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Abstract

In this paper mixed finite element methods of higher-ordetifoe-dependent contact problems are discussed. The
mixed methods are based on resolving the contact conditiprise introduction of Lagrange multipliers. Dynamic
Signorini problems with and without friction are considgisvolving thermomechanical and rolling contact. Rothe’s
method is used to provide a suitable time and space disafietiz To discretize in time, a stabilized Newmark method
is applied as an adequate time stepping scheme. The spacetidetion relies on finite elements of higher-order.
In each time step the resulting problems are solved by Uzawethod or, alternatively, by methods of quadratic
programming via a suitable formulation in terms of the Laggamultipliers. Numerical results are presented towards
an application in production engineering. The resultssitlate the performance of the presented techniques for a
variety of problem formulations.
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1. Introduction

Dynamic contact, including frictional and thermdfexts, appears in many engineering processes and has an
essential ffect on the behavior of machines, tools, workpieces, etc.ifaance, the mainfiects on the dynamic
behavior of metal-cutting machines typically result frdme tontact of the tool and the workpiece in a small contact
zone. One of the most decisive factors to control dynamicphena in milling and cutting processes is, thererfore,
the determination of appropriate quantities as contacefor contact zones. Thus, an essential part of simulation
tools coping with such processes consists in the applicati@appropriate numerical schemes for contact.

Modeling contact problems involves systems of partifedential equations with inequality conditions describing
several aspects of contact as geometrical constraintsiofrior thermal &ects. In literature, a huge number of
numerical schemes is given dealing with the specific phenanaoé contact. We refer to the monographs [38, 53]
and the survey articles [15, 36] for an overview. Numericddesnes for dynamic problems are usually based on a
combination of time and spatial discretization approachessual proceeding is to use Rothe’s method in which the
time variable and then the spatial variables are discig:tizevell-established approach for the time discretizatibn
hyperbolic problems with finite elierences is the Newmark method [42]. An extended variantegyéneralizedr
method, cf. [8]. The Newmark method can also be applied teréiize dynamic contact problems which, however,
requires the use of some special parameters, cf. [3, 9]. dhigasily realizable approach for unilateral contact
problems, where the geometrical constraints are ensureddh time step. Finite elements or other Galerkin-type
methods are applied for the spatial discretization.

Important issues arising in numerical schemes for dynaomtact problems are, for instance, resolving contact in
time preserving energy and momentum [1, 39], stabiliotato avoid numerical oscillations [12, 22, 30, 31, 32, 37,
40, 44], discretizations with adaptivity [5, 6] and th@&ent implementation. Widely used discretization apphesc
for contact problems are described in [3, 10, 49, 54]. Thiyfer instance, on special contact elements with Lagrange
multipliers or on penalty methods to capture the geométcimatact conditions.
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Using the Newmark approach, one obtains a sequence ofldifferential equations of which the solutions are
discretized in time. In the framework of linear elasticitlyis sequence, also known as the semi-discrete problem,
admits static contact problems in each time step. Consdlgutathniques for the static case can be applied directly.
In literature many approaches for static contact problemasiascribed, which can, in principle, be used to combine
them with the Newmark scheme. Again, we refer to the mondwdp8, 53]. Solution schemes for static contact
problems are still an important subject of current reseafdhrefer to the recent works [13, 27, 28, 35, 52]. Evidently,
the use of them in dynamic contact problems opens a wide rafrgyeplication.

A well-established approach to solve static contact probles given by the application of mixed methods where
the geometrical contact conditions and the frictional ¢ooials are captured by Lagrange multipliers. It is widely
studied and enhanced by Haslinger et al. [23, 25, 26] for nagplications in frictional contact problems. In par-
ticular, dficient domain decomposition techniques are applied in timtexo of the FETI approach, cf. [14]. The
discretization is based on a mixed variational formulatienived from a discretized saddle point formulation. The
main advantage of this approach is that the Lagrange mialtiptan be interpreted as normal and tangential contact
forces. Moreover, the constraints for the Lagrange migtiplare sign conditions and box constraints which are sim-
pler than the original contact conditions. The unique exise of a discrete saddle point is usually verified via an
inf-sup condition associated to the discretization spacethe case of low-oder finite elements, the key to guarantee
the inf-sup condition is to use a discretization of the Lagemultipliers on boundary meshes with a larger mesh
size than that of the primal variable, cf. [24]. But, the aggtion of higher-order finite elements is possible as well,
which may avoid the use of fierent mesh sizes by usingfidirent polynomial degrees. We refer to [47] for more
details, in particular, with respect to the discrete inf-sondition and solution schemes by some Schur complement
techniques. Further benefits of higher-order discretimatiare, for instance, the reduction of lockineets and,
usinghp-adaptivity, high convergence rates or even exponentiatexgence rates, cf. [45].

In this work, we combine the stabilized Newmark scheme psedadn [12, 37] and the mixed method with a
higher-order discretization to obtain a numerical schemnelfynamic contact problems and consider several physical
attributes such as damping, friction, thermoelastic dogpand rolling contact. A framework is proposed which
enables to include all these attributes in a general setiiihg stabilization of the Newmark scheme is based on an
additionalL? projection on the admissible set specified by the contaatliions, which can easily be realized for
higher-order discretization in space. Stabilization teghes for the Newmark scheme are also proposed in [22, 32],
which are, however, more complex to apply in this contexicaithe #icient construction of the redistributed mass
matrix for higher-order basis functions is an open problem.

The physical interpretation of the Lagrange multipliersastact forces exhibits several advantages. For instance,
in thermoelasticity the modelling of the heat induction giexted by the frictional contact can directly be realized,
using the Lagrange mulitplier associated to the frictioc@hdition. It represents the tangential forces which are
proportional to the heat induction.

One of the aims of this work is to show the applicability of te@posed approach with the help of several
benchmark examples of dynamic contact. We focus on thelisgatfithe Lagrange multipliers in space and time as
well as the conservation of energy. Since the time steppihgree is slightly dissipative due to the stabilization step
we especially study the dependence of the loss of energy the discretization parameters. Finally, as a realistic
example of a dynamic contact problem in 3D, which includédiatussed fects, we consider an NC-shape grinding
process of free formed surfaces with a toroid grinding wheel

The article is organized as follows: In Section 2, we intrmglgome notations and the general mixed formulation
of contact problems. Moreover, we propose a discretizatfdrigher-order with finite elements and introduce some
solution schemes to solve the resulting systems. In theingmgapart of this paper, our aim is to capture contact,
friction, damping and thermoelasticity using this genemnaded formulation. We show that dynamic contact problems
with all these diferent attributes have, in principle, the same structurénéngetting of the mixed method. The
first example is a dynamic contact problem of Signorini-tygth damping and Tresca friction, which can easily be
extended to Coulomb friction. It is discussed in Section & ifiroduce the time discretization using the stabilized
Newmark approach and formulate the resulting contact problin each time step in the sense of the mixed method.
We present numerical experiments and show the applicabflthe theoretical findings. Section 4 focuses on dynamic
contact problems in thermoelasticity where heat genefatddction is fully coupled with linear elastic deformatio
Again, we use the stabilized Newmark approach to discréizeontact problem and the Crank-Nicholson scheme for
the heat propagation. As in the previous section, we use tkednmethod in each time step. We examine numerical
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experiments again, but now with a thermoelastic couplige NC-Shape grinding process is considered in Section 5.
To model this process, we have to take friction, thermoiglastipling and rotationalfects into account. In particular,
the rotational &ects are included in the discretization scheme by an arpiti@yrangian Eulerian (ALE) ansatz. Even
though this problem is highly complex and includes veffedent physical phenomena, it is, nevertheless, possible to
bring it into the proposed framework of mixed methods. Wecbaae the article with a discussion of the results and
an outlook to future works.

2. Thegeneral mixed method

In this section we present a general mixed method for problefth geometrical and frictional contact. The
method is general in the sense that a general bilinear foend a general linear forion some Sobolev spaces
are introduced. Whenever a certain (sub-)problem has thafigpiarm of an energy minimization problem or a
variational inequality of second kind describing geonoatricontact anr friction, this general mixed method can
be applied to obtain the subsequently proposed discrigtizaind solution schemes. We introduce a higher-order
discretization based on finite elements for the underlyiogdiev spaces and solution schemes relying on Uzawa’s
method and, alternatively, on the reformulation of the pgobin the Lagrange multlipliers.

2.1. Notations

LetQ c RY, d € N, be a domain with siciently smooth boundary := dQ. Moreover, ety c T be closed
with positive measure and 1€ c I'\I'p with Tc C T'\Ip. L%(Q), HX(Q) with k > 1, andHY3(I'c) denote the
usual Sobolev spaces and we B%t(Q) = {¢ € HYQ) | y(¢) = 0 onI'p} with the trace operatoy. The space
H-Y2(T'c) denotes the topological dual space-if2(I'c) with the normg| - |12 and|l - ll1/2rc- L€t ¢, )ow, > )or
be the usual?-scalar products om c Q andI” c T, respectively. Note that the linear and bounded mapping
ye = yire : HE(Q) — HY%(I¢) is surjective due to the assumptionsIan cf. [33, p.88]. For functions im?(I'c),
the inequality symbols and< are defined as “almost everywhere”. We B&t*(I'c) := {u € HY(I'c) | x4 > 0} and
L2(Tc) := {u € (L3(Tc))* | [ul < 1 on supps, u = 0 onI'c\ supps} with the euclidian norn}| ands € L2(I'¢), s > 0.
Furthermore, we definel;**(I'c) := (HY*(T'c)) := {u € HY(Tc) | Vv € HY*(Tc) © (u, vy > 0} as the dual cone of
Hi/ 2(1“(;). For the displacement fieldwe specify the linearized strain tensors4g) := %(ch + (Vp)T) and the stress
tensor asr(¢)ij := Ciju (@) describing a linear-elastic material law whékig, € L®(Q) with Cjju = Cjik = Ckij and
CijTij Tkl > KTiZj forr e L2(Q)§;<,$] and ax > 0. In the following,n denotes the vector-valued function describing the
outer unit normal vector with respectlfg andt thedx(d—1)-matrix-valued function containing the tangential west
We defineonj := ojni, onn 1= ojNiNj, andony = oijjnitj. Moreover, we sefn(e) = ye(eini, yi(e); = ycleitij
andyn;i(®) := v, (¢). We assume thdlc is parameterized by a ficiently smooth functions : R4 — R so that,
without loss of generality, the geometrical contact cdndifor a displacemeng in the d-th component is given by
d(X) + ©a(X, d(X) < Y(X1 + @1(X% d(X), . .., Xg-1 + @a-1(% ¢(X))) with X := (X1,...,%s-1) € R4 and a shiciently
smooth functiony describing the surface of an obstacle. Since this conditiaron-linear in general, one usually
applies the linearizatiofn(¢) < g, with g,(X) := (W (X) — (X)L + (Vo(X)TVe(X)) "2, cf. [33, Ch.2].

Finally, we setv := (H5(Q))%, W = (LAQ))%, An = H;YA(Tc), Acs = LA(Tc), s(¢) = [ sn(e)ldsand
Ky ={p eV Iylp) < gyl

2.2. The mixed formulation

Let a be a symmetric, continuous and elliptic bilinear formVrx V, ¢ be a continuous linear form and define
E() = 3ale,¢) — (€, ¢). Furthermore, les € L%(I'c) with s > 0 andy so thatg, € H¥?(I'c). Using standard
arguments of convex analysis, we conclude that the furatién- s is weakly lower semicontinuous, coercive and
strictly convex and due to the closedness and convexil,dhere exists a unique minimizare K, with

E(W) = min(E + js)(¢)- (2.1)

Moreover, sinceE is Frechet diferentiable inu with the Fiéchet derivative E’'(u), ) = a(u,¢) — (£, ¢) and js is
convex, the stationarity condition holds,

aue-u)—(e-u+jle)-ju=0 (2.2)
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for all ¢ € K,. Due to the convexity oE, the solution of (2.2) is also a minimizer of (2.1). We ret@{47], [33, Prop.

3.1, p.33]and [17, Ch. Il, Prop. 1.2, p.35] for the proofshate elementary assertions. To derive a mixed variational
formulation, we resolve the conditigne K, and the functionajs via the introduction of Lagrange multipliers. Using
the Theorem of Hahn-Banach, it can be shown that

0, ¢pekK
SUP(n, Yn(9) — Gy = v (2.3)
Hn€AR oo, @ ¢ sza

cf. [47]. Furthermore, there holdg(y) = SUR,en,, (1, Spr)or for all ¢ € V. Therefore, we have

(E+jo)(u)=inf  sup  L(p,un, )
PV fineAn uehs

with the Lagrange functional(p, un, 1) 1= E(@) + (un, yc (@) — 9y) + (ut, Sy1(¢))ore. Thus,uis a minimizer of (2.1),
whenever the tripley An, At) € V X An X At s iS a saddle point,

L(U, /1n, /lt) = in Sup -E(QD, HMn, ,th) (24)

f
PEY fineAngincAs
Again, using the stationarity condition, we obtain thatttiyge (u, An, 4;) € V X Ap X A¢ is a saddle point if and only
if,
a-(ua ‘10) = <€7 ‘10> - </ln’ 7“(90)) - (/lt, S)’t(‘P))O,l“c,
(tn = An, yn(U) = Gy) + (ue — A, Syr(U))ore <0

for all (¢, un, ut) € V X An X As, Cf. [47]. The existence of a saddle point is usually showragguming an inf-sup
condition: there exists am € R, such that

(2.5)

a|lpnll-1/2re € SUP (s Ynlg)) (2.6)
eV, [lgll=1

for all u, € HY3(I'c), cf. [33, Lem. 3.2, p.45] and [47]. Since the mappings surjective, condition (2.6) directly
follows from the closed range theorem so that the existesydgadeed, ensured, cf. [55, p.205]. It is easy to see, that
the Lagrange multipliera, and.; are unique which is a consequence of (2.6) and the facttliary,) is dense in
L*(Tc).

Remark2.1. The Lagrange multipliers can be interpreted as contacefowvehich is an important advantage of the
mixed formulation. Under certain regularity assumptiaghsye holdst, = —onn(u) andst; = —on(U).

2.3. Discretization of higher-order
We propose a higher-order finite element discretizatioretbas quadrangles or hexahedrons as follows: Let
T be a finite element mesh & with mesh sizeh and let& be a finite element mesh &t with mesh sizeH.
The number of elements i is denoted byMs and in& by Mg. Furthermore, leWwr : [-1,1]° - T € 7 and
®g : [-1,1]%! - E € & be bijective and sficiently smooth transformations and fetq € N. Using the polynomial
tensor product spad®, 4 of orderr on the reference element], 1]¢, we define
Shi={p e HE(Q)| VT €T : g oWy € Py,

My = {u e L’(Tc) | VE €& g o g € Poga).
For a finite subse® c [-1, 1]91, we define
Mus ={ue My |VEe E:V¥xeC: u(®e(x) = 0},
Mus:={ue Mu)tIVEeE:VxeC: [u(@e(X) <1 A (Pe(X) & supps = u(Pe(X) = 0)}.

We setV, = (Sp)¢, Ann = Mu andAisn := Mus. The discrete saddle point problem is to fing, AnH, At H) €
Vh X Ann X Atsn SUch that

L(Un, A, An) = Jnf sup L(en, tnHs HeH)- (2.7)

hEVh i AR H i EALSH
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It is easy to see that the first component is the unique mimimiZ the minimization problemE + jshn)(Un) =
MiNg ek, (E + Jshn)(en) With Kny i= {¢on € Vi | Ynn € Ann @ s ¥nlen) — 9y) < O and jspn(en) =
SUR, en,n (Ut H> St(en))arc- Again by stationarity, it follows thatug, Ann, ) € Vh X Anp X Arsh is a discrete
saddle point if and only if

a(Un, on) = (£, ¢n) = {AnH, Ynlen)) — (AH, Syt(en))ore

2.8
<ﬂn,H - /ln,H/}’n(Uh) - ggb) + (/’[t,H - /lt,H, S’)’t(uh))O,l“c <0 ( )

for all (¢n, s ten) € Vh X Anp X Arsn. Similarly to the non-discrete case, there exists a unigserete saddle
point (Un, AnH, At H) € Vh X Ann X Arsh, if there exists amr € R, such that

@(llunnll-1/2re + lenll-12re) € SUP  (nHs Ynl@n))ore + (ens Syi(en))ore (2.9)
©h€Vh, llenll=1

for all (unp, uLn) € M x (M), The condition (2.9) means that spatgsand My have to be balanced appropri-
ately. Obviously, this balance depends neither on the diefindf My . nor on the definition oMy s. Under certain
regularity assumptions, it can be shown that (2.9) is valithe value given byll(h, H, p, q) := hH™tmax1, q}’p?

is suficiently small, cf. [47]. Obviously, we can vatyandH or p andq or both to reducé&l(h, H, p,g). It is noted
that varyingh andH implies that the Lagrange multiplier is possibly defined artparser mesh which may lead to
a higher implementational complexity. Using a surface m@skvhich is inherited from the interior mesh, the
implementational £ort is essentially smaller. However, in this case we hHaité = 1 and can only varyp andq to
keepIl(h, H, p,g) small. It can be observed in numerical experiments that Hgrange multiplier oscillates for an
inappropriate choice df, H, p andg which suggests that the Lagrange multiplier is not uniqyenoother words,
the mixed discretization is not stable. In this case, therduage multiplier is not a reasonable approximation of the
contact forces and has no physical meaning. In general iti€lear wherI(h, H, p, g) is small enough such that
(2.9) holds. Nevertheless, it justifies the modificationtaf tliscretization scheme by coarsening the n&sh by
decreasing the polynomial degrgéo obtain a stable scheme. For more details on the subjetalufity with respect
to the introduced mixed method we refer to [47] and [48].

Remark2.2 The convergence of the scheme depends on the choice of tiretdiseC and the validity of (2.9). It
can be shown thaiy, strongly converges ta and A,y as well asigy weakly converge tol, and 4;, respectively,

if (2.9) holds andC is chosen as the set off ¢ 1)%! Gauss points. We refer to [46, 48] for more details on the
convergence of mixed schemes with higher-order disctétiza

2.4. Solution schemes for higher-order discretizations

To solve the discrete formulation (2.8), we apply a bdgi%<i<w of Sn with n := dim Sy, which is constructed
via standard techniques &f'-conforminghp-finite elements, cf., e.g., [2, 11, 50]. The constructioradfasis of
My is much simpler, since no continuity requirements have ttaken into account. However, the basis has to be
compatible with the restrictions (sign conditions, bouwhtkess) of the Lagrange multipliers. For this reason, we look
at the construction of the basis and their consequences tesulting system and solution processes in more detail.

The basic idea is to construct a basis via Lagrange basisidnsc For this purpose, I€t be the tensor product
of theq + 1 pointsé, ..., & € [-L1], i.e. C == {& | @ € NI With &, i= (£ays -5 €ayy) @A N = {0,..., )L,
Furthermore, lef : Ex N — {0,...,m— 1} be a bijective numbering witm == (q + 1)**Mg. Without loss of
generality, we assume a numbeg@h < msuch thay(E, @) > mimplies®g(&,) ¢ supps and vice versa foE € &
anda € N. After these preparations, we define the Lagrange basisiémnsdy; }o<i<m of My by

d-1 ¢ B
sueatoetn = [ 2=
i1 veo Sa —&v

vEQ)

forE € & « € N andx € [-1,1]% as well asl, g q)(Pe(x) := 0 for E € &\E. The compatibility to the restrictions
of the Lagrange multipliers is then easily realized in thiofeing way: There holdginn = zjyj € App iff 2, €
An = RT andury = 2 ja-1it € € Acsn iff z € Ac 1= (€ RODM | 0y 0)(2) < 1) wherew;(2) = S5 2 ),
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ande’ € R%is the unit vector given byef); := 6;; with Kronecker's delta. Thus, the discretization (2.8) is equivalent
to find (X, yn, Y1) € R" x A X A¢ such that

Ax+ Blyn+ By =L,

(Yn = 20)"(Bax—G) + (¥ — 2) "Bix < 0 (2.10)

for all (zn, z) € An X Ar. Here,Ae R™ L e R B, € R™" B, € RU-D™N andG e R™ are defined as

Ajgsitdsr = A€ i), Ligsi i= (6 0i€"),  Gi:= (1, Gy)ores
Brijd+i := W1 ¥n(@i€))ores  Bu-tyr.jasi = @€ mleie"))ore-

Obviously, the solution of (2.8) is then given by = Xjg+i@j€, Ann = Ynj¥j andAsgn = Yo j-pivje

A simple iterative scheme to solve the system (2.10) is Uzmethod with projections. In each iteration step
the projectiond, : R™ — R™andP, : RE-D™ —, RE-D™ gre applied so that the cieient vectors/, andy; are in
An andAy, respectively. Due to the Lagrange-like structure of thedfunctions, the projectior®, andP; are very
simple:
zj, 7= 0

j=0,...,m
0, else

Pnj(2 := {
(2.11)

| Ze-0+s wji(d=<1l O
Pei (@) = 4 =0,...,Mmi=0,...,d-2
b {(wj<z)>-1/2z;<d_1)+i, else O

Uzawa’s method reads
X=X —p1SHAX + BTy, + By, — L),

Yo't = Pa(Yh + p2(BaX "t = G)), (2.12)
Vit = Pyt + p2Bix )

with some parametegs, p» > 0. Usually,S™t € R™" is chosen a®\! or as an appropriate approximation/f’.
We refer to [21] for some convergence results with respegeteeral Uzawa’s methods.

Remark2.3. It is widely known that the number of iteration steps in Uz&aaethod highly depends on the mesh
size if the projection®, andP; solely ensure the restrictions pointwisely (as in (2.1 present Uzawa’s method
because of its simplicity and direct applicability to higleeder discretizations.

An alternative scheme is based on the dual formulation df0j2. The basic idea is to reformulate (2.10) into a
minimization problem in terms of the Lagrange multipliditds easy to see thak(y,, y;) fulfills (2.10) if and only if
x=A"lL - By, - Bly; and

Fyn. Y1) = min _ F(zy, z),
(Zn,2) €EARX A

1 (2.13)
F(@2) = 5% B+ 4 BIA (B1z0 + B 2) + (7B + 7 B)(G — AL,

The Problem (2.13) can be solved using optimization scheshegiadratic programming, for instance, standard
optimization tools based on QP- or SQP-techniques. We teféte SQP-packagénopt by Gill et. al [19, 20]

for some usable implementations. The fact that the dimemsiof the optimization variable given by the Lagrange
multipliers is, in general, much smaller than the dimensifthe discrete displacement variablenakes this approach
very applicable. For low-order finite elements, the refdatian in the dual variables is widely studied and enhanced
for many applications in frictional contact problems. Wéereto [14, 23, 25, 26] for more details, in particular,
concerning splitting type algorithms and domain decontfmsitechniques. Moreover, there is, of course, a huge
number of other veryfécient approaches for solving contact problems in the casexebrder finite elements. We
refer to some recent works [13, 27, 28, 35, 52].

Remark2.4. The seC should be chosen so that the additional numerical errorignized. For instance, Chebydfie
points may be a good choice to ensure the additional errag smtall, cf, e.g., [16]. However, the use of Gauss points
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seems to be more natural as their number matches the numbagrEnge basis functions. Moreover, this set of
points enables us to prove convergence of the discretizatbeme, see Remark 2.2. Using Gauss quadrature rules
and Lagrange basis functions the entrieB@fB; andG can easily be computed. df+ 1 < p and®g is afine linear,
there holds foE € &, « € N andl := x(E, @)

B jd+i = weNi@j(Pe(€))EL  Bri@-1)+r.jd+i = walir (Se)(Pe(€))IEl,  Gi ~ wo0y(Pe(£a))IEl

with w, := [T} w,, and the weights); of the Gauss quadrature rule.

Remark2.5. If s= 0, the contact model is reduced to the frictionless casetefths concerning; can be omitted in
the mixed formulation (2.5) and its discretization (2.7heTresulting system (2.10), Uzawa's method (2.12) and the
minimization approach (2.13) can also be simplified by armttll terms concerning;.

Remark2.6. Unfortunately, the introduced framework of Section 2.2 @ directly applicable to Coulomb friction
where the frictional functiosis defined as := ¥ |onn(U)| with some frictional cofficient > 0. However, Coulomb
friction can be embedded into the framework using a simplg@dixt scheme where we exploit that the Lagrange
multiplier A, coincides with the normal contact stressn,(u). For an arbitrary frictional functios € L?(I'c) with

s > 0, we define (s), An(9), 4(s)) as the unique saddle point of the Signorini problem witkesta friction, and
furthermore, the operatdt asH(s) := F1An(9)|. Assuming that/ has a fix point, i.e.H(s) = s, the saddle point
(u(s), An(9), A1(9)) fulfills the Coulomb friction law. Transfering this corteto the discrete mixed variational formula-
tion, we obtain ¥(s), yn(9), y:(9)) as the solution of (2.10) and defitt€(s) := Flyn j(S)¢jl. Again, a fix pointsof H (or

a suitable approximation) implies solution vectox&}, yn(%), :(5)) and a discrete saddlepoink,(8), An1(5), A.n(3)
which approximatively fulfills the Coulomb friction law. Wefer to [23, 25] and reference therein for more details
on this well-known proceeding.

3. Dynamic Signorini problemswith friction

As the first contact problem, we arrange frictional contactbfems with Rayleigh damping into the general
framework introduced in the last section. In contrast tdistaroblems, the frictional constraint is defined with
respect to the velocity and not to the displacements.

3.1. Continuous problem formulation

Letl := [0,T] c R be atime interval. The density of the material is givengbyThe initial displacement is
specified byus and the initial velocity bys. The surface of the obstacle at tim&s described by the functiog(t),
and the bound for the tangential stresss{ty.

We assume that the damping is proportional to the velocity @se the approach of Rayleigh to describe this
proportionality. The dampingfiects are splitted into a mass proportional and féngtss proportional part. The term
agpU reprensents the damping depending on the mass, whése positive material constant. The part proportional
to the stifness is given by~ (bqu) with a material constariiy > 0.

The strong formulation of the dynamic Signorini problem twitiction is to find a solutionu in the space
W2 (1; {v € V| (V) € H(div, Q)}) such that

pU+ agou—div (o (u+bgu)) = finQ x 1, (3.1)
u=0onIpxIl, opu)=00nTyxI, (3.2)

u(0) = us, U(0) = vsin Q, (3.3)

7n(u) =0y < 0, _U'nn(u) >0, U'nn(u) (Yn(u) - g¢) =0onl¢ x|, (3-4)
Tan(U) (vn(U) — g;) = 0 onTe x|, (3.5)

lon(U)l < s= (L) =0

loni(U)] < swith { lont(U)l = = 3 € Ryo & 11 (U) = ~Lomnt

} onl¢c x|, (3.6)

with f € L*(I; W) and 0< se L (I; L2 (FC)). Here, (3.1) specifies the balance of momentum. The homogene
Dirichlet and Neumann boundary conditions are given in)(3The equations (3.3) represent the initial conditions.
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The geometrical contact conditions are incorporated ) (3The persistency condition of dynamic contact, which
ensures energy conservation under the usual assumptsodsenoted in (3.5). Finally, the frictional conditions are
represented by (3.6).

Using integration by parts in space, we obtain the weak ftation

Problem 3.1. Find a function ue v := w2»°°(|;(|_2 (Q))d) AL (13 V) with ut) € Kyg, u(0) = Us € V, and
u(0) = vs € W for which

(ol +agpl, o — U) + (o (U + byll) , (@ — W) + j (¢) - j (U) = (f, o - 1)
holds for allg € K, and all te .

Note that the existence of a solution“iican not be proven, even in the contact free case, see [18]pS&c2.
A detailed derivation of the weak formulation can be foun{4ig], Section 6.4, and [10, 12].

3.2. Discretization

We apply Rothe’s method to obtain a discretization of theaglyic Signorini problem given in Problem 3.1. The
problem is discretized in temporal direction by the Newmauéthod, see [42]. The resulting spatial problems are
discretized by finite elements. Note that the classical Namethod does not lead to a stable discretization scheme,
see, e.g., [38]. Here, we apply a stabilization approadjirally presented in [12, 37] and improved in [34]. For this
scheme, it is known that the Lagrange multipliers are stiabiiene and that it is slightly energy disspative.

Temporal discretization.The time intervall is split into M equidistant subintervalky, := (tm-1,tm] of lengthk =
th—tmawithO =ity <ty <...<ty_1 <ty :=T. The value of a functiomw at a time instancg, is approximated by
w™. We use the notatiom= u for the velocity. The semi-discrete problem then reads éme:

Problem 3.2. Find Uyreq, U, and v with 8 = usand ¥ = v, such that in every time step m{1,2,..., M}, the
functions tff 4 € Kym, U™ € Kym, and V" € W are the solution of

b(ug‘red,)( - ug‘red) > b(u”Fl + kvl oy - ug}ed), (3.7)
cuMe—-uN+jl@-j@aum = (M e-u, (3.8)
bV w) = %b(Zum U™t - ). (3.9)

for all y,¢ € Kym and allw € W, whereAu™ := k! (um - u””),

b(w.¢) = (ow,¢),
o) = (14 7Kan]b(wg) + Zk(kH D) (7(0). o).
and
(™) = }kz(fm+fm’1 ) +b(ul )—}k(k—b)( (u™) ())+3k b(u™?, o)
> P = 4 P pred?‘)p 4 d)\O >, E\Y 4 ad >

—%kzadb(v”H, 0) - %kzbd (o (V™). 2(¢)).

The setKym := {go eVv |yn (o) < gwm} contains the admissible displacements at timen the classical Newmark

scheme, the predictcmg‘red = u™?! + kv is used. Here, inequality (3.7) represents the projectiche predictor

step of the Newmark scheme on the set of admissible dispkatisit,-, which ensures the stability of the scheme.
The bilinearformd andc are uniformly elliptic, continuous, and symmetric. Thusgach time step the variational

inequalities (3.7) and (3.8) directly match the generahgavork presented in Section 2.2. Using the equivalent mixed

problem formulation, the mixed semi-discrete problem sead
8



Problem 3.3. Find (upred, U, V, Aprecs Ans At) with (° = us and V¥ = v, such tha(ug‘red, um, v AT AT /l{“) eVxVx
W X Ap X An X Aqen is the solution of the system

b(Wleet) + (Mmeax) = bU™ +kv™ ), (3.10)

</Jpred - qured’ Yn (Ug}ed) - gwm> < 0 (3.11)

c(U™ @) + (A0, @) + (AT ™ (@)or. = (M), (3.12)

(ttn = A7 70 (U™) = Gy + (ut = A7, S™ (AU, < O, (3.13)
bV w) = %b(zum U™t -dh ). (3.14)

forall y,p €V, all upred tin € An, all uy € Aggn, all w e W, and all me {1,2,..., M}.

Remark3.4. The existence and uniqueness of the semi-discrete solditiectly follows from the results in Section
2.2.

Spatial discretization.Using the finite element approach of Section 2.3, one evéymlatains the full discrete prob-
lem

Problem 3.5. Find (up,edh, Un, Vh, ApredHs AnHs /lt,H) with W = myus and \P = mnvs, wherer, denotes the - projection
onto \,, such tha(um (VRVA I AQH, AE“H) € Vi X Vi X Vi X An X Anp X At any IS the solution of the system

predh’® predH’
b (Uteans Xh) + (Arearsin) = b(UT + kv xm), (3.15)
<,upredH - /lg]rest n (Ugeqh) - gw”‘) < 0 (3.16)
o (Ul on) + (A on) + (AT M len)y . = (IR en). (3.17)
<,Un,H - A0H»Yn (uhm) — g¢m> + (Mt,H - A S™n (Auﬂ")) o S0 (3.18)

b(Vwn) = %b(Zuﬂ“—uhm—ugedh,wh). (3.19)

for all xn, ¢h, wh € Vh, all gpredrs inH € Anps all un € Aggnn, and allme {1,2,..., M}.

Here,|[" is an approximation tg" and is defined by

<|hm, ¢h> ~ %kz (fm 4 (ph) N b(upmredh’ 90h> - %k(k— bq) (0‘ (Uﬂkl)’S(‘Ph)) + %k%b(ufl’¢h)
bl o) ) )

Using the solution scheme as introduced in Section 2.4, e gbe system (3.15-3.16) and then the mixed
problem (3.17-3.18). Note that, the equation (3.19) reduoea linear combination of vectors, if no adaptivity in
space is used.

We obtain the existence of a unique discrete soIL(ui@rgdh, Un, Vi, ApredH> AnH. /lt,H) of Problem 3.5 provided that
the discrete inf-sup condition (2.9) holds, see Section®3his end, we have to ensure that the nunibgx H, p, q)
is suficiently small. In the next section, we discuss several wgsito reducdl(h, H, p, g) appropriately.

3.3. Numerical Examples

In this section, we investigate the numerical propertiethefpresented discretization method of higher-order for
dynamic contact problems with friction and damping. We hegith a simple example, where the solution is known
so that the numerical convergence rates and the stabilitheol.agrange multiplier in time can be studied. The
stability in space and time is afterwards explored consgigdest more complex example. The section concludes with
the discussion of a complex frictional contact problem.
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(dt=1 (e)t=12

Figure 1: Analytic stress distribution @ for different time instances

Stability in time and convergence analysiBo analyze the stability in time, we consider the followingample,
which is a 2d version of an example given in [15]: The domaifis= [-hy — L, —ho] X [0,2], hg := 5, L := 10,
and the time interval i$ := [0,2]. We chooseE := 900,v := 0, andp = 1. The possible contact boundary is
given byTc = {-5} x [0,2] and we sel’ := 0 as well asl'y := dQ\I'c. The initial conditions areis = 0 and

Vs = (Vo,0)", vp := 10. The rigid foundation is given hy = 0. We consider no friction, i.es = 0. From the specific
velocity ¢y = \/E_/p = 30, we can determine the timg = Vp/Co = 1/3, which means that the contact lasts from
t; =5/10=0.5tot, = t; + 21y, = 7/6. With these values we can state the analytical solutiohisfiroblem: It holds
for the displacement := (uy, 0) with

Vot, 1<ty
LI]_(X]_, X, t) ‘= <{hg + vomin {— hogoxl, Tw—|t—11 — TW|} , t1<t<ty,
ho — Vo (t-t2), th <t,
and for the velocity := (vq, 0) with
V09 t < tla
0, ti<t<ty —" <ry—|t—ty — 7y,
Vi (X1, Xo,t) = . hotx,
—Vosign(t —ty —7w), ti<t<ty -2 >7y—|t—ti—7ul,

—Vo, L <t,

as well as for the normal contact stress

0 t<t,t>t
Ton (X 1) = A (%2, 1) ={ : <t (3.20)

Ev

-<,. = —300Q else
In Figure 1, the stress distribution §dis depicted for dierent time instances. It shows the propagation of the stress
wave emerging from the contact through the elastic body.

First, we consider the stability of the Lagrange multiplietime. As it is widely known, cf. e.g. [12, 22], the use
of the classical Newmark scheme leads to an instable Lagnamdiplier in time, cf. Figure 2(a). To circumvent this
behavior, we have added thé-projection onto the admissible set specified in (3.10-8ri fhe time stepping scheme
described in Problem 3.3. Forftéirent values of the polynomial degrpgthe Lagrange multiplier is plotted in Figure
2 (b-d). For all polynomial degregqs we only observe small oscillations especially in the titeps directly after the
first contact. Comparing the results in Figure 2 (b-d) with kmown solution (3.20), we notice that the overshoot of
the discrete Lagrange multiplier decreases with highgymahial degrees significantly.

It is well known that the total energy is conserved, c.f. [38onsequently, we address the question, how this
property is reproduced by the numerical scheme. The timgpstg scheme specified in Problem 3.5 is energy
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Figure 2: Plot of the lagrange multipligpkn for differentp, k = 0.01, andh = 0.25
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Figure 4: Plot of the numerical solution fpr= 3, h = 0.03125, and = 0.00025

dissipative and the energy loss occurs in the time stepttirefter the first contact, cf. [34, 37]. These theoretical
findings are approved in Figure 3(a) for high polynomial @egt The amount of energy, which is lost, depends in
general on the polynomial degrgethe mesh widthh, and the time step length Due to the special structure of this
example it does not depend kin this case. The dependencepandhiis illustrated in Figure 3(b). We observe that
the lost energy decreases with growimgnd that it converges of ordél(h) to zero for all polynomial degregs

Using the known solution of this example, we are able to detez the discretization error and convergence rates.
In Figure 3(c), the convergence rate of the presented schentek is depicted for fixech and p. The convergence
rateO(k?) in the unconstrained case is reduced(’’") due to the presence of the contact conditions. In [34], the
consistency order ad(k®®) is proven for viscoelastic problems, which is too pesdiimisr this example.

Results concerning the spatial convergence rate arerdtestin Figure 3 (d-f) for dferent polynomial degregs
and diferent norms using a fixed time step lengthin Figure 3(d), the convergence w.r.t. th&norm is depicted.
In the unconstrained case, we expect a convergence rathfl), if uis smooth. In contact problems, we cannot
expect thatl possesses high regularity due to the jumps in the stresgdisin. Indeed, we notice the convergence
rateO(h®%%). The convergence rate in th'-norm also decreases fro@(hP) in the unconstrained case @h°33),
c.f. Figure 3(e). For the®-norm, we find a reduction fro@(h? logh), p = 1, respectivel)(h?*Y), p > 1, toO(h°"})
, see Figure 3(f). The reduced convergence rates are thefsamépolynomial degreep. However, the absolute
error decreases for higher polynomial degrees.

Stability in space.To investigate the stability in space, we consider the ¥alhgy example: The domaif? is given
by Q = [-2,0] x [0, 2] and the time interval by = [0, 0.1]. The contact boundary i& = {0} x [0, 2]. We prescribe
inhomogeneous Neumann boundary conditions

(-102 +20%.,0)", X = (X1, %) € [y, t < 0.01

3.21
0, else, ( )

qn(X, t) = {
onl'y = 0Q\I'c = I'y, U, with Ty, := {-2} x [0.875 1.125] andI'y, = I'v\I'y,. As above, we choosgé = 900,
v =0,p =1, andy = 0. A numerical solution for this example is depicted in Feydr We observe a stress wave,

which emerges from the inhomogeneous Neumann boundaryticorsdonI'y,, hits the obstacle in the middle D,
goes towards the boundary, and is eventually reflected.
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Figure 5: Plot of the Lagrange multiplier far= 3, h = 0.03125 k = 0.00025

Table 1: Relative energy loss in % due to the numerical szattibn w.r.t.p, M, andM¢

p Energy loss M Energy loss My Energy loss
M = 400,M¢ = 960 p=1, Mgy = 15360 p=1,M= 1600

1 3114 % 100 325% 960 61 %

2 2600 % 200 Z113% 3840 589%

3 2469 % 400 501 % 15360 B62%

4 2428% 800 2404 %

5 2405 % 1600 362 %

6 2393%

In this section, we exemplarily consider the cgse 3 and how to reduce the valigh, H, p, ) appropriately.
For other polynomial degrees, we obtain similar resultssigure 5(a), the Lagrange multiplier is depicted o 2h
andg = 2. We observe a stable behavior in space and time, i.e. wetdwotioe any oscillations. For a single time
step, the Lagrange multiplier is illustrated in Figure S@hother stable discretization which avoids mesh coangeni
for the Lagrange multiplier is achieved by the choite- handq = 1, see Figure 5(c). Finally, we chooge- 2 and
H = hand obtain an unstable discretization, i.e. we observagtoscillations in the Lagrange multiplier, c.f. Figure
5(d).

Contact with friction. In the following, we consider an example with friction. Thendain isQ = [-4, —-1]x[-6, —1],
I'p =0, ¢ =[-4,-1] x -1, andl = [0,0.4]. We assume homogeneous Neumann boundary conditiofi§ Gn
0Q\I'c. The obstacle is parametrized by the functibfxy) := —0.00625(x§ + 5%, + 6.25). We set the material
properties tcE = 900,v = 0.3, andp = 1. The initial conditions ares = 0 andvg = (10,5)". We consider Coulomb
friction with ¥ = 0.05, cf. Remark 2.6. In Figure 6, the numerical solution igsitated. The stable Lagrange
multiplier is plotted in Figure 7(a).

It is well known that energy dissipation is caused by friotidn Figure 7(b), we compare the amount of energy,
which is lost due to friction, with the energy loss becausthefnumerical stabilization. Even with this low ¢beient
of friction, more energy is dissipated due to friction thamtimerical reasons. While the energy loss due to friction
converges to a fixed value and does not largely change vapyihgandk, the amount of energy lost because of the
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numerical stabilization strongly depends on the discatittn and converges to zero. In Table 1, the development
of the energy loss due to the numerical stabilization is iilesd. We observe that for fixddandk the energy loss
decreases with increasing For fixed p andh, a decrease with an increasing number of time stps noticed.
The same holds w.r.th. The results in Table 1 are exemplarily chosen, similar bienas found for diferent fixed
parameters. This results substantiate the conclusioredirgt example that the use of higher polynomial deggees
reduces the loss of energy as a result of the numerical igtinih, which converges towards zero fok — 0.

4. Dynamic thermomechanical contact problems

A portion of the energy, dissipated by frictiondlects, generates heat, which is induced into the bodies iacbn
In this section, we introduce a model for this physical psscand extend the discretization techniques presented in
the previous sections.

4.1. Continuous Problem Formulation

In the following, we introduce the strong formulation foetmomechanical contact and give a short overview of
the linear theory of thermoelasticity, which describesdffiects of heat on an elastic body. A detailed presentation of
thermoelasticity may be found in [7]. Furthermore, we désctihhe coupling of friction and heat.

We extend the linear elastic model described in Section 23ahdy thermal fects. The heat of the body is

given by the functiord € V, := {<p e L2(I;HE (@) ){0 eL2(I;H? (Q))}. For notational simplicity, we assume that
homogeneous Dirichlet boundary conditions hold'grfor the heat distribution. Inhomogeneous Neumann boundary
conditions are prescribed drt; given by the functionw € LZ(I; L2 (l“c)) and homogeneous Neumann boundary

conditions onl'y. Inner heat sources are describedfpye LZ(I; L2 (Q)). The initial temperature i8s € HE (Q).
The specific heat is given by the constérand the constant denotes the conductivity. Eventually, the heat equation
reads:

Problem 4.1. Find a functiond € V, with 6(0) = 65, which fulfills the variational equation
(26, 0) + (V0, V) = (5, ¢) + (@, O, (4.1)

forall p € H (Q) and all te I.

Heat and displacement are usually connected by thicieait of thermal expansiom. For a more convenient
description, we use the stress-temperature modyluich is defined as

__aE 3v ‘1
=11 )

As a consequence of the heating, thermal stresses occue &laktic body. They are specified by the thermal stress
tensor
1, i=]j,
0)ij =00 -0
o )IJ o s) {O, i ],
Due to the elastic deformation, an additional heat soureeiipd by the termndstr £(u) has to be included in the heat
equation.

During the frictional contact energy is dissipated, whigshransfered into heat mostly. This energy is described
by fl frc oyt (U) dxdt The heat is transferred into the elastic body, the obstautethe enviroment. We assume
that a fixed portion of the generated energy enters the elastly, where the proportionality factor is denoted by
Kw € [0,1]. Moreover, we neglect the heat transfer between the olestamd the rigid foundation in the contact
zone. The generated heat is incorporated in the heat eguagian inhomogeneous Neumann boundary condition on
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I'c, i.e. w = Kwonyt (U). Together with the formulation of the frictional contacbptem in Section 3.1, the strong
formulation of the thermoelastic contact problem is givgn b

pl—div (o (U) + 06(0)) = f,  ¢6—div (kV6) + ofstre(u) = f,  INQ X1,
u=@=0o0nIp x|, om)=2%=00nIyxI, u(0)=us UO)=Vs 6(0)=06sinQ,
yn(U) - g¢ < 0, _(Tnn(u) > 0, O'nn(u) ('yn(u) - .//) = g'nn(u) (fyn (U) — gw) =0 Onl"c X I’
lont(U)l < s= % (U) =0

| m(U)| =S=> 3( (S R>o Yt (U) = —gO’nt
(79

lont(U)| < swith { } onT¢ x I,
KWO’m‘yt (U) =0 onFC x|,

We omit the Rayleigh damping here to ease the notation. Usiageame arguments as in Section 3.1, the weak
formulation reads:

Problem 4.2. Find a function(u, 6) € %, x Vy with u(0) = us, u(0) = vs, and(0) = 65, such that
(ot o =) + (o () +0(0 - s) L e (@ — W) + [ (¢) = | (1) (f.e-0)
(20,x) + (6V6,Vx) + (00stre(W), ) = (Kwomye (@) Ve = (o)

holds for allg € Ky, all y € Vy and te I

v

4.2. Discretization

The discretization of the frictional part of the thermodélasontact problem is carried out as described in Section
3.2, see Problem 3.3 and 3.5. Here, we focus on the disdietizaf the heat part and on the solution of the discrete
system. For the temporal discretization of the heat eqoati@ use the Cranck-Nicholson scheme, see, e.g., [29].
The time discretization of equation (4.1) reads

1
& (6".¢) = 17 (@) + Sk(a" + &™), . (4.2)
where
1
@) = (w)+skkVw, V),

(i7-¢)

Using equation (4.2), Problem 3.3, and again the spatiatetization techniques presented in Section 2.3, we
obtain tbe space and time discrete problem:

(0™ 0) + Sk (V6™ V) + 2K (17 + 7).

Problem 4.3. Find (upredh, Un, Vi, 6, Apredis Ans At H) with U = U, V0 = Vs, andé? = 76 such that the function

(upmredh, u, Vi, 6" /lpredH,/lan, A H) € Vih X Vi X Vh X Sh X Ann X Anp X Arsnp IS the solution of the system
b(”g}edh,Xh) + </131,edH,)(h> = b( 1y kvﬂ”,)(h), (4.3)
<'”PredH = Aeqr» ¥ (ug:'edh) - gwm> < 0 (4.4)
C(um 6 on) + (Ao en) + (A ™ len) . = (en) (4.5)
<'““»H - /lnm.H’ 7n (Uhm) - gwm> + (,UI,H - A{“H, Sy (AUL”)) < 0, (4.6)
Co (Ohm» i ﬁh) <a’h (Uh’ tH) ﬁh) = (_2‘ > 4.7)
b(Vi,wn) = Eb(zuhm Ut - W ewn). (4.8)

for all xn, ¢n, wh € Vh, all 9 € Sh, all ppred, it € Anp, all iy € Aggny, and allme {1,2,..., M}.
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Here, we set

S ) = (ow.g)+ 2K ((0) + 05 (), 5(0)),
G0xd) = (o) + 5K (V0. Tg) + KAL), 9,
(o) = (I0en) = 5K (o (0). ole).
(o (W ATH) Bn) 1= Sk (ST (AUR) + ATy (AT )
(I 0n) = (¢op™0n) + %k(Kve{{H, Viy) + %k(f;" + £ )
(o) i= () = 3 (e0ur (). ).

In every time stepn of the scheme specified in Problem 4.3, an highly coupledelisproblem has to be solved
involving several iterative procedures. In the case of Gall friction, we present an iterative scheme on the basis of
the procedure described in Remark 2.6.

Algorithm 4.4. Given a stopping tolerandel > O:

(1) Determine the solutiongi,édh € Vp, A € Ann Of (4.3-4.4) (see Section 2.4).

m
predH
(2) setty) = ATt AT = amt ur® = U™t i =1
3) Determing®™ € Sp, such that for alidy, € Sy
h
S L)+ (R ). = ()
. 1

(4) Set 8(x) = F A ()
(5) Determine the solution[tl € Vi, AT, € Anp, AT} € Aqgup Of

C(um™, o, on) + (A, @n) + (AT, S™n (<,0h))Qrc = (IN.en),

<Iun,H - /lmi-h Yn (uhmi) - g¢m> + (#t’H - /12}':’ §m% (Auhmi))O,Fc

I
o

for all on € Vh, all unp € Anp, all gy € Agami y (See Section 2.4).

(6) If , , . . . .
max{u’ - o - o, - A

seti«— i+ 1and goto (3).

mi mi-1
AT = A > tol,

(7) Determine § € V;, as solution of(4.8).

4.3. Numerical Example

Here, we consider the frictional example from Section 3.8imgThe additional material parameters &re 1,
k =5, anda = 0.002. Furthermore, we s&ty = 1 and assume homogeneous Neumann boundary conditidng on
for the heat equation. This means, the body is perfectlaisdland the friction is the only heat source. Consequently,
we expect the thermal energy to be equal to the energy disslipa friction. In Figure 8, the temperature distribution
in the body is depicted for fferent time steps. The stability of the Lagrange multipléetilustrated in Figure 9(a).
As a result of the thermal stresses, we obtain larger valuethé Lagrange multiplier as in the case without thermal
effects shown in Figure 7(a). We compare the thermal energythvittenergy dissipated by friction in Figure 9(b).
In theory, the energies has to be equal, which we observeeidititrete case as well. It should be remarked that the
energy loss due to numerical stabilization shows the saimaier as described in the pure frictional case, cf. Section
3.3.

17



B

Temperature Temperature
0.0 0.25 0.50 0.75 1.0 0.0 0.25 0.50 0.75 1.0
| . [ .
(@ m=0 (b) m= 100

Temperature Temperature
7.5 10.

00 3.8 15, 0.0 . . B
[ T [ .

(c) m= 150 (d) m= 200

—

Temperature
7.5

Temperature
0.0 5.0 10. 20. 0.0 3.8 . 15,
[ . [y .

(e) n=250 (f) m=300

Figure 8: Temperature distribution fpr= 4, My = 3840, andM = 400.

60
Thermal
Loss by friction <o
50 g
40 E
3
3 30F E
2
w
20 g
10 b g
o . . . ) ) |
lambda 0 005 01 015 02 025 03 035 04
-410.  -308.  -205.  -102. 0.00 )
- Time
(a) Lagrange multiplier (b) Comparison of the energy dissipated due to friction

and thermal energy

Figure 9: Plot of the Lagrange multiplier and comparison of ¢nergy dissipated due to friction and thermal energydot 4, M = 400,
Mg = 3840

18



et
it

(a) Spindle grinding wheel system (b) Workpiece
Figure 10: Geometry of the spindle grinding wheel system drnldeoworkpiece

5. An examplefrom production engineering

To show the applicability of the proposed discretizatiohesnes, we discuss a realistic process in production
engineering: The NC-shape grinding process of free formefdces with a toroid grinding wheel. A subproblem in
the simulation of the grinding process is to simulate dymatimermomechanical contact with Rayleigh damping. A
detailed survey of the engineering process and its sinoulasigiven in [51]. Here, we extend the model by frictional
and thermal ffects. The simulation of such thermdfexts enables the prediction of workpiece errors, for irtstan
grinding burn.

The main dfficulty in the realistic simulation of the grinding processhis rotation of the grinding wheel. The
contact situation changes in every time step and the pessiitact boundary is large. Furthermore, we need to
work with an adaptively refined contact boundary to resdieedontact conditions accurately. To avoid remeshing in
every time step, we use an arbitrary Lagrangian EuleriarEydpproach, which means that the mesh is fixed and the
material is rotated through the mesh. The approach is d&titbdetail, for instance, in [41] and [53].

The grinding wheel and the spindle are explicitly represeérin the finite element analysis. Thefltess of the
other parts of the grinding machine is included via elaséarings. The geometry of the spindle grinding wheel
system is depicted in Figure 10(a). The length of the spiiedi®b8 mm, the radius of the grinding wheel is 100 mm,
and the radius of the torus is2dnm. This values show theftirent length scales, which occur in this problem. In
particular, the depth of cut is in the range cd®mm to 05 mm, which, indeed, requires the application of methods
with high accuracy as higher-order finite elements. The noesisisting of 27984 cells is shown in Figure 10(a).
Homogeneous Dirichlet boundary conditions are assumedersirface of the bearings. Furthermore, all initial
functions are set to zero. The moduli of elasticity Bie= 2.1 - 10! n'f—gz for the spindle and for the grinding wheel

receiverE, = 2.1-10'3 % for the grinding wheel, and; = 10° r:—gz for the bearings. The other material parameters

are constant throughout the domain and are set £ 0.29, p = 7.85c;‘—'f’]3, @ = 108-10%K™1, x = 167 "K“’—;”

l = 4503%;, ag = 0.075, andby = 0. The coficient of friction is chosen a§ = 0.3 and the heat distribution
codficient asKy = 0.05. Furthermore, we assume homogeneous Neumann boundetijors. In order to obtain a
realistic model, the heat transport to the coolant has toobsidered by mixed boundary conditions. The rotational
speed of the grinding wheel is = 170rs™t. We selecfT = 0.02s anck = 10°s. The geometry of the workpiece,
which has a free formed sinusoidal profile, is shown in Figl®é). The vertical and horizontal infeed is set to
0.5 mm For the discretization of the displacement and the tempexatrilinear basis functions are used. The discrete
Lagrange multipliers are based on piecewise constant $haptions with mesh sizél = 2h.

Figure 11 shows the displacement in the center of the grindimeel orthogonal to the plane, in which the work-
piece lies. The sinusoidal profile of the workpiece is repnésd in the displacement of the grinding wheel, as
expected. The heat distribution in the contact zone betwyeading wheel and workpiece is depicted in Figure 12 for
different time steps. The heatitises mainly in the direction of the rotation. Furthermadne, lbcation of the highest
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Figure 12: Heat distribution in the contact zone
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temperature moves according to the contact zone. The valihe dieat inflow depends on the tangential stress and
consequently on the normal stress due to the friction. Témeddence is also observed in the heat distribution.

6. Conclusions and outlook

In this paper, we have presented a discretization schendyf@mic contact problems including damping, fric-
tional, thermal, as well as rotationafects using higher-order finite element methods in space. hive the appli-
cability of the mixed schemes, in particular, yielding $¢abagrange multipliers. The application of higher-order
schemes is advantageous in the sense of higher accuraey,manerical stabilization and possibly avoiding locking
effects. However, we do not obtain the optimal exponential emyence rates because of the low regularity of the
solution. To recover this, adaptive methods as presentgdje[6] have to be applied, wheheadaptive methods for
time-dependent contact problems are introduced. The srtemnohp-adaptivity is, however, an open task. Beside
higher-order methods in space, adaptive methods are n@etietk as well. For the time discretization scheme used
in this article, an approach for adaptive time stepping enhbntroduced in [34]. The extension of the time stepping
schemes to higher-order is also an open question.

In this work, the contact between an elastic body and a ribitaxle is considered. Currently, the discretization
scheme is carried over to contact problems including nealimaterial laws and nonlinear as well as multibody
contact conditions.
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