3
2

)
, d = 2

a0 = (0, 0, 0)T , a1 = (1, 0, 0)T , a2 =
(

1
2 ,
√

3
2 , 0

)
, a3 =

(
1
2 ,
√

3
6 ,
√

6
3

)
d = 3

. (16)

The hypercubes Q̂n are just the regular reference d-hypercubes (see Figures 3a and 3b), while
the normalised simplices Ŝn are the equilateral triangle (Figure 3c) and the standard tetrahedron
(Figure 3d).

-1

-1

1

1

(a) Q̂n for d = 2.

-1

1

-1

-1

1

1

(b) Q̂n for d = 3.

a0 a1

a2

(c) Ŝn for d = 2.

a0
a1

a2

a3

(d) Ŝn for d = 3

Figure 3: Reference cells for d = 2, 3.

These reference cells have the additional benefit of being isotropic, which already implies a
special structure of the local functional LK , which will be discussed in Section 4.2. It is clear
that every isotropic reference cell can only be a scaled and rotated version of such a normalised
reference cell (see [46, Section 5] for the simplex case and [41, Lemma 3.5] for the generalisation
to hypercubes). The aspect of scaling the reference cell will be discussed in Section 4.4.

Remark 4. For simplicity, the mapping from the optimal reference cell K̂R for mesh optimisation
will also be denoted RK : K̂R → Rd as the standard reference mapping will not appear again.

10

4.2 Isotropy and the Rivlin-Ericksen representation theorem

Additionally to the assumptions (A1) to (A5), we now want the local functional to be isotropic:

∀Q ∈ SOd : L(∇RK(Φ), ·) = L(∇RK(Φ)(·)Q), (A6)

which means that the functional does not depend on the coordinate system of the reference cell
K̂R.

For every matrix A ∈ Rd×d, there exists a left polar decomposition A = Q(ATA)
1
2 with

Q ∈ SLd. From the frame indifference, it follows for fixed x ∈ K ∈ Th that

∃Ll : SLd → R : Ll
(
(∇RK(Φ)(x))T (∇RK(Φ)(x))

)
= L(∇RK(Φ)(x)).

Similarly, from the isotropy and the existence of the right polar decomposition A = (ATA)
1
2Q

with Q ∈ SLd it follows that

∃Lr : SLd → R : Lr
(
(∇RK(Φ)(x))(∇RK(Φ)(x))T

)
= L(∇RK(Φ)(x)).

With the Rivlin-Ericksen Representation Theorem [14, Theorem 3.6-1], we deduce that

∃L :R× R× R→ R ∪ {∞} :

L(x,∇RK(Φ)) = L(‖∇RK(Φ)(x)‖2F , ‖Cof(∇RK(Φ)(x))‖2F ,det(∇RK(Φ)(x))) (17)

This is formulated independently of d, since for A ∈ SLd:

d = 1 :‖A‖2F = ‖Cof(A)‖2F = det(A) > 0,

d = 2 :‖A‖2F = ‖Cof(A)‖2F .

The terms ‖A‖2F , ‖Cof(A)‖2F , det(A) are the principal invariants of the matrix A. The Rivlin-
Ericksen theorem states that a tensor-valued mapping that is frame indifferent and isotropic on
SLd can only be a polynomial in the input argument with coefficients that only depend on these
principal invariants. Here we have the special case of a real-valued mapping, so only the term of
order zero appears in the representation.

Since K̂R is the optimal cell for the quality measure defined by LK

L(x, id) = min
A∈SLd

L(‖A‖2F , ‖Cof(A)‖2F ,det(A)).

As ‖id‖2F = d, ‖Cof(id)‖ = d,det(id) = 1, we demand L to fulfil the (stronger) condition

L(d, d, 1) = min
a∈R3

L(a). (18)

For d = 3, an example is

LK(∇RK(Φ)) = L
(
‖∇RK(Φ)‖2F , ‖Cof(∇RK(Φ))‖2F ,det(∇RK(Φ))

)
, (19)

L(a) =

3∑
i=1

αili(ai),

l1(z) = (z − d)2 = l2(z),

l3(z) = det(∇RK(Φ))r +
c(r)

(det(∇RK(Φ)) + |det(∇RK(Φ))|)r
,

where α1, α3 > 0, α2 ≥ 0, r > 1 and c(r) chosen so that l′3(1) = 0, l′′3 (1) > 0 hold.

Remark 5 (Geometric interpretations of the terms). The terms ‖∇RK(Φ)‖2F , ‖Cof(∇RK(Φ))‖2F
and det(∇RK(Φ)) have obvious geometric meanings that are well-known in mechanics and valid
or suitable control volumes K. For d = 3

1. ‖∇RK(Φ)‖F expresses the length change of curves under the deformation RK(Φ) [14, Section
1.8],

11

2. ‖Cof(∇RK(Φ))ν‖2 expresses the area change of surfaces under the deformation RK(Φ) [14,
Theorem 1.7-1], where ν is the outer unit normal, and

3. det(∇Φ) expresses the volume change of volumes under the deformation RK(Φ) [14, Section
1.5].

Obviously, for d = 1 there is only in the change in vol1 and for d = 2 we can only consider vol1
and vol2, corresponding to the identities in the principal invariants.

Note that with the additional assumption of isotropy, a direct proof of the existence of an
optimal boundary part preserving deformation is possible for the case of simplices [46, Theorem 1].
This proof is not easily generalised to hypercube meshes with general, d-linear reference mappings,
as the notion of orientation preserving deformations is more delicate in this case.

4.3 Anisotropic reference cells

Isotropic reference cells have the additional benefit of requiring no combinatorial testing in the
evaluation of the local integrands LK . For more general reference cells, as they are not invariant
with regard to their local vertex, edge and face numbering, certain permutations of these number-
ings that do not change the orientation of the respective entities have to be tested. This means
that LK no longer solely depends on ‖∇RK(Φ)‖2F , ‖Cof(∇RK(Φ))‖2F and det(∇RK(Φ)), but also
on the variant of the reference cell.

Choosing reference cells that are not isotropic can be advantageous in the case of anisotropic
meshes that e.g. resolve a thin boundary layer. In this case, one can very often directly chose
the variant of the reference cell corresponding to the lowest functional value by examining the cell
K itself if it already has the right degree of anisotropy (but not necessarily a good shape). For
resolving anisotropies in partial differential equations, the use of hypercube meshes with a similar
anisotropy with regard to the cell’s aspect ratio is quite popular.

Assume we have a cell K for which we can compute its aspect ratios α1, . . . , αd, e.g. by
computing some mean values β1, . . . , βd of lengths of edges whose inverse images are aligned with
the x1, . . . , xd axis in the reference cell K. Assume that βi = maxj=1,...,d βj . Then αj := βj/βi
gives us the anisotropic reference cell K̂n,A = diag(α1, . . . , αd)K̂n.

If K is a hypercube, then this is already the reference cell variant associated with the lowest
local functional value. For simplices, several possibilities would have to be treated.

As this is very problem specific, only the isotropic reference cells presented in Section 4.1 will
be used from here on.

4.4 Scaling reference cells

The next question is if the functional LK should be scaling invariant, e.g.

∀λ ∈ R+ : LK(λ∇RK(Φ)) = LK(∇RK(Φ)).

Assume for simplicity that Φ is affine, which implies ∇Φ = A ∈ Rd×d.
Recalling that ∀A ∈ Rd×d

det(λA) = λd det(A), ‖λA‖2F = λ2‖A‖2F , ‖Cof(λA)‖2F = λd−1‖Cof(A)‖2F ,

we conclude that if LK is scaling invariant, there exists a function fS : R2 → R such that

LK(∇Φ) = fS
(
‖A‖d−1

F /‖Cof(A)‖F , ‖A‖dF /det(A)
)
.

A functional based on fS cannot be polyconvex as fS is not convex in its argument A ∈ Rd×d
(see Section 3.3) and does not satisfy the coerciveness condition in Theorem 1 as e.g. in general
LK(A) < +∞ as det(A) → ∞. Nevertheless, functionals of this form are used in practice and
can apparently be treated by simple numerical methods (see e.g. [22]). However, the existence
of minimisers for the discrete (finite dimensional) problem cannot be deduced from results for a
continuous problem. The discrete problem does not converge to a well-posed continuous problem,
which may lead to difficulties for very fine meshes.

12

Together with the above mentioned restrictions this means that the notion of scaling invariance
it not very useful in this context and we have to define a size for K̂R. Since we are in the isotropic
case

∀K ∈ Th : ∃h(K) ∈ R+ : K̂R = h(K)K̂n

and we call h the optimal scales. See Figure 4 for the connection between RK , RK,n and Φ ◦RK =
RK(Φ).

K̂

1
h(K)

K̂n

RK,n

Φ(K)

RK(Φ)

K

Φ|KRK,n(Φ)

Figure 4: The relations of the mapping RK,n.

The question is now how to chose those optimal scales. Assume that we are given a target cell
size distribution, meaning we have some λ satisfying

∀K ∈ Th : λ(K) > 0,
∑
K∈Th

λ(K) = 1.

Since the optimal deformation preserves the volume of Ω, this can be interpreted as

λ(K) =
vol(Φ∗(K))

vol(Ω)
=

vol(K̂n)
∫
K

det(∇RK,n(Φ∗))

vol(Ω)
.

In practice, this will not be exactly true since we are working on Ωh and Th instead. But if ∂Th
(and thus ∂Ωh) is already a good approximation of ∂Ω, we could approximate this condition by
conserving the volume of Th instead, meaning that

λ(K) =
vol(Φ∗(K))

vol(Ωh)
=

∫
K̂n

det(∇RK,n(Φ∗))∑
T∈Th

∫
K̂n

det(∇RT,n(id))
.

Since the identity minimises the local functional, the optimal deformation applied to a cell
should result in a cell that has the corresponding reference cell’s volume:

vol(Φ∗(K)) =

∫
K̂

det(∇RK(Φ∗))dx =

∫
K̂n

det(∇RK,n(Φ∗))
h(K)d

.

For a given cell size distribution λ, we can now compute the optimal scales as

h(K) = d

√
λ(K)

∑
T∈Th

∫
K̂n

det(∇RK,n(id)). (20)

Instead of the cell size distribution, one could prescribe a mesh concentration c = c(K) and

then normalise it to obtain λ(K) = c(K)∑
T∈Th

c(T) .

Example 1 (Some mesh concentration functions).

1. Equidistribution: c ≡ const, leading to λ(K) = 1/ card(Ed(Th)).

13

2. Preservation of the cell volume with regard to a reference configuration T̃h: c(K) = |K̃|,
where K̃ is the corresponding cell in T̃h.

3. Preservation of cell volume with regard to the number of (local) refinements: c(K) = bl(K),
where l(K) the refinement level and b is the refinement base, e.g. b = 2 for bisection-based
local refinement of simplices.

4. According to the distance to a surface Γ: c(K) = f(dist(sΦ∗(K),Γ)) for some set Γ, where
s(K) is the centre of gravity of K. Here, Γ could be ∂Ω or an inner boundary like a phase
boundary.

5. According to an a posteriori error estimate: c(K) = g(η(K)), where η(K) could come from
various techniques.

Remark 6. Choosing optimal scales is a very direct form of r-adaptivity [34, Chapter 6] and is
discussed at length in [41], with numerical results available for both simplex and hypercube meshes
in 2d.

r-adaptivity is a powerful tool to increase the space resolution in regions of interest without
modifying the underlying finite element spaces, which is an advantage when using multigrid or
multilevel methods. It can easily incorporated into linear mesh optimisation methods (see e.g.
[50] for an example in particulate flows). However, when small cell sizes are needed, these are
often generated at the expense of poor cell shapes, as these methods cannot enforce the orientation
preserving property directly.

Presenting r-adaptivity in more detail is beyond the scope of this work, so the reader is referred
to the given references.

5 Numerical methods

For the minimisation of the mesh quality functional, tools from unconstrained optimisation will
be used. Much of the theory can be found in [39], for some details on nonlinear multilevel-based
solvers see [12] and also [25], [24] for multilevel trust-region solvers.

Recall that we constructed the discrete functional Fh according to

Fh(Φh) =

∫
Ω

L(x,∇Φh)dx =
∑
K∈Th

µK

∫
K

LK(x,∇RK(Φh))dx.

[14, Theorem 4.1-1, Theorem 4.1-2] gives that the minimisation of this functional is formally
equivalent to the equations

∀η ∈ D0,Γ1

h (Ω, Th) : F ′h(Φ∗h)ηh = 0,

which can be formulated (due to the assumed hyperelasticity) as

F ′h(Φ∗h)ηh =

∫
Ω

∂L
∂A

(x,∇Φh(x)) : ∇ηh(x)dx,

where D0,Γ1

h (Ω, Th) := {ηh ∈ Dh(Ω, Th) : ηh|Γ1
= 0}.

Remark 7.

1. Note that for quadratic functionals like the D(u) : D(v) functional, the gradient is simply a
matrix, which can be assembled and used in a linear solver. Here, the discrete gradient is a
vector valued nonlinear function. Any iterative solver producing a sequence of iterates (Φk)
will require the gradient to be evaluated at each iterate, which is very costly.

2. Recall that there might be problems with the Euler-Lagrange equations (11).

3. Because ∂ det(∇Φ(x))
∂A = det(∇Φ(x))(∇Φ(x))−T : ∇η(x), care must be taken when using nu-

merical integration because the integrand will be a rational functions.

14

5.1 Tools for nonlinear optimisation

If Fh is sufficiently smooth, we could solve our nonlinear equation F ′h(Φ∗h) = 0 on the finite
dimensional space Dh with Newton’s method. However:

1. The method is only convergent if we start close enough to Φ∗h, which might be difficult to
achieve.

2. If an iterate Φ(k) is far away from Φ∗h, there is nothing that guarantees that F ′′h is nonsingular.
Moreover, since the stored energy function is not convex, the Hessian F ′′h might be indefinite,
so that the Newton direction d(k) obtained by solving the (linear) system

F ′′h (Φ(k))d(k) = −Fh(Φ(k)) (21)

is not even a descent direction.

3. In our case, the Hessian F ′′h (Φ(k)) is quite expensive to compute and will in general not possess
any structure that lends itself to highly efficient iterative solvers. Using a direct solver might
be the only option to solve the linear system (21). However, for other problems with less
pronounced nonlinearity, iterative methods have been applied successfully for solving (21) (see
[12] for some examples), even if the true Hessian is not available and has to be approximated
using a divided difference scheme [17].

These difficulties can be addressed in various ways which mostly revolve around approximating
the Hessian F ′′h (Φ(k)). Some examples are

1. Trust region methods: Minimising a quadratic model and rejecting steps if the difference
between predicted and true functional value is too large [39, Chapter 4].

2. Line search methods: Successive minimisation in search directions [39, Chapter 3].

3. Quasi Newton methods: Recursive updating of an approximation of the (inverse) Hessian
[39, Chapter 6].

4. Inexact or truncated Newton methods: (21) is solved only approximately, e.g. by using an
iterative solver and terminating early and/or when the Hessian is indefinite [39, Chapter 7].

As many Newton-like methods can be expressed as preconditioned line search methods, only
the nonlinear conjugate-gradient (NLCG) method will be discussed in more detail.

5.2 The nonlinear conjugate-gradient method

The NLCG algorithm was introduced in [20] and is a variant of the well known linear Conjugate
Gradient method [31]. The main differences are:

1. Fh is no longer quadratic as in the linear CG method, so the step size computation by a
truncated Taylor series is no longer exact and has to be replaced by a line search.

2. In the linear case, the conjugacy of the search directions is in the sense that d(k+1), d(k) are F ′′h -
orthogonal. In the nonlinear case, the notion of conjugacy changes in every iteration, as F ′′h =
F ′′h (Φ) is no longer constant. This means that the search directions quickly loose conjugacy.
There are several non-equivalent ways to chose the search direction update parameter β(k),
see Remark 8.

Remark 8 (Choosing β(k)). There are many possible ways to set the search direction update
parameter β(k), which are all non-equivalent but reduce to the same update as in the linear case if
Fh is quadratic (and the nonlinear CG method reduces to the linear version).

Define y(k+1) := F ′h(Φ(k+1))−F ′h(Φ(k)).

1. The Hestenes-Stiefel update [31] sets β
(k+1)
HS =

(B−1F ′h(Φ(k+1)),y(k+1))

(y(k+1),d(k))
.

15

Algorithm 1 Preconditioned nonlinear Conjugate Gradient (NLCG) algorithm.

Given an initial guess Φ(0), a preconditioner B : Rd → Rd and an initial search direction d(0):

for k = 0, . . . ,max iter do
Compute a step length α(k) such that Fh(Φ(k) + αd(k)) < Fh(Φ(k)).
Set Φ(k+1) = Φ(k) + αd(k).
Compute a new descent direction d(k+1) = −B−1 F ′h(Φ(k)) + β(k)d(k)

end for

2. The Dai-Yuan update [16] sets β
(k+1)
DY =

(B−1F ′h(Φ(k+1)),F ′h(Φ(k)))
(y(k+1),d(k))

.

3. The Dai-Yuan-Hestenes-Stiefel hybrid update sets β
(k+1)
DYHS = max{0,min{β(k+1)

DY , β
(k+1)
HS }}.

Other well-known updates are the Fletcher-Reeves [20] and the Polak-Ribière-Polyak update [42,43].
See the survey article [28] for even more search direction updates.

Remark 9 (The preconditioner B). In literature dealing with nonlinear optimisation, the notion
of preconditioning NLCG rarely appears (see [28, Section 8] for one of the exceptions). This may be
due to (algebraic) preconditioners that offer good convergence properties in practice (e.g. lBFGS,
which is a preconditioner for the steepest descent method) being available and the fact that many
nonlinear optimisation problems are discrete in nature anyway, with no possibility of e.g. deriving
a PDE-based preconditioner on the continuous level and then discretising it.

Another point is that a preconditioner that changes from iteration (meaning B = B(k)) in-
troduces new difficulties in the computation of the search direction update parameter β(k) from
Remark 8 as it turns NLCG into a variable metric method and influences the notion of conjugacy.
Formulating NLCG with left and right preconditioning yields that e.g. the Dai-Yuan update should
read

β
(k+1)
DY =

(
(B(k+1))−

1
2F ′h(Φ(k+1)), (B(k))−

1
2F ′h(Φ(k))

)
(y(k+1), d(k))

.

This means that one needs to compute the square roots of the preconditioners, which might be both
difficult and costly. However, since the notion of conjugacy changes anyway, one might simply
approximate B(k) by B(k+1), which allows the use of the corresponding formula from Remark 8.2
for left-only preconditioning.

5.3 A PDE-based preconditioner

Recall that Algorithm 1 contained a descent direction d(k+1) which was written as

d(k+1) = −B−1 F ′h(Φ(k)) + β(k)d(k).

The operator B−1 is the preconditioner and needs to be symmetric and positive definite to guar-
antee that −B−1 F ′h(Φ(k)) is a descent direction. Quasi Newton methods like lBFGS or DFP are
algebraic in nature, as they use the discrete representations F ′h(Φ(k)) to compute a positive definite
approximation to the true Hessian F ′′h (Φ(k)).

However, it is possible to construct a preconditioner based on a second order operator for which
efficient numerical methods are available. One obvious choice is the operator associated with the
bilinear form

a : DΦ0,Γ1(Ω̂)×D0,Γ1(Ω̂)→ R, a(Φ, η) =

∫
Ω̂

D(Φ) : D(η)dx, (22)

where Ω̂ is some reference domain (see the vertex mapping (28) in Section 6.2). The discrete form

ah : Dφ0,Γ1

h (Ω̂, T̂h)×D0,Γ1

h (Ω̂, T̂h)→ R, ah(Φh, ηh) =

∫
Ω̂h

D(Φh) : D(ηh)dx, (23)

can be used to define the operator

Ah : Dφ0,Γ1

h (Ω̂, T̂h)→ D0,Γ1

h (Ω̂, T̂h)′, (AhΦh, ηh) := ah(Φh, ηh),

16

which can be identified by a Rn×n matrix. From now on this discrete form will be used and all
quantities will be identified with their associated Rn coefficient vectors.

This is the motivation for defining a class of preconditioners by

B−1 : D0,Γ1

h (T̂h)′ → Dφ0,Γ1

h (T̂h), B−1dh := Ã−1
h dh (24)

using some approximation Ã−1
h to the operator A−1

h . Since we do not need A−1
h explicitly, but

rather its application, we can just solve a linear system of equations. Usually the corresponding
linear system of equations Ahy = dh is solved only approximately e.g. using an iterative solver,
hence the definition B−1dh := Ã−1

h dh. This is a case where the preconditioner is motivated by the
equations on the continuous level and then discretised, as opposed to e.g. the BFGS preconditioner,
which is derived directly from the discrete nonlinear system.

Remark 10.

1. The choice of the bilinear form was motivated by the fact that the functional F couples the
components of a deformation Φ. Other choices are possible, as is adding a part coming from
a zero order operator.

2. In the current form where ah(Φh, ηh) =
∫

Ω̂h
D(Φh) : D(ηh)dx, the preconditioner does not

depend on the current iterate Φ
(k)
h and the current mesh Φ

(k)
h (Th) since the integral is taken

on Ω̂h. It is possible to obtain a variable metric method by using the bilinear form

a
(k)
h (Φh, ηh) =

∫
Φ

(k)
h (Ω̂h)

D(Φh) : D(ηh)dx,

which sets Ω̂h = Φ(k)(Ωh). This requires the reassembly of the matrix A
(k)
h in every nonlinear

solver iteration, which is undesirable.

3. For the local functionals used, it is easy to bound ∀A ∈ SLd : c1‖A‖2F ≤ F ′h(x,A). Because
of the arithmetic-geometric mean inequality, we also trivially get the estimate ∀A ∈ SLd :
det(A) ≤ 1

d‖A‖
2
F . But because of the necessary regularity property limdet(A)→0 L(x,A) = ∞

of the local integrand, bounding F ′h(x,A) ≤ c‖A‖2F is not possible in general. This means
that the preconditioner will fail to give good results if the stability term of the functional Fh
becomes dominant.

On the other hand, the numerical experience in these situations is that the mesh is already
nearly deteriorated if the stability term becomes dominant, which usually only happens if e.g.
the boundary deformation is about to produce self intersections at the boundary. This indicates
problems in whatever is governing the boundary deformation, so the arising ill-conditioning
of the mesh optimisation problem is usually the least of all worries.

The way the preconditioner is constructed, derived from the continuous functional F on the
continuous level, already gives some hints on the limitations to expect.

1. Constant coefficients, reference domain dependent: Varying local optimal scales h
(Section 4.4) need to be expressed either by the reference mesh T̂h or varying coefficients.

2. Only dependent on ‖∇Φ‖F : Since it the bilinear form ah(·, ·) only uses the term ‖∇Φ‖F ,
we cannot expect good results if the parts of Fh depending on the other invariants of ∇Φ
become dominant.

3. Boundary conditions: If unilateral boundary conditions are to be imposed on some parts
of ∂Ω, ah(·, ·) has to be defined on the same spaces. Imposing this boundary condition by
the use of “simple” projection operators is not very stable with regard to preserving the
orientation (see [41, Chapter 5.4.2]). More sophisticated projection operators are needed,
which is beyond the scope of this work.

17

4. Effective solver for Ah: For the preconditioner to be effective, a fast solver for Ahy = dh
needs to be available. In this work, geometric multigrid based methods are used, which are
very efficient if T̂h is uniform, and may become inefficient if T̂h has anisotropies or cells of
very different sizes. In these cases, other solvers need to be considered. Since this is just a
preconditioner, it is also worth exploring how “close” Ã−1

h needs to be to A−1
h for Ã−1

h to be
an efficient preconditioner to the nonlinear system.

6 Numerical results

In this section, only a few numerical results can be presented. Refer to [41, Chapter 5] for a wide
selection of numerical results obtained with the methods presented here applied to moving bound-
ary problems, including r-adaptivity and surface alignment. Also, results on the preconditioners
for the case of a moving nonconvex domain are presented in [41, Chapter 7].

As the quality of meshes needs to be quantified in this section, a notion of cell quality indepen-
dent of the mesh quality functional is needed. Here, it seems intuitive to have a scaling invariant
measure of the shape quality. See [41, Chapter 5.2] for considerations concerning the cell size
distribution defect.

Definition 8 (Cell quantities). Let K ⊂ Rd.

1. h(K) := sup {‖x1 − x0‖2 : x0, x1 ∈ K} is called the diameter of K.

2. ρ(K) := 2 sup {r : ∃x0 ∈ K : Br(x0) ⊂ K} is called the in-circle diameter of K.

3. σ(K) := h(K)
ρ(K) is called the aspect ratio of K.

To prove the convergence of a finite element solution to the solution of the continuous problem,
an interpolation error estimate over a whole family of meshes is needed [13, Theorem 3.2.1].

Definition 9 (Regular family of meshes). Let (Ti)i∈N be a family of meshes. It is called a regular
family of meshes iff

1. sup
{
σ(K) : K ∈

⋃
i∈N Ti

}
=: σ <∞,

2. For h(Ti) := maxK∈Ti h(K) it holds that limi→∞ h(Ti) = 0.

If there is no ambiguity, we identify Ti with Thi or call the whole family of meshes just (Th).

We see that it is important to bound σi = sup
{
σ(K) : K ∈

⋃
i∈N Ti

}
from above for every Ti

that is a member of a family (Th) of meshes.
With the definitions of the minimum edge length hmin(K) = min{vol(e) : e ∈ E1(K)} and of

the maximum of the cosine of angles between two edges of a cell K,

γmax(K) := max

{
|(vi − vj , vk − vj)|
‖vi − vj‖2‖vk − vj‖2

: ∃eij , ekj ∈ E1(K) : vi, vj ∈ eij , vk, vj ∈ ejk
}
,

we chose the following mesh shape quality heuristics:

Definition 10 (Shape quality heuristic). For a domain Ωh ⊂ R2, a mesh Th in Ωh and a cell
K ∈ E2(T) define

Q(K) :=

{
hmin(K)
h(K)

√
1− γmax, K is convex

0 else
(25)

if K is a 2-hypercube and

Q(K) =
1

h(K)
d

√
vol(K)

vol(Ŝn)
(26)

if K is a d-simplex (see also [15, Sections 5 and 6]), and define the shape quality heuristic

Q(Th) := min
K∈E2(Th)

Q(K) (27)

and the the average shape quality heuristic Qa(Th) := 1
card(Ed(Th))

∑
K∈Ed(Th)Q(K).

18

These heuristics are chosen so that Q(K) = 0 if K is deteriorated (e.g. vol(K) = 0 or if K
nonconvex or degenerated to a triangle in the case of hypercubes) and that Q(Ŝn) = Q(Q̂n) = 1
(hence the additional scaling factor 1/ d

√
vol(S)n in (26)). To the best of the author’s knowledge,

there is no simple mesh quality heuristic based on geometric quantities for 3-hypercubes, as the
faces will in general not be planar. This means that for 3-hypercubes, one would need to compute
|R−1
K |1,∞,K directly.
The hypercube quality heuristic (25) has the important property that it tends to zero if an

interior angle tends to zero or π, or if the length of an edge tends to zero. Note that γmin(K)→ 0
or hmin → 0 only imply ρ(K)→ 0 if K is an affine hypercube.

6.1 Software used

All computations in this chapter were done on compute servers at the Technische Universität
Dortmund using the software Feat3, which is part of the Feat and FeatFlow software family
[33, 37, 48, 49]). It is a new C++ code designed to be used by researchers as well as in industry
applications and features a very flexible solver structure and a great variety of finite elements
including Argyris, Bogner-Fox-Schmit, conforming Lagrange, Crouzeix-Raviart, Rannacher-Turek
and Zienkiewicz elements. The code is MPI parallel and GPU acceleration is available for a wide
range of linear solvers, as well as a domain decomposition-based solver using the ScaRC architecture
[35].

The nonlinear solvers used in this section are not implemented for GPUs, as there is no matrix
that can be assembled in the main memory and then upload it to the GPU. Instead, an evaluation
of the functional’s gradient F ′h requires one gather operation per cell, which is detrimental for GPU
performance. Although most solvers are also MPI parallel, some computations in this section were
done in serial to be able to compare the results with solvers from ALGLIB [10], for which Feat3
provides an interface.

6.2 Refinement of a unit circle mesh

In this case the aim is to have a simple geometric situation where an outer boundary is adjusted
and the mesh is optimised afterwards. The same happens in every time step of an instationary
problem involving a moving mesh, and will be used to study the convergence behaviour different
solvers and preconditioners applied to a degenerating family of meshes, meaning it is no regular in
the sense of Definition 9. Note that the quality of the resulting meshes is not discussed in detail
(see [41, Chapter 5.3] for an in-depth analysis and comparison with the quadratic mesh quality
functional based on the D(Φ) : D(η) bilinear form).

We consider the domain Ω = B1(0) ⊂ R2 with a polygonal approximation Ωh and a mesh Th
of simplices or hypercubes of dimension 2.

(a) Th,0. (b) Th,4. (c) ϕ̂(Th,4). (d) Φ∗(Th,4).

Figure 5: Various meshes for the approximation of the unit circle, hypercubes.

We obtain this by using
Ωh := {x ∈ R2 : ‖x‖1 ≤ 1},

with a mesh Th,0 which we then refined using regular refinement to obtain the mesh Th,l which in
turn defines the boundary ∂Ωh,l and thus Ωh,l. In the following, the index l is omitted if this is

19

unambiguous or generic.
We now want to use this family of meshes to approximate Ω by imposing an appropriate

displacement boundary condition through the mapping

ϕ : R2 \ {0} → ∂Ω : ϕ(x) =
1

‖x‖
x,

with which we can define the vertex mapping

ϕ̂ : E0(Th)→ R2, ϕ̂(v) =

{
trϕ(v), v ∈ ∂Th
v, v /∈ ∂Th(tk)

. (28)

This can be interpreted as using the explicit knowledge of ∂Ω to adapt ∂Ωh,l such that

∀v ∈ E0(Th,l) : v ∈ ∂Ωh,l ⇒ v ∈ ∂Ω,

which also arises in every time step in an instationary problem involving a moving mesh Th(t).

The mapping ϕ̂ also defines a member of Dφ,∂Ωh
h (Th,Ω) as its values can be interpreted as the

DoF of the appropriate discrete space. This finite element function will again be denoted by ϕ̂ and
used as the initial guess for all solvers. It also can be used to visualise the domain and the mesh
after applying the boundary deformation.

(a) Th,0. (b) Th,4. (c) ϕ̂(Th,4). (d) Φ∗(Th,4).

Figure 6: Various domains for the approximation of the unit circle, simplices.

To create a degenerating sequence of meshes, only ∂Th,l is adapted (meaning ϕ̂ is only applied
after the lth refinement), which leads to cells of very poor quality in ϕ̂(Th,l), which could e.g. be
the output of an external mesh generation tool.

Define the spaces

Vh :=
{
v ∈ D(Th) : v|∂Ω̂h

= ϕ
}
, Wh :=

{
w ∈ D(Th) : w|∂Ω̂h

= 0
}
.

For the mesh quality functional, we use the local functionals

LK(Φ) = α1(‖∇RK(Φ)‖2F −d)2 +α3 det(∇RK(Φ))r +
c(r)(

det(∇RK(Φ)) +
√
δ2
r + det(∇RK(Φ))2

)r ,
which is a regularisation of the example (19).

In this example, the parameters are α1 = 1, α3 = 1, δr = 1e−8, r = 1, c(r) =
√
δ2
r + 1 + δ2

r + 1.

Solver configuration The nonlinear solvers used were NLCG, lBFGS and preconditioned NLCG.
They all used a mixed quadratic/cubic interpolating line search implementing the strong Wolfe
conditions [39, Chapter 3.1].

The line search used c1 = 1e−3, c2 = 0.3 for the strong Wolfe conditions, a step length criterion
of εs = 5e−14 and was allowed a maximum of 20 iterations. The NLCG was allowed 10 subsequent
iterations without the line search finding a point satisfying the strong Wolfe conditions before
aborting.

For the preconditioners, the configurations for obtaining an approximation Ã−1
h are:

20

lBFGS

εr = 1e−8
εf = 0

lBFGS dim = 10
max iter = 10000

(a) lBFGS configuration

NLCG εr = 1e−8
εs = 2.2204e−16

εf = 0
stag iter = 10

max iter = 10000
Update Dai-Yuan-Hestenes-Stiefel

(b) NLCG configuration

Table 1: Different nonlinear solver configurations.

1.
(
Ãwh

)−1

: Solve the linear system given by the operator Ah approximately by applying exactly

one multigrid V-cycle from either Table 2a or Table 2b (“weak” preconditioner).

2.
(
Ãsh

)−1

: Solve the linear system given by the operator Ah approximately by with PCG-MG

from either Table 2a or Table 2b(“strong” preconditioner).

PCG εr = 1e−8
max iter = 1000

MG cycle = V
coarsest level = 1

Smoother Richardson-Jacobi
Smoother iterations 4 pre, 4 post
Coarse grid solver PCG-Jacobi

Jacobi ω = 0.7

PCG-Jacobi εr = 1e− 8
max iter = 1000

(a) Configuration 1

PCG εr = 1e−8
max iter = 1000

MG cycle = V
coarsest level = 1

Smoother CG
Smoother iterations 4 pre, 4 post
Coarse grid solver PCG-Jacobi

Jacobi ω = 0.5

PCG-Jacobi εr = 1e− 8
max iter = 1000

(b) Configuration 2

Table 2: Different solver configurations for applying (Ã·,Fh)−1.

In all tables with iteration numbers, cases in which a solver stagnated have the letter s, while
the cases in which the nonlinear solver did stop early because of the step length or functional
value criterion have an asterisk in the first column. In all of these cases, the NLCG stopped
because the step length criterion was satisfied. This is an indicator for the problem being too
badly conditioned for the nonlinear solver to make any further progress and might be related to
the regularity of the minimiser and the Euler-Lagrange equations (see Remark 3). One could set
εs = 0, but in numerical experiments this led to more iterations where the output of the line search
does not satisfy the strong Wolfe conditions, leading to stagnation of the solver after 10 iterations.

It should be noted that in all tables, the number of lBFGS or NLCG iterations is given, which
is the correct metric to assess the influence of a preconditioner, but it does not describe the overall
numerical effort. This is more accurately measured by the number of functional evaluations, which
can be very different in everly line search iteration and not directly influenced by the preconditioner.

Remark 11. Since the minimiser Φ∗ = argminΦ F(Φ) is not unique, preconditioning the solver
might cause it to converge to a completely different solution.

There are also the effects of the step length stopping criterion and the stagnation criterion, which
cause the solver to stop before the criteria on the absolute or relative residual norm are met. These
criteria are chosen based on numerical experience to stop the solver early when it is highly unlikely
or very costly for it to make any further progress. This also means that preconditioning might cause
the solver to make progress towards a different local minimiser which it might not reach due to these
criteria, or the preconditioned iteration makes further progress towards a different solution instead
of stopping early, requiring more iterations. The nonuniqueness of the solution makes measuring
the effect of using different solvers and preconditioners much more difficult.

21

Simplex meshes For all solvers for applying the preconditioners (Ã·,·h)−1, the solver configura-
tion from Table 2a was used.

l # its # evals Q(ϕ̂(Th)) Q(Φ∗(Th)) Qa(ϕ̂(Th)) Qa(Φ∗(Th)) ‖F ′(Th)‖2
‖F ′(Φ∗(Th))‖2

3 44 75 7.13e-1 7.21e-1 7.68e-1 8.49e-1 8.71e-9
4 103 147 5.46e-1 6.94e-1 7.48e-1 8.51e-1 9.42e-9
5 208 257 4.02e-1 6.76e-1 7.45e-1 8.52e-1 9.02e-9
6 400 453 2.90e-1 6.63e-1 7.49e-1 8.53e-1 9.76e-9
7 1081 1608 2.07e-1 6.53e-1 7.53e-1 8.53e-1 9.52e-9
8 3908 9229 1.47e-1 6.44e-1 7.56e-1 8.53e-1 9.86e-9
9s 1156 4602 1.04e-1 4.63e-1 7.57e-1 7.77e-1 6.36e-7

10* 388 748 7.37e-2 2.74e-1 7.59e-1 7.13e-1 6.66e-7
11s 359 797 5.21e-2 3.40e-1 7.59e-1 7.43e-1 6.38e-7

Table 3: NLCG, simplex meshes.

In Table 3 we can see the number of iterations approximately doubling for every level of re-
finement up to level seven. Level eight is the last level where the solver converges with regard to
εr, but the number of iterations and evaluations quadrupled compared to level seven. As men-
tioned before, this indicates the ill-conditioning of the problem. Also, the ratio between iterations
and functional evaluations becomes worse, as the line search becomes more difficult with further
refinement.

l # its # evals Q(ϕ̂(Th)) Q(Φ∗(Th)) Qa(ϕ̂(Th)) Qa(Φ∗(Th)) ‖F ′(Th)‖2
‖F ′(Φ∗(Th))‖2

3 40 72 7.13e-1 7.21e-1 7.68e-1 8.49e-1 9.66e-9
4 94 127 5.46e-1 6.94e-1 7.48e-1 8.51e-1 8.11e-9
5 184 259 4.02e-1 6.76e-1 7.45e-1 8.52e-1 8.57e-9
6 377 719 2.90e-1 6.63e-1 7.49e-1 8.53e-1 9.93e-9
7 791 1613 2.07e-1 6.53e-1 7.53e-1 8.53e-1 1.00e-8
8 1915 4546 1.47e-1 6.44e-1 7.56e-1 8.53e-1 9.94e-9
9s 389 1924 1.04e-1 1.63e-1 7.57e-1 7.54e-1 2.85e-5

10* 507 3102 7.37e-2 2.08e-1 7.59e-1 7.31e-1 9.78e-7
11* 759 1331 5.21e-2 4.92e-1 7.59e-1 7.31e-1 3.20e-8

Table 4: lBFGS, simplex meshes.

The iteration and functional evaluation numbers when using lBFGS (see Table 4) still show
the same doubling with each level of refinement up until level eight. From level nine on, the
solver stops early due to the functional value improvement criterion (recall that εf = 0, meaning
subsequent iterates yielded the same functional value). On levels nine and ten, the stopping
iterate results in meshes with very poor shape quality heuristic Q, while on level eleven, the result
is significantly better. Note how the number of functional evaluations per iteration increases with
further refinement and drops again on level eleven. There is no real explanation for this except
for the unpredictability of solution process of the nonlinear problem. Also note that even though
BFGS is considered the most efficient quasi Newton method and offers superlinear convergence rates
for strongly convex functional under certain assumptions [39, Chapter 6.4], the limited memory
variant applied to this nonconvex functional actually behaves quite similar to unpreconditioned
NLCG (Table 3) up to level seven. This indicates that using the Newton direction (21) (in the
cases where it actually is a descent direction) e.g. by appropriately preconditioning a steepest
descent method or NLCG will most likely not give decisively different convergence rates.

If we apply the preconditioner (Awh)−1 (the results can be found in Table 5), the number of
iterations only increases slightly with each level of refinement, up to level seven. Like in the
unpreconditioned case (see Table 3), the results are different from level eight on, where the number
of iterations increases sharply. On levels nine and ten, the solver stops due to the step length

22

l # its # evals Q(ϕ̂(Th)) Q(Φ∗(Th)) Qa(ϕ̂(Th)) Qa(Φ∗(Th)) ‖F ′(Th)‖2
‖F ′(Φ∗(Th))‖2

3 26 71 7.13e-1 7.21e-1 7.68e-1 8.49e-1 5.69e-9
4 33 61 5.46e-1 6.94e-1 7.48e-1 8.51e-1 5.72e-9
5 41 72 4.02e-1 6.76e-1 7.45e-1 8.52e-1 8.02e-9
6 47 76 2.90e-1 6.63e-1 7.49e-1 8.53e-1 9.97e-9
7 48 123 2.07e-1 6.53e-1 7.53e-1 8.53e-1 6.96e-9
8 255 2313 1.47e-1 6.45e-1 7.56e-1 8.53e-1 9.98e-9
9* 333 4090 1.04e-1 5.98e-1 7.57e-1 8.52e-1 9.85e-8
10* 503 6621 7.37e-2 6.43e-1 7.59e-1 8.48e-1 6.17e-8
11s 125 2095 5.21e-2 1.42e-2 7.59e-1 8.00e-1 2.98e-1

Table 5: NLCG-Ãwh , simplex meshes.

criterion, and the shape quality indicatorQ(Φ∗(Th)) is higher than in the case of no preconditioning.
On refinement level eleven, the solver stagnates without reaching a useful local minimum. Clearly,
Awh has stopped being a good preconditioner, either because the approximation (Awh)−1 obtained
by applying a single multigrid V-cycle is no longer good enough, or because the approximation
on the continuous level is not sufficient. We will see below that this is not the case, as using
the “stronger” preconditioner (AFh)−1 gives much better results. Note that the same increase in
functional evaluations per NLCG iteration as before occurs.

l # its # evals Q(ϕ̂(Th)) Q(Φ∗(Th)) Qa(ϕ̂(Th)) Qa(Φ∗(Th)) ‖F ′(Th)‖2
‖F ′(Φ∗(Th))‖2

3 24 48 7.13e-1 7.21e-1 7.68e-1 8.49e-1 9.10e-9
4 30 61 5.46e-1 6.94e-1 7.48e-1 8.51e-1 7.76e-9
5 32 61 4.02e-1 6.76e-1 7.45e-1 8.52e-1 8.18e-9
6 36 66 2.90e-1 6.63e-1 7.49e-1 8.53e-1 6.97e-9
7 38 68 2.07e-1 6.53e-1 7.53e-1 8.53e-1 7.90e-9
8 41 90 1.47e-1 6.45e-1 7.56e-1 8.53e-1 8.27e-9
9 40 161 1.04e-1 6.30e-1 7.57e-1 8.53e-1 8.80e-9
10 79 724 7.37e-2 6.17e-1 7.59e-1 8.48e-1 8.25e-9
11 28 280 5.21e-2 5.24e-1 7.59e-1 8.41e-1 7.37e-9

Table 6: NLCG-Ãsh, simplex meshes.

Applying the strong preconditioner Ãsh yields iteration number that increase only slightly with
increasing refinement level (see Table 6). The solver converges with regard to the relative residual
criterion for all levels, which is a very important improvement over the other preconditioners used
so far. However, we see the number of functional evaluations increasing sharply from level nine on,
meaning the line search requires more iterations, increasing the ratio of evaluations per iteration.
This is another indicator for the systematic ill-conditioning of the system, where the preconditioner
improves the search directions, but cannot make the finding of a step satisfying the strong Wolfe
conditions any easier.

Notice how the resulting shape quality indicator Q(Φ∗(Th)) decreases with further refinement,
even though the solver converged with regard to the relative residual norm. Apparently, this
stopping criterion is not optimal achieving the best possible mesh quality. This also means that
the performance of a solver or preconditioner cannot be evaluated based on iteration numbers
alone, but the “quality” of the solutions found needs to be taken into account as well, both due to
the nonuniqueness and the described effect.

Hypercube meshes The hypercube case will be discussed in less detail, as the results are qual-
itatively similar. For all solvers for applying the preconditioners (Ã·h)−1, the solver configuration
from Table 2b was used because the configuration from Table 2a resulted in the multigrid V-cycle
not reducing the norm of the defect of the system it was applied to.

23

l # its # evals Q(ϕ̂(Th)) Q(Φ∗(Th)) Qa(ϕ̂(Th)) Qa(Φ∗(Th)) ‖F ′(Th)‖2
‖F ′(Φ∗(Th))‖2

3 95 145 1.80e-1 4.22e-1 4.24e-1 5.70e-1 9.97e-9
4 190 239 1.86e-1 4.41e-1 4.22e-1 5.97e-1 7.19e-9
5 422 482 1.39e-1 4.52e-1 4.26e-1 6.12e-1 8.80e-9
6 717 781 7.18e-2 4.57e-1 4.29e-1 6.20e-1 9.91e-9
7 1209 1324 3.65e-2 4.60e-1 4.32e-1 6.24e-1 9.53e-9
8 1991 2109 1.84e-2 4.61e-1 4.33e-1 6.26e-1 9.64e-9
9 3256 3481 9.23e-3 4.65e-1 4.34e-1 6.36e-1 9.69e-9

10s 990 5559 4.62e-3 1.12e-1 4.35e-1 4.52e-1 7.12e-7
11* 1357 9936 2.31e-3 2.70e-2 4.35e-1 4.36e-1 1.14e-6

Table 7: NLCG, hypercube meshes.

Table 7 contains the results obtained by using the unpreconditioned NLCG solver. The main
difference to the simplex case is that the number of iterations slightly less than doubles with every
level of refinement only up to level nine, for up to which the solver converges with regard to the
relative residual norm. Note that due to the nonuniqueness of the solution and the resulting highly
unpredictable solver behaviour, this does not indicate any systematic advantages. Because of the
high computation times of the unpreconditioned solver, refinement levels ten and eleven were done
in parallel with 16 MPI processes. On level ten, the solver stagnates and on level eleven it stops
due to the step length criterion, with a high ratio of functional evaluations per NLCG iteration,
indicating the ill-conditioning of the problem.

l # its # evals Q(ϕ̂(Th)) Q(Φ∗(Th)) Qa(ϕ̂(Th)) Qa(Φ∗(Th)) ‖F ′(Th)‖2
‖F ′(Φ∗(Th))‖2

3 86 138 1.80e-1 4.22e-1 4.24e-1 5.70e-1 1.48e-8
4 167 238 1.86e-1 4.41e-1 4.22e-1 5.97e-1 8.63e-9
5 330 507 1.39e-1 4.52e-1 4.26e-1 6.12e-1 9.01e-9
6 564 932 7.18e-2 4.57e-1 4.29e-1 6.20e-1 9.85e-9
7 1337 3156 3.65e-2 4.60e-1 4.32e-1 6.24e-1 9.78e-9
8* 385 884 1.84e-2 4.00e-2 4.33e-1 6.12e-1 2.84e-6
9* 746 1225 9.23e-3 5.49e-2 4.34e-1 6.09e-1 3.00e-7
10* 567 1924 4.62e-3 1.82e-1 4.35e-1 5.30e-1 1.38e-7
11* 817 1457 2.31e-3 1.71e-1 4.35e-1 5.03e-1 5.59e-8

Table 8: lBFGS, hypercube meshes.

Using steepest descent preconditioned with lBFGS (Table 8) again gives qualitatively similar
results as in the simplex case, with less iterations and functional evaluations required than with
unpreconditioned NLCG up to refinement level six, with the same dependence on the refinement
level. On level seven, more iterations compared to using NLCG are needed, and from level eight
on the solver stops early without converging with regard to the relative residual norm. Clearly,
the minimisation problem is such that the theoretical advantages of this solver over the unprecon-
ditioned NLCG do not come into play.

When using the “weaker” preconditioner Ãwh (the results are in Table 9), the number of itera-
tions only slightly increases up to refinement level seven. Level eight appears to be the point where
the preconditioner no longer gives the radical improvement of the lower levels, and the number of
line search iterations needed in every NLCG iteration increases sharply. From level ten on, the
solver stagnates with ten subsequent steps of steepest descent.

As in the simplex case, using the “stronger” preconditioner Ãsh results in the solver being
able to converge with regard to the relative residual norm for all levels of refinement (see Table
10). The number of iterations again only lightly depends on the refinement level. However, the
interesting effect of the iteration numbers decreasing with further refinement can be observed, with
only nine iterations for refinement level eleven. But the shape quality heuristic Q(Φ∗(Th)) shows

24

l # its # evals Q(ϕ̂(Th)) Q(Φ∗(Th)) Qa(ϕ̂(Th)) Qa(Φ∗(Th)) ‖F ′(Th)‖2
‖F ′(Φ∗(Th))‖2

3 59 136 1.80e-1 4.22e-1 4.24e-1 5.70e-1 1.30e-8
4 82 126 1.86e-1 4.41e-1 4.22e-1 5.97e-1 7.90e-9
5 102 150 1.39e-1 4.52e-1 4.26e-1 6.12e-1 7.97e-9
6 117 164 7.18e-2 4.57e-1 4.29e-1 6.20e-1 8.35e-9
7 105 154 3.65e-2 4.60e-1 4.32e-1 6.24e-1 9.96e-9
8 191 1450 1.84e-2 4.61e-1 4.33e-1 6.26e-1 9.32e-9
9 766 10050 9.23e-3 4.62e-1 4.34e-1 6.27e-1 9.36e-9

10s 95 1329 4.62e-3 1.05e-2 4.35e-1 4.67e-1 5.13e-2
11s 48 853 2.31e-3 3.01e-3 4.35e-1 4.47e-1 4.78e-1

Table 9: NLCG-Ãwh , hypercube meshes.

that the resulting mesh contains cells of much lower quality. Like in the simplex case, this indicates
that stopping based on the relative residual with the same criterion on all levels is not sufficient
for ensuring good mesh quality, but the effect is much stronger. For comparison purposes, the
computation on level eleven was done with a lower stopping criterion of εr = 1e−12 and can be
found in the last row of Table 10. With the lower stopping criterion, the shape quality heuristic
Q(Φ∗(Th)) is again in the same range as on the lower refinement levels, at the cost of many more
iterations performed.

l # its # evals Q(ϕ̂(Th)) Q(Φ∗(Th)) Qa(ϕ̂(Th)) Qa(Φ∗(Th)) ‖F ′(Th)‖2
‖F ′(Φ∗(Th))‖2

3 60 101 1.80e-1 4.22e-1 4.24e-1 5.70e-1 8.70e-9
4 78 121 1.86e-1 4.41e-1 4.22e-1 5.97e-1 9.72e-9
5 86 123 1.39e-1 4.52e-1 4.26e-1 6.12e-1 9.95e-9
6 91 137 7.18e-2 4.57e-1 4.29e-1 6.20e-1 8.02e-9
7 82 118 3.65e-2 4.60e-1 4.32e-1 6.24e-1 8.51e-9
8 66 101 1.84e-2 4.61e-1 4.33e-1 6.26e-1 8.84e-9
9 45 75 9.23e-3 4.61e-1 4.34e-1 6.27e-1 9.89e-9
10 29 63 4.62e-3 4.63e-1 4.35e-1 6.30e-1 9.77e-9
11 9 29 2.31e-3 9.69e-2 4.35e-1 5.54e-1 6.71e-9
11 196 620 2.31e-3 4.62e-1 4.35e-1 6.27e-1 9.71e-13

Table 10: NLCG-Ãsh, hypercube meshes.

For the example of the refinement of the unit circle mesh, the effect of the preconditioners
is very strong, especially of the NLCG-Ãsh variant. The use of these preconditioners also allows
working with much finer meshes than otherwise possible. Going to these extremely fine meshes
also revealed that the selection of the stopping criteria for the solver is more difficult than for linear
problems, and that the relative residual norm might not be a good indicator for the quality of the
corresponding solution. An application of this preconditioner to a moving nonconvex mesh can be
found in [41, Chapter 7.2].

6.3 Application to a gerotor pump geometry

This example is inspired by the geometry of a gerotor micro gear pump. The design is well-known
(see [32, 36] for some related patents), but still subject of development and optimisation. Two
excentrically placed screws with n (inner) and n+1 teeth (outer) rotate at different angular veloci-
ties, which is a geometric requirement, as the screws must not touch. Their rotation compresses or
expands the corresponding chambers, so leakage of fluid from high to low pressure chambers may
result in an efficiency loss. This is hard to simulate numerically, as the complex moving domain is
difficult to resolve.

Here, only 2d results for n = 6 are presented, without modelling of the inlet or outlet. The

25

aim is to show that the general purpose mesh optimisation method can be applied to a complex,
moving domain on which the incompressible Navier-Stokes equations are then solved numerically.
This is a setting where usually special purpose mesh movement techniques have to be used [18].
Lacking inlet and outlet, the flow will be (somewhat artificially) governed by the incompressibility
constraint, which creates very high flow speeds.

One of the reasons why mesh optimisation in 2d is of practical importance are cases like this,
where a 3d geometry can be expressed by an extruded 2d geometry. This is very easy to do for
hypercube elements (see [41, Chapter 5.4.2]) but will not be discussed here.

Γ1

Γ2

(a) t = 0.

Γ1

Γ2

(b) t = 0.065.

Figure 7: The mesh Th,1 for different times.

Denote by Γ1 the inner boundary (meaning the outer boundary of the inner screw) and by Γ2

the outer boundary (meaning the inner boundary of the outer screw). The domain of interest is
the part between Γ1 and Γ2. This means that the gap width

δg :Ω→ R, δg(x) =

2∑
i=1

min{‖x− xi‖2 : xi ∈ Γi}

greatly varies between

δmin = min{‖x2 − x1‖2 : x1 ∈ Γ1, x2 ∈ Γ2} = 0.02,

δmax = max
x∈Ωh

{min{‖x1 − x‖2 + ‖x2 − x‖2 : x1 ∈ Γ1, x2 ∈ Γ2}} = 1.15.

This strong anisotropy means that the optimal scale of a cell K needs to be chosen according
to its distance from Γ1,Γ2, a this changes according to the rotation and cells get compressed and
expanded.

The goal is to allow for a full rotation of the outer screw, but since the screws rotate at
different speeds, fixing the boundary vertices to their positions corresponding to the appropriate
rigid body rotation by a displacement boundary condition (see Definition 6.3) quickly leads to
mesh deterioration. Instead, a unilateral boundary condition of place (see Definition 6.4) needs
to be used on one or even both boundaries. However, due to the strongly curved surfaces, mesh
deformation methods not enforcing the orientation preserving property directly cannot use simple
projection operators to enforce this boundary condition (see [41, Chapter 5.4.2] for a more in-depth
discussion).

26

If a unilateral boundary condition of place is enforced at both boundaries, it means the cells
can move freely throughout the mesh, although it might be advantageous to rule out rigid body
rotations in the vertex movement (e.g. by enforcing a displacement boundary condition for one
vertex on the outer boundary). Using unilateral boundary conditions of place on both boundaries
helps to reduce the degree of anisotropy by allowing cells to dramatically change their sizes.

Denote by Th,0 the coarse mesh, which already captures the geometry and which is then refined
l times (with boundary adaption similar to the vertex mapping (28)) for sufficient resolution of the
incompressible Navier-Stokes equations. To reduce the numerical effort, the mesh optimisation is
solved for Th,lm , 0 ≤ lm < l and the solution is then prolongated to the finer mesh levels. However,
the simple prolongation used does not take the orientation preserving property into account, so
the choice of lm depends on numerical experience. More sophisticated prolongation operators
are possible, but the expected numerical effort is expected to offset any gain of solving the mesh
optimisation on a coarser mesh in the first place.

Level DoF v DoF p DoF Φ

0 7200 1080 2160
1 25920 3600 7200
2 97920 12960 25800
3 380160 48960 97920
4 1497600 190080 380160

Table 11: Degrees of freedom for different refinement levels.

The Navier-Stokes equations are discretised in space with conforming the LBB stable Q2/Q1

pair and in time with BDF2 using a pressure projection scheme [26] and a second order extrap-
olation in the nonlinear term. The mesh movement is treated by an ALE formulation. Because
the flow and the mesh movement are very strong, the resulting system is very nonsymmetric and
a ill-conditioned, so a strong solver/preconditioner combination is necessary (see Table 12). To
sufficiently resolve the resulting vortices, l ≥ 4 is needed, which makes lm = 2 necessary to ensure
sufficient mesh quality. The resulting number of DoF can be found in Table 11.

FGMRES(7)-MG εr = 1e−8
max iter = 100

MG cycle = F
coarsest level = 0

Smoother FGMRES(32)-Jacobi1
Smoother iterations 32 pre, 32 post
Jacobi1 ω = 0.4
Coarse grid solver Richardson-Jacobi2
Richardson min iter = 1

max iter = 1

Jacobi2 ω = 0.7

(a) Velocity solver

PCG-MG εr = 1e−8
max iter = 1000

MG cycle = V
coarsest level = 0

Smoother Richardson-Jacobi1
Smoother iterations 8 pre, 8 post
Jacobi1 ω = 0.4
Coarse grid solver PCG-Jacobi2
PCG-Jacobi2 εr = 1e− 8

max iter = 1000

Jacobi2 ω = 0.5

(b) Pressure solver

Table 12: Flow solver configuration.

The equations were solved on the time interval [0, 1] with time step size δt = 1e−4, with
the outer boundary performing exactly one full rotation. For the flow computations Re = 10
was used, but due to the nondimensionalisation of the domain’s rotation, the angular velocity
and the resulting flow speeds of ‖vmax‖2 ≈ 650, this corresponds to a real Reynolds number of
approximately Re = 6500. The flow field for two time steps is shown in Figure 8, where the colour
scale is chosen to account for the jet-like flow. While the flow can be resolved on coarser levels,
l = 4 is necessary to resolve the vortices in the flow field, as instabilities can be observed otherwise.
After a short startup phase, the flow becomes quasi-periodic and the pressure is uniform in each
chamber, as it is governed by its compression or expansion.

27

(a) t = 0.072 (b) t = 0.144

Figure 8: The flow field with ‖v‖2 plotted from 0 (blue) to 60 (red).

7 Conclusion

The presented method is a useful generalisation of the work in [46] and can be used as a black box
for optimising moving meshes. Because it directly enforces the orientation preserving property, it
is very robust and allows the use of unilateral boundary conditions of place. Furthermore, it is
formulated in the principal invariants of the deformation gradient and offers fine-grained control
over the deformation of entities of all shape dimensions.

One theoretical shortcoming is that the minimiser that can be proven to exist might not be a
solution of the Euler-Lagrange equations in the corresponding space (Remark 3). However, even
if a mesh is not optimal in the sense defined by the energy functional, the resulting deformation is
still orientation preserving, which is the critical property.

Solution techniques and a PDE-based preconditioner have been presented, although no the-
oretical bounds for the resulting condition numbers could be obtained. As the necessary but
problematic stability property (A5) rules out the convexity of the resulting functional, it cannot
be used in the preconditioner as highly efficient numerical methods are not available for this type
of problem.

The preconditioner’s performance was showcased in an example, showing iteration numbers
only mildly depending on the mesh refinement level. As the minimiser of the energy functional is
not unique, the PDE-based preconditioner even allowed finding minimisers resulting in better mesh
quality. Furthermore, the solver did not stagnate as it did for the unpreconditioned case or when
using an lBFGS preconditioner. The applicability of the method for solving the incompressible
Navier-Stokes equations in a complex geometric situation was demonstrated. Using unilateral
boundary conditions of place, the general purpose mesh optimisation method was able to obtain a
stable geometry, for which previously special purpose methods were required.

Because of the method’s robustness, it is also possible to use it as a basis for r-adaptivity [41]
and alignment of meshes to implicit surfaces (see [9, 41]), which was not discussed in this work.

Acknowledgement

The financial support of DFG is gratefully acknowledged (TU 102/50-1).

28

References

[1] S. S. Antman, Regular and singular problems for large elastic deformations of tubes, wedges, and cylinders,
Archive for Rational Mechanics and Analysis 83 (1983), no. 1, 1–52.

[2] T. A. Baer, R. A. Cairncross, R. R. Rao, P. A. Sackinger, and P. R. Schunk, A finite element method for free
surface flows of incompressible fluids in three dimensions. Part I. Boundary fitted mesh motion, International
Journal for Numerical Methods in Fluids 33 (2000), 375–403.

[3] J. M. Ball, Convexity conditions and existence theorems in nonlinear elasticity, Archive for Rational Mechanics
and Analysis 63 (1976), no. 4, 337–403.

[4] E. Bänsch, Simulation of instationary, incompressible flows, Acta mathematica Universitatis Comenianae 67,
no. 1 (1998), 101–114.

[5] , Finite element discretization of the Navier-Stokes equations with a free capillay surface, Numerische
Mathematik 88 (2001), no. 2, 203–235.

[6] E. Bänsch, S. Basting, and R. Krahl, Numerical simulation of two-phase flows with heat and mass transfer,
Discrete and Continuous Dynamical Systems 35 (2015), no. 6, 2325–2347.

[7] E. Bänsch, J. Paul, and A. Schmidt, An ALE finite element method for a coupled Stefan problem and Navier-
Stokes equations with free capillary surface, International Journal for Numerical Methods in Fluids 71 (2013),
no. 10, 1282–1296.

[8] S. Basting, An interface fitted finite element method for multiphysics simulations, Ph.D. Thesis, Friedrich-
Alexander-Universität Erlangen-Nürnberg (FAU), 2016.

[9] S. Basting and M. Weismann, A hybrid level set front tracking finite element approach for fluid–structure
interaction and two-phase flow applications, Journal of Computational Physics 255 (2013), 228 –244.

[10] S. Bochkanov, ALGLIB. www.alglib.net.

[11] D. Braess, Finite elements: Theory, fast solvers, and applications in solid mechanics, 3rd ed., Cambridge
University Press, 2007.

[12] P. R. Brune, M. G. Knepley, B.F. Smith, and X. Tu, Composing scalable nonlinear algebraic solvers, SIAM
Review 57 (2015), no. 4, 535–565.

[13] P. G. Ciarlet, The Finite Element Method for Elliptic Problems, Studies in Mathematics and its Applications,
Elsevier Science, 1978.

[14] , Mathematical elasticity Vol. I: Three-dimensional elasticity, Studies in Mathematics and its Applica-
tions, vol. 20, North-Holland Publishing Co., Amsterdam, 1988.

[15] P.G. Ciarlet and P.-A. Raviart, Interpolation theory over curved elements, with applications to finite element
methods, Computer Methods in Applied Mechanics and Engineering 1 (1972), no. 2, 217 –249.

[16] Y. H. Dai and Y. Yuan, A nonlinear conjugate gradient method with a strong global convergence property,
SIAM J. on Optimization 10 (May 1999), no. 1, 177–182.

[17] H. Damanik, J. Hron, A. Ouazzi, and S. Turek, Monolithic Newton-multigrid solution techniques for incom-
pressible nonlinear flow models, International Journal for Numerical Methods in Fluids 71 (2013), no. 2, 208–
222.

[18] H. Ding, X. J. Lu, and B. Jiang, A CFD model for orbital gerotor motor, IOP Conference Series: Earth and
Environmental Science 15 (2012), no. 6, 062006.

[19] L. C. Evans, Partial differential equations, Graduate studies in mathematics, American Mathematical Society,
1998.

[20] R. Fletcher and C. M. Reeves, Function minimization by conjugate gradients, The Computer Journal 7 (1964),
no. 2, 149–154, available at http://comjnl.oxfordjournals.org/content/7/2/149.full.pdf+html.

[21] M. Fossati, R. A. Khurram, and W.G. Habashi, An ale mesh movement scheme for long-term in-flight ice
accretion, International Journal for Numerical Methods in Fluids 68 (2012), no. 8, 958–976.

[22] L. A. Freitag and P. M. Knupp, Tetrahedral mesh improvement via optimization of the element condition
number, International Journal for Numerical Methods in Engineering 53 (2002), no. 6, 1377–1391.

[23] R. Glowinski and O. Pironneau, Finite element methods for Navier-Stokes equations, Annular Review of Fluid
Mechanics 24 (1992), 167–204.

[24] C. Gross and R. Krause, On the convergence of recursive trust-region methods for multiscale nonlinear op-
timization and applications to nonlinear mechanics, SIAM Journal on Numerical Analysis 47 (2009), no. 4,
3044–3069, available at http://dx.doi.org/10.1137/08071819X.

[25] , A recursive trust-region method for non-convex constrained minimization, 18th international confer-
ence on domain decomposition methods, 2009, pp. 137–144.

[26] J. L. Guermond, P. Minev, and J. Shen, An overview of projection methods for incompressible flows, Computer
Methods in Applied Mechanics and Engineering 195 (2006), no. 4447, 6011 –6045.

[27] M. E. Gurtin, On the nonlinear theory of elasticity, Contemporary Developments in Continuum Mechanics
and Partial Differential Equations: Proceedings of the International Symposium on Continuum Mechanics and
Partial Differential Equations, Rio de Janeiro, August 1977, 1978, pp. 237–253.

29

http://comjnl.oxfordjournals.org/content/7/2/149.full.pdf+html
http://dx.doi.org/10.1137/08071819X

[28] W. W. Hager and H. Zhang, A survey of nonlinear conjugate gradient methods, Pacific journal of Optimization
2 (2006), no. 1, 35–58.

[29] M. R. Hanisch, Multigrid Preconditioning For The Biharmonic Dirichlet Problem, SIAM Journal on Numerical
Analysis 30 (1993), 184–214.

[30] B. T. Helenbrook, Mesh deformation using the biharmonic operator, International Journal for Numerical Meth-
ods in Engineering 56 (2003), no. 7, 1007–1021.

[31] M. R. Hestenes and E. Stiefel, Methods of conjugate gradients for solving linear systems, Journal of Research
of the National Bureau of Standards 49 (1952December), no. 6, 409–436.

[32] E. Hill, Rotary-pump pressure control, Hill Compressor & Pump Company, 1924. US Patent 1,486,836.

[33] M. Hinze, M. Köster, and S. Turek, Space–Time Newton–Multigrid Strategies for Nonstationary Distributed
and Boundary Flow Control Problems, Trends in PDE Constrained Optimization, 2014.

[34] W. Huang and R. D. Russel, Adaptive moving mesh methods, Applied Mathematical Sciences, vol. 174, Springer,
2011.

[35] S. Kilian and S. Turek, An example for parallel ScaRC and its application to the incompressible Navier–Stokes
equations, Technical Report 98–06, SFB 359, Universität Heidelberg, 1998.

[36] W. Kobald, Zahnradmaschine (Pumpe oder Motor), Robert Bosch GmbH, 1977. DE Patent App.
DE19,762,606,898.

[37] M. Köster, A. Ouazzi, F. Schieweck, S. Turek, and P. Zajac, New robust nonconforming finite elements of
higher order, Applied Numerical Mathematics 62 (2012), no. 3, 166 –184.

[38] M. D. Mihajlović and D. J. Silvester, Efficient parallel solvers for the biharmonic equation, Parallel Computing
30 (2004), no. 1, 35 –55.

[39] J. Nocedal and S. J. Wright, Numerical optimization, 2nd ed., Springer, New York, 2006.

[40] W. Noll, A general framework for problems in the statics of finite elasticity, Contemporary Developments
in Continuum Mechanics and Partial Differential Equations: Proceedings of the International Symposium on
Continuum Mechanics and Partial Differential Equations, Rio de Janeiro, August 1977, 1978, pp. 363–387.

[41] J. Paul, Nonlinear hyperelasticity-based mesh optimisation, Ph.D. Thesis, TU Dortmund, 2016.

[42] E. Polak and G. Ribière, Note sur la convergence de méthodes de directions conjuguées, ESAIM: Mathematical
Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 3 (1969), no. R1, 35–
43.

[43] B. T. Polyak, The conjugate gradient method in extremal problems, USSR Computational Mathematics and
Mathematical Physics 9 (1969), no. 4, 94 –112.

[44] P. Quintela-Estevez, Critical points in the energy of hyperelastic materials, ESAIM: Mathematical Modelling
and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 24 (1990), no. 1, 103–132 (eng).

[45] T. Richter, A monolithic geometric multigrid solver for fluid-structure interactions in ALE formulation, Inter-
national Journal for Numerical Methods in Engineering 104 (2015), no. 5, 372–390. nme.4943.

[46] M. Rumpf, A variational approach to optimal meshes, Numerische Mathematik 72 (1996), 523–540.

[47] G. Strang and G. J. Fix, An analysis of the finite element method, Wellesley-Cambridge Press, 1988.

[48] S. Turek, Efficient Solvers for Incompressible Flow Problems: An Algorithmic and Computational Approach,
Lecture Notes in Computational Science and Engineering, Springer-Verlag, 1999.

[49] S. Turek, D. Göddeke, C. Becker, S. Buijssen, and H. Wobker, FEAST – Realisation of hardware–oriented
Numerics for HPC simulations with Finite Elements, Concurrency and Computation: Practice and Experience
6 (2010May), 2247–2265. Special Issue Proceedings of ISC 2008. doi:10.1002/cpe.1584.

[50] S. Turek and D. Wan, Fictious boundary and moving mesh methods for the numerical simulation of rigid
pariculate flows, Journal of Computational Physics 222 (2007), 28–56.

[51] T. Wick, Fluid-structure interactions using different mesh motion techniques, Computers & Structures 89
(2011), no. 13–14, 1456 –1467.

30

	Deckblatt EB 573

