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A simple nonconforming quadrilateral Stokes element based on “rotated” multi-linear shape func-
tions is analyzed. On strongly nonuniform meshes the usualparametric version of this element suf-
fers from a lack of consistency, while. its nonparametric counterpart turns out to be convergent
with optimal orders. This theoretical result is confirmed by numerical tests.

INTRODUCTION

Nonconforming finite elements are attractive for discretizing the Stokes as well as the
Navier-Stokes problem since they possess favorable stability properties and divergence-
free nodal bases are easily constructed [1, 2]. This allows the elimination of the pressure
variables, leading to positive definite systems for the velocity variables alone, which may
be efficiently solved by preconditioned conjugate gradient methods [3], or by multigrid
techniques [2, 4]. While the convergence properties of the triangular nonconforming ele-
ments are well studied in the literature (sec, e.g., Ref. 5) the analysis of their quadrilat-
eral counterparts is less complete. A low-order rectangular element with 5 local degrees
of freedom was introduced and analyzed by Han [6], but no numerical tests were re-
ported. This paper deals with another nonconforming Stokes element which is based on
“rotated” multilinear shape functions and, due to its very simple structure, appears par-
ticularly attractive from the computational point of view. It turns out that the parametric
version of this element, i.e., that which is defined via transformations to a reference con-
figuration, works well only for certain types of weakly uniform meshes. However, with a
nonparametric Ansatz a generally convergent method is obtained. These phenomena can
be theoretically explained and have been verified by test calculations. For an extensive
comparison of this new element with other low-order Stokes elements see Ref. 7, and for
a multigrid implementation of its divergence-free form see Ref. 2, and also a forthcoming
report.

I. THE STOKES PROBLEM
We consider the usual linear Stokes problem
-Au+Vp=f V-u=0 inQ, u=0 ono, 1.1)
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where the pair {u, p} represents the velocity and the pressure of a viscous incompressible
flow in a bounded region 2 C R", n = 2 or n = 3. For simplicity, we assume Q to be
convex polygonal respectively polyhedral. The inner product and norm in the Lebesgue
space L* = LXQ) are denoted by (-,-) and ||- |, and the usual norm in the Sobolev space
H™ = H"(Q) by |||l Furthermore, Hy is the completion in H' of the space of test func-
tions C5' (), and H ™' is its dual space. By L we denote the subspace of all Z2-functions
over () having mean value zero. These are all spaces of R-valued functions. Spaces of R"-
valued functions are denoted with boldface type, though no distinction is made in the no-
tation of norms and inner products.

The usual weak formulation of Eq. (1.1) reads as follows:

(P) Find a pair {u,p} € Hj x L} such that

(VuVo) = (V- 9) ~ (6 V- ) = (f¢), Vi{ax}€H)x L.
1.2)

Problem (P) has a unique solution for any force f € H™". This is a consequence of the
well known estimate (see, e.g., Ref. 5)

. g,V
inf sup |———~
weLf et ( lallv]

If f € L’ then the solution is in H*> X H'® and satisfies the a priori estimate
lledlz + {12 = c|fl}- (1.4)

For approximating problem (P) by the finite element method one chooses appropriate
spaces H, ~ Hj and L, ~ L§, consisting of piecewise polynomial functions, where
h > 0 is a mesh size parameter tending to zero. Then, using corresponding “discrete”
bilinear forms a(yw) ~ (Vy, Vw) and b,(yw) ~ —(4 V - w), the discrete Stokes prob-
lem reads

(P.) Find a pair {uy,ps} € H, X L, such that

) > Bo> 0. 13)

aw(Unon) + bu(pa, ©x) + bulxnus) = (f,0n), Y {en, xs} € Hy X L.
(1.5)

This problem also has a unique solution in H, X L,, if ay(,-) is definite on H,, and if
bi(-,-) satisfies a discrete analog of the estimate (1.3) called the “uniform Babuska-
Brezzi stability condition.”

ll. THE ROTATED MULTILINEAR STOKES ELEMENT

Let T, be regular decompositions of the domain € C R” into (convex) quadrilaterals re-
spectively hexahedrons denoted by T, where the mesh parameter & > 0 describes the
maximum diameter of the elements of T,. By 9T, we denote the set of all (n — 1)-faces T
of the elements T € T,. The family {T,} is assumed to satisfy the usual “uniform shape
condition.” Accordingly, the generic constant ¢ used below is always independent of A. In
defining the “parametric” rotated multilinear element one uses the unit n-cube (with
cdgeg. parallel to the coordinate axes) as a reference element 7. For each T € T, let
Yr: T — T be the corresponding n-linear 1 — 1-transformation. We set

O:(T) = {g o yi't g € span{l, xiyx? — xy, i = 1,...,m)}.
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For defining the corresponding local interpolation operators iz: C(T) — O.(T), there are
two natural sets of nodal functionals {F{&”, T € T, i = 1,...,n},

@ FEo =0~ frv.(x)dox, (®) Fw) = vibr),

where by is the midpoint of the (n — 1)-face I Either choices are unisolvent with Q'l(T ),
but lead to different finite element spaces. The corresponding finite element spaces are

Ly ={q. € L§: qujr = const, YT € T},

vi EPivyr € O.(T), YT € Ty, v, continuous with respect
to all the nodal functionals FE(-), and F&¥(v,) = 0if T CaQ) "

HE® = {

Clearly, Hi® = H?, while for the corresponding triangular element the spaces Hf? and
H{ coincide. Since the spaces Hi** are nonconforming, Hi® ¢ H}(£2), we have to work
with “piecewise” defined bilinear forms and corresponding norms

aw)= T (W, Wy, big=-3 @V v v = a)?
TET, TET,

Due to the parametric definition of the spaces H{", the system matrices A, and B, cor-
responding to the discrete forms a(,*) and bs( - ,*) may be calculated very efficiently by
back-transformation to the reference element 7.

Let j,: L§ — L, be the operator of piecewise constant interpolation (modified to pre-
serve the zero-mean value property) that satisfies, for g € L§ N H',

lg — jugll < chlgl- (O]

Further, let i, = i{® be the global interpolation operator in Hi*” generated by the local
operators ir. Unfortunately, on general nonuniform meshes the usual optimal order error
estimates do not hold for i®. This is due to the fact that the spaces H{™ are not “iso-
parametric,” i.e., the multilinear transformations ¢r: T — T are of another polynomial
type than the shape functions on 7. In order to guarantee proper approximation proper-
ties for H{*®, we have to impose a certain weak uniformity condition on the meshes T.
For each element T € T, let ar € (0,7) denote the maximum angle enclosed between
the normal unit vectors corresponding to any two opposite (n — 1)-faces of 7. Then, the
quantity

o = max{jr — a7}, T € T}
is a measure for the degeneration of the mesh T,.
Lemma 1. For the interpolation operators i, = i{”, there holds the error estimate
v — iV + By — isvlh < ch(h + ow)|vl, v € Hi N H 2.2

Proof. The proof uses the standard Bramble-Hilbert lemma (see, e.g, Ref. [8]). For
any T € Ty, let Dy7(£) denote the Jacobian matrix of the mapping ¢ T — T, which is
a linear function of £. The second gradient Dy is proportional to the coefficients of the
multilinear terms in ¢r. By elementary geometric arguments one obtains the estimates

IDYr| < ch, |DY7'| < ch™, |D%i| < chlr — as|, |det(Dyr)| < ch”.
2.3)
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To some function v € H*T), on T, we associate the function § = V(- ) € HYT), on
T. By the Bramble-Hilbert lemma, there holds
o = il + |V - i < c]}f”ﬁ";. (2.4)
Hence, observing the relations t/T> =itV and W o ¢7 = Dy7 *6&, and the bounds (2.3) it
follows that
= il + KV = i)l < ekl = izdl7 + 96 — izD)ls]
< ch¥%);. (2.5)
To estimate the term on the right-hand side we note that
V3] =< c| DYV + | D] W] < chIVH + chlm — arl|W].

(2.6)

This yields
v = irvlr + AVO ~ il < cCRAVYr + hjar - ar|[Wr). 27
Summing this over all T € T, yields the desired result. [ |

Remark 1. The interpolation estimate (2.2) is sharp in the respect that the depen-
dence on the quantities o, is unavoidable. This can be seen, for instance, on meshes
composed of quadrilaterals of the type shown in Fig. 1. The (conforming) isoparametric
multilinear element does not have this defect since in this case one can employ a sharper
version of the Bramble-Hilbert lemma yielding the estimate (2.2) with the right-hand
side involving only the pure second derivatives of . Then, the estimate (2.6) does not
contain the gradient term chlr — a;] |Wv], since the mapping ¢ is also multilinear. This
leads to the usual optimal order error estimates for i r independent of oy,

Remark 2. The parametric rotated multilinear element has a nonparametric counter-
part. For any element T € T, let {£} denote a coordinate system which is obtained by
connecting the center points of any two opposite (n — 1)-faces of T. Since the mesh fam-
ily {T,} is uniformly regular, the linear transformation between {&} and the cartesian sys-
tem {x;} is bounded independently of 4. On each T € T,, we set

Ou(T) = span(l, &, &7 — &4y, i = 1,...,n.

The corresponding local interpolation operator ir: C(T) — Oy(T) is defined using the
same sets of nodal functionals {F (- )} as in the parametric case. Then, there also holds

FIG. 1. Deterioration of Quadrilaterals.
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H{ ¢ H} and B{* = H{”. Since in this case O.\(T) automatically contains all linear
polynomials in x, one may apply the Bramble-Hilbert lemma directly on each element
T € T,, without refering to the reference element 7. This yields the estimate (2.2),

v — i&®| + Ry — i < ch¥v., v € Hi OB, 2.8
without any dependency on . We omit the rather standard technical details.

Analogously, as in the triangular case (see Ref. [5]), it is easy to see that the “mean-
value-oriented” interpolation operator if: Hi — H/” has the following properties:

bu(xmv — i) =0, Vx. €Ly vEH, 2.9)
lifve < v, v € Hq. (210)
This, together with the continuous stability estimate (1.3), directly implies the uniform
stability for the pairing {H{®, L.},
. bh(qh,w,)) Bo
min max {-—-—] = 2—>0. 2.11
i max (7 = 9025 @1

The “midpoint-oriented” interpolation operator if?: C(Q) — H/? generally does not
satisfy Egs. (2.9) and (2.10). In order to guarantee the stability property (2.11) for the
pairing {H{, L;}, we have to require the meshes T, to be sufficiently uniform.

Lemma 2. Suppose that the quantity o = sups»o o4 is sufficiently small. Then, the
uniform stability estimate (2.11) holds true also for the pairing {H”, L}

Proof. We use the stability estimate (2.11) already known for the pairing {H{?, L,}.
Let g, € L, be given. To any v, € H[® we associate a function ¥, € Hf?, by requir-
ing that

Valbr) = [T "J’ vado,, ¥ T € 9T,. (2.12)
r
Since the mesh family {T,} is uniformly regular, there holds
[7alls < cllvafs- (2.13)
Furthermore, .
bi(qnsVn) = ba(qn,va) + ba(gn, Vs — Vi), (2.14)

where the second term on the right-hand side can be written in the form

bilgnn —vi) = — 2 | quV - (7 — va)dx = > I qv(Vy — vi) - ndo,.
TET, T TET, Jor
(2.15)
On any fixed (n — 1)-face I, there holds

I Vs — va] - nrdo, = I\‘);, - nrdo, — [[wa(br) - nr = j oD%, « nydo,,
r r r
(2.16)

with a weight w(x) =~ diam(T')* and a sum D} of second tangential derivatives on I
Therefore, the term on the left-hand side in Eg. (2.15) can be written as the sum of terms
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of the form
Ar = q'ﬂ(f wD, - nrdo, + J w' DAy - nr'dDX), (2.17)
r I

where I and I'" are two opposite (n — 1)-faces of some T € T,. Using the relation
jne + npl < dm = e, (218)

and the “inverse” inequality

[DVnyr| < ¢ diam(T) Y Vi|leary, (2.19)
we conclude that
[4s] = dm ~ ad |qullzan Vol (2:20)
Collecting these estimates for all T € T, yields
[b(@n,Ph — i)l = coullgall Falls - 221
Then, we use this together with Egs. (2.13) and (2.14) to obtain
Plasl = sup, (W) + coulgul, 222
from which the assertion follows, provided that the o are sufficiently small. [ |

On the basis of the stability estimate (2.11) and the approximation properties (2.1) and
(2.2) we can now derive asymptotic error estimates. We begin with the parametric case.

Theorem 1. Suppose that the foregoing assumptions hold. Then, for H, = H®, and if
the quantity @ = Supsso oy is sufficently small, also for H, = B, the discrete Stokes
problems (P,) have unique solutions {u,, ps} € H™ X L,, and there holds

lu = wille + lp = pall < cth + o) {Jull + 121} (2:23)
e ~ wil + [lp = pall-i = clt + o) {lulle + IPI} 2249
(Here |- ||-1 denotes the norm of the dual space of L} N H').

Proof. The argument is similar to that for the triangular case (see, e.g., Ref. [5]).
Clearly, the bilinear form a,(-,-) defines an inner product on H,. Hence, in view of the
stability property (2.11), the problems (P;) are uniquely solvable in H, X L. Next,
combining Egs. (1.2) and (1.5), we obtain the error identity

ay(u ~ up,o4) + bu(p — puyon) + bulxn,u — us) = Lles) — Tles),
(2.25)

for all {ps, x»} € H;, X Lj, where

Tien) = X J dotgprdo,,  Ties) = 2 I pes-ndo,.  (2.26)
Tew, Jor TET, Jar

The functionals I,(-) and I(-) are also well defined on the direct sum H, @ Hj. For
functions ¢, € H, @ Hg, there holds

Lied = 3 [ @u-5les ~ orlrdo. + 3 [ Glonldos,
r réam, Ir

rcaT,

2.27)
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where [ - }r denotes the jump of a function accross I and the bar indicates the mean value
over IL By a standard argument using a Poincaré-type inequality it follows that

=] =

S| @t — 3t [n — eulrdoy| < chllulallll- (2.28)
rcat, 7T

Analogous relations also hold for the functional I,(-); we omit the obvious details. Next,
we consider the cases H, = H{” and H,, = H{? separately.
(i) In the case H, = H/?, the second sum, 25, in Eq. (2.27) vanishes and we obtain

[Cutee) = chlludbllesle,  1Gen)] = chllplillall» (2.29)
for ¢, € H{® @ H{. Furthermore, using additionally Eq. (2.2), it follows that, for
veEHNHY

Ly = i@} < ch(h + au)llulV]:»
I — i) = chth + o) |phivle-

(i) In the case H, = H{?, the second sum 3, does not vanish. In virtue of the continu-
ity properties of functions in Hf”, there holds (see the proof of Lemma 2)

(2.30)

fﬁ {exlrdo, = f 0,1 - [on = [Tlea(br)lrdo, = fam « Dg4]rdos,
r r
(2.31)
with a weight function w(x) = diam(I')* and a certain sum D of second-order tangential
derivatives on I’ Therefore, the term X, can be written as a sum of terms
Ar= Iwa—u - D}gudo, + I wdyu - Digudo,, 2.32)
r r
where I and I'" are two opposite (n — 1)-faces of some T € T;. Using again the relations
(2.18) and (2.19) we conclude that, for ¢, € H/,
|41 = el = ad luln Vel (233)

and collecting these estimates

S | Bauleslrdod < coullulellenlh - (234)

rcaty Ir

22|

Consequently, for ¢, € H{?, there holds

L] = b + o)l Tenl < clh + o) plilenls-
235)

For ¢, = v — i € HY @ {H{ N H?, we have to modify the argument. Notice, that
the relations (2.28) and (2.31) remain valid. Observing that [¢:]r = [ixv]r, Eq. (2.32) takes
the form

Ar= jwﬂ~Dfi,,vdo,,+ j wigu - D2iyvdo,. (2.36)
T T

By the transformation argument of the proof of Lemma 1 one easily shows that

|DEiyvie| = ch™Vuzy + ch ™ — aq] Wl - (2.37)
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Using this in Eq. (2.36) and summing again over all T € T, then results in

u[v — iPVlrdo| = cth + o)l (2.38)

rcar, 71
Hence, by the interpolation estimates (2.1) and (2.2) it follows that, for v € H} N H?,
L = i) < cth + au)Hullfv]-,
Lo — i) = cth + ol phlve-

We will now continue the proof simultaneously for H, = H{™. From the interpolation
estimate (2.2), we obtain that

fu ~ unls < cth + ow)jude + 21ba(p ~ pryinu — uy)
= L(iau — uy) + L(u — us)|.

(2.39)

(2.40)

Further, combining Egs. (2.25) and (2.29), respectively (2.35), a standard argument yields
ba(p ~ pasinue — wi)| s chlplille — wil + cth + o) ulelp ~ pall-

(2.41)
This implies as a first result
le = willi = et + o) ulplp = pall + clth + o)l + Hlp]F.
(2.42)
Next, we use the stability estimate (2.11) and (2.1) to obtain
_ bu(p — Ph,%))
I = il = chlpl, + may (22 pue)). )
In view of Egs. (2.25) and (2.29), respectively (2.35), it follows that
lp = pall < chllplh + lu) + cloe — wall. (2.44)

Combining this with Eq. (2.42) we obtain the desired estimate (2.23).
To prove the estimate (2.24), we employ a duality argument. Let {g} € H{ x L3 be
the unique solution of the auxiliary Stokes problem

(W) — gV 9) = (V- u) = (u— us ), Vipx) EHI X L3,
(2.45)

which, in view of the a priori estimate (1.4), satisfies
e + all: = clle — wil. (2:46)
Using the above notation, there holds
e = P = (= wh, —v + V) = @l = ) + bilgu — )
L — w) + T — u,). (2.47)

Using the identity (2.25), the first two terms on the right-hand side can be written in the
form

ay(u — unv) = anlu — up,v — i) — bu(p — Pr,V — inV)
= Lv = i) + T(v — i), (2.48)
and
bi(qu ~— uy) = bulg — jaqu — us). (2.49)
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Hence, using the foregoing results we conclude that
lue = ws < e + onV{llul + llplh}- (2.50)

To prove the negative norm estimate for the pressure, we recall that the divergence op-
erator is 2 homeomorphism from H N H?onto L§ N H' (see Ref. [5]). This implies that

’ (p- ph,q)) - (bh(P = ph,v))
- -1 = T —_——e | 2.51
Ip = P "( )= el R @sy

For any v € H} N H?, we find, in view of Eq. (2.25),
an(u — up,V) + bu(p — prv) = an(u — un,v — i) + bi(p — pu,v — i)
= L — i) — L(v = ixv), (2.52)
and, by integration by parts,
an(u — up,v) = —(U = up, Av) + Lu — uy). (2.53)
Hence, using again the foregoing results, we conclude that

[a(p = pa¥)| < (b + o) Waflp = pall + Ju — wilh + (B + ow)|lule

+ H||pl}. (2.54)

Inserting this into Eq. (2.52) eventually yields the desired result,
Ip = palr = b + @) {lull: + llpli}- (2.55)
This completes the proof of the theorem. |

Remark 3. The preceding analysis indicates that the convergence of the parametric
rotated multilinear Stokes element, for 4 — 0, requires the underlying meshes {T,} to be
asymptotically uniform in the sense that oy, = max{lr — a7, T € T,} > 0, as h — 0.
This conclusion is supported by our numerical tests. However, the condition for conver-
gence is not very restrictive. It is, for instance, automatically satisfied for “weakly” uni-
form meshes that are obtained from an arbitrary macrodecomposition by the usual
systematic refinement process. Also, the approximation of curved boundaries and certain
types of regular local refinements are allowed, but self-adaptive mesh generation is
excluded.

Remark 4. In working with the “point-value-oriented” finite element spaces (H{”, L}
it is convenient to replace the bilinear form b,(-,-) by its numerically integrated version

bugy) = 3 [Tlglbr)vibe) - e (2.56)

In this case the uniform stability condition (2.11) is satisfied without any additional con-
dition on the meshes T,. This immediately follows by the argument used in the proof of
Lemma 2, observing that

balxuova) = bu(xnva), ¥V xu € Livs € HP. (2.57)
Then, by a standard perturbation argument (see, e.g., Ref. [8]) the estimates of Theorem

1 carry over to this case without any condition on the size of o = sups>e 0. This variant
of the scheme (P,) has been used in some of the test calculations described below.

Remark 5. In view of Remark 2, the nonparametric versions of the spaces H{"™ have
satisfactory approximation properties on general regular meshes. The stability properties



RANNACHER AND TUREK

are the same as those of their parametric counterparts, i.e., the convergence of the “mid-
point-oriented” clement H, = H{” can be guaranteed only under the assumption that
ox = 0. However, the nonparametric “mean-value-oriented” element H, = Hf® is stable
and convergent also on nonuniform meshes. In fact, the optimal order convergence
estimates

et = walle + lp — pall = chffulp + |plh}, 2.58)
e = wall + lp = pall-r < ch¥{ully + [1pli}, (259

follow directly by the argument used in the proof of Theorem 1. This result is supported
by our numerical tests. It should be noted that for this nonparametric element the system
matrices A, and By, have to be calculated locally element by element as no reference con-
figuration is available. This is possible without significant loss in computational effi-
ciency but it somewhat conflicts with the basic concept of most of the FEM-packages.

Il. NUMERICAL TESTS
For the numerical verification of our theoretical results we have chosen one of

the usual artificial test problems on the unit square, ) = (0,1) x (0,1), with the exact
solution

wy(x1,x2) = =256x5(x1 ~ Da(xz — 1) (2xz - 1),
ua{x1,x2) = —uy(x2,x,), plxi,x2) = 150(x; — 1/2) (x2 — 1/2).

In Figs. 2-5, four types of quadrilateral meshes arc shown (mesh width 4 = 1/16) for
which the calculations have been carried through.

As measures for the quality of the various Stokes elements we take the normalized rel-
ative L*-errors of the velocity and the pressure approximations

lle ~ wil lp = pil

Riff H{fl
Another significant quantity is the constant 8, in the discrete stability estimate (2.11),
which directly affects the accuracy of the pressure approximation. Let {#/} and {x"} be

e(h) = &(h) =

FIG. 2. Uniform rectangular mesh.
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FIG. 3. Locally refined mesh.

the usual nodal bases of the finite element spaces H, and L, and let x and y denote the
corresponding nodal vectors of the discrete velocity u, and pressure p;, respectively. We
introduce the matrices 4 € R™", M € R™", B € R™", its transpose B* € R™", and
the vector b € R", by setting

Ay = an(¢'. ), M;= 1, B; = bh(Xj»d)i), by = (f,(ﬂ)

Then, the discrete Stokes problem (1.5) can be written in the form

[+ AILI-L)

which may be transformed equivalently to
B*4™'By = B*A™',  Ax =b — By,
where the pressure is separated from the velocity. Clearly, the coefficient matrix B*4™'B

is positive definite on R™/R and has a condition number that is normally expected to be
independent of 4; in fact it is directly related to the size of 1/8,. Consequently, the first

3.2)

FIG. 4. Perturbed mesh (10%).
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FIG. 5. Perturbed mesh (20%).

equation in (3.2) may be efficiently solved by the cg-method, provided that a fast solver
(e-g., multigrid) for the evaluation of 4" is available. This solution technique was used in
computing the numbers listed below. Using the above notation, the relation (2.11) reads

: (B
f = = B, 3.
(i) - o 7
where (-, -) denotes the euclidian inner products of R” and R™, respectively. In terms of
the transformed variables £ = 4"’ and 3 = M ', this takes the form

. (A™2BM "y, &) B
st () - o o
which is equivalent to )
. M_UZBM_]BM ~1/2 3 172

Hence, B, is determined as the square root of the smallest (positive) eigenvalue of the
generalized eigenvalue problem

B*47'Byy = AMy). (3.6)

For monitoring the behavior of B, as 4 — 0, it suffices to consider the asymptotic rate of
convergence k«(h) of the cg-method for solving the first equation in (3.2), as there holds

= Bim (1 ®)] /1, Oy 1k zﬂ_"
wa(h) = fim (r /O ~ g @7
Here, r* is the residuum at the kth iteration step.

Tables I-IV contain the results of a series of test calculations on the meshes shown in
Figs. 2-5. The two parametric variants (a) and (b) of the rotated bilinear element have
nearly the same quantitative stability and convergence behavior. In particular, both ap-
proximation schemes fail to converge on strongly perturbed meshes. The results ob-
tained for the corresponding nonparametric versions (sec Remark 2) are indicated by
superscripts (a’), (b'). As is predicted by the theory (see Remark 5), only the “mean-
value-oriented” nonparametric element (a’) behaves well on strongly perturbed meshes.
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NONCONFORMING QUADRILATERAL STOKES ELEMENT

TABLE IV. Convergence properties on perturbed quadrilateral meshes (0%-25% stochastical
perturbation of the corresponding uniform mesh).

% () () «&(h) e (%) «&(h)
0 0.0437 0.0127 0.27 0.0776 0.0133 0.28
5 0.0484 0.0128 0.38 0.1070 0.0139 0.39

10 0.0515 0.0130 0.39 0.1741 0.0159 0.42

15 0.0567 0.0134 0.41 0.2850 0.0191 0.42

20 0.0638 0.0140 0.42 0.4405 0.0235 0.42

25 0.0729 0.0148 0.42 0.6414 0.0292 0.42

This behavior appears to be merely a problem of consistency. In fact, in all cases the sta-
bility constants B, are of moderate size and nearly independent of the mesh size 4. For
comparison, also some results for the usual nonconforming linear triangular element are
included; all quantities refering to this element are marked with a superscript (c). It
should be noted that in rating the approximation results one has to take into account
that, on the same mesh, the triangular element (c) has about 60% more unknowns than
the corresponding quadrilateral elements.

Table I shows that, on uniform meshes, the two parametric versions (a) and (b) of the
“rotated” bilinear element and the linear element (c) are of the same quality. (Notice that
in this case there is no difference between parametric and nonparametric.)

Table II shows that the parametric elements (a) and (b) as well as the linear element (©)
are nearly of the same quality also on locally refined meshes as long as a quasi-uniform
structure is preserved.

Table III shows that for both parametric elements (a) and (b) as well as for the “mid-
point-oriented” nonparametric element (b') the accuracy deteriorates on perturbed
meshes, while the stability is preserved. However, only the quality in the velocity
approximation appears to be effected. So far we have no rigorous explanation for this
phenomenon. The “mean-value-oriented” nonparametric element (a’) proves to be robust
as is predicted by the theory. To better illustrate this effect we show in Table IV the
corresponding results for the fixed mesh size # = 1/32 and a varying degree of mesh
distorsion.
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