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SUMMARY

The integration and application of a new multi-objective tabu search optimization algorithm for Fluid
Structure Interaction (FSI) problems are presented. The aim is to enhance the computational design process
for real world applications and to achieve higher performance of the whole system for the four considered
objectives. The described system combines the optimizer with a well established FSI solver which is based
on the fully implicit, monolithic formulation of the problem in the Arbitrary Lagrangian-Eulerian FEM
approach. The proposed solver resolves the proposed fluid-structure interaction benchmark which describes
the self-induced elastic deformation of a beam attached to acylinder in laminar channel flow. The optimized
flow characteristics of the aforementioned geometrical arrangement illustrate the performance of the system
in two dimensions. Special emphasis is given to the analysisof the simulation package, which is of high
accuracy and is the core of application. The design process identifies the best combination of flow features
for optimal system behavior and the most important objectives. In addition, the presented methodology has
the potential to run in parallel, which will significantly speed-up the elapsed time.
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1. MULTI-OBJECTIVE OPTIMIZATION IN FLUID STRUCTURE INTERACTION

By definition, optimization seeks for the best possible performance of a model, which is formulated
in a mathematical way as the minimization of a function or a set of functions at the same time.
This denotes single- and multi-objective optimization, respectively. The response of the design
space to the objective space (set of problem variables and objectives,respectively) could be either
linear or non-linear, and continuous or discrete. Thus, exploring effectively the design space and
concentrating around the regions where there most optimal values reside isof paramount importance
and the whole optimization process was developed in order to tackle this requirement.

The vast majority of real world applications depends on several variables of a given model.
The handling of participating variables appropriately is the key for successful optimization. The
optimization is applied on a model, which in turn approaches the real behavior of various phenomena
found in nature. Defining performance metric(s) is the considered objective(s) and the goal of
optimization is to discover the best combination of variables that yields the best performance. Since
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Figure 1. Overview of the Integrated Optimization Process

no global optimum exists when many objectives are defined, focusing on theconflicting objectives
is essential.

Computational tools for multi-objective and multi-disciplinary optimization are of paramount
importance throughout the design process of real-world applications [?], [?]. Recently, the
increase of computational power favors implementations, which employ these principles. This
can considerably reduce the duration of the design cycle and deliver high quality products. The
functionality of a new optimizer and its application on a real world problem are presented in this
document. The concept of engineering design optimization was conceivedand implemented by
Cranfield University and TU Dortmund provided the FSI simulation code. Theoptimization process
is applied on FSI [?] and the results are analyzed from a multi-objective optimization point of view.

The integration of the FSI solver into an optimization procedure for FSI problems has been
reported in [?] and fluid structure interaction in the context of shape optimization and computational
wind engineering is contributed in [?].

The approach presented here treats the problem as a pipeline - a single continuum with the
coupling implemented as internal interface, which does not require any special treatment, as
depicted in Figure1. For further details of the underlying numerical aspects of the discretization
and solution algorithms for this monolithic approach, see [?, ?, ?]. The presented optimization
process follows the methodology of Multi-Objective Tabu Search (MOTS) [?], which stems from
the original tabu search [?]. Furthermore, a new variant of the former, namely MOTS2 [?], has
been developed and used in this study. It can be considered as combinedextension of numerical
analysis tools and artificial intelligence optimization methods and techniques. In addition, MOTS2
includes the improvements discussed in [?] and, given any parallel framework, it can operate in
parallel mode saving elapsed time. The remaining of this paper is structured asfollows. First the
mathematical background for the core simulation model, the FSI package, is described, followed by
the numerical techniques. The computational approach for FSI is illustratedin section 4. The next
part presents and discusses two optimization cases; one single- and one multi- objective.

2. GOVERNING EQUATIONS FOR FSI

The governing equations for fluid and structure are described in the following subsections. We
denote byΩf

t andΩs
t the domains occupied by the fluid and the structure, resp., at the timet ≥ 0.

Let Γ0
t = Ω̄f

t ∩ Ω̄s
t be the part of the boundary where the elastic structure interacts with the fluid.
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2.1. Fluid

The fluid is considered to beNewtonian, incompressibleand its state is described by the velocity
and pressure fieldsvf , pf . The balance equations are

̺f
∂vf

∂t
+ ̺f (∇v

f )vf = div σf

div vf = 0

in Ωf
t . (1)

The material constitutive equation is

σf = −pfI+ ̺fνf (∇v
f +∇v

fT). (2)

The constant density of the fluid is̺f and the viscosity is denoted byνf .

2.2. Structure

The structure is assumed to beelastic and compressible. Its deformation is described by the
displacementus, with velocity fieldvs = ∂us

∂t
. The balance equations are

̺s
∂vs

∂t
+ ̺s(∇v

s)vs = div(σs) in Ωs
t . (3)

The material is specified by the Cauchy stress tensorσs or by the 2nd Piola-Kirchhoff stress tensor
S
s = JF−1σs

F
−T via theSt. Venant-Kirchhoffconstitutive law

σs =
1

J
F (λs(trE)I+ 2µs

E)FT, (4)

S
s = λs(trE)I+ 2µs

E, (5)

whereE = 1
2 (F

T
F− I) is the Green-St. Venant strain tensor.

The density of the structure in the undeformed configuration is̺s. The elasticity of the material
is characterized by the Poisson ratioνs (νs < 0.5 for a compressible structure) and by the Young
modulusEs. The alternative characterization is described by the Lamé coefficientsλs andµs (the
shear modulus):

νs =
λs

2(λs + µs)
Es =

µs(3λs + 2µs)

(λs + µs)
(6)

µs =
Es

2(1 + νs)
λs =

νsEs

(1 + νs)(1− 2νs)
(7)

2.3. Complete set of equations for Fluid Structure Interaction

In the case of fluid-structure interaction problems the Lagrangian description for the deformation of
the structure part still can be used. The fluid flow now takes place in a domainwith boundary given
by the deformation of the structure which can change in time and is influenced back by the fluid
flow. The mixed ALE description of the fluid has to be used in this case. The fundamental quantity
describing the motion of the fluid is still the velocity vector but the description is accompanied
by a certain displacement field which describes the change of the fluid domain. This displacement
field has no connection to the fluid velocity field and the purpose of its introduction is to provide
a transformation of the current fluid domain and corresponding governing equations to some fixed
reference domain. This method is sometimes called apseudo-solid mapping method[?].
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The complete set of the non-dimensionalized system with the described choiceof material
relations reads:

∂u

∂t
=

{

v in Ωs,

∆u in Ωf ,
(8)

∂v

∂t
=











1
β
Div

(

−JpsF−T
)

in Ωs,

−(Gradv)F−1(v − ∂u
∂t
)

+Div
(

−JpfF−T + JµGradvF−1
F

−T
)

in Ωf ,

(9)

0 =

{

J − 1 in Ωs

Div(JvF−T ) in Ωf
(10)

whereβ = ̺s

̺f is the density ratio. The boundary conditions on the fluid-structure interface are
assumed to be

σf
n = σs

n

v
f = v

s
(11)

wheren is a unit normal vector to the interface. This implies the no-slip condition for the flow, and
that the forces on the interface are in balance.

3. FEM DISCRETIZATION

The discretization in space is done by the standard Galerkin finite element method. Let I = [0, T ]
denote the time interval of interest. The equations (8)-(10) are multiplied by the test functionsζ, ξ, γ
such thatζ = 0 on Γ2 (external boundary of structure),ξ = 0 on Γ1 (external boundary of fluid),
and integrated over the space domainΩ and the time intervalI. Using integration by parts on some
of the terms and the boundary conditions leads to

∫ T

0

∫

Ω

∂u

∂t
· ζdV dt =

∫ T

0

∫

Ωs

v · ζdV dt−
∫ T

0

∫

Ωf

Gradu ·Grad ζdV dt, (12)

∫ T

0

∫

Ωf

J
∂v

∂t
· ξdV dt+

∫ T

0

∫

Ωs

βJ
∂v

∂t
· ξdV dt

=−
∫ T

0

∫

Ωf

J GradvF−1(v − ∂u

∂t
) · ξdV dt

+

∫ T

0

∫

Ω

JpF−T ·Grad ξdV dt

−
∫ T

0

∫

Ωs

∂Ψ

∂F
·Grad ξdV dt

−
∫ T

0

∫

Ωf

JµGradvF−1
F

−T ·Grad ξdV dt,

(13)

0 =

∫ T

0

∫

Ωs

(J − 1)γdV dt+

∫ T

0

∫

Ωf

Div(JvF−T )γdV dt. (14)

The treatment of the problem as one monolithic system suggests to use the same finite elements
on both the structure part and the fluid region. A pair of finite element spaces known to be stable
for problems with incompressibility constraint is chosen. The compatibility condition between the
velocity space and pressure space is satisfied by the so called inf-sup orLBB condition named after
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Ladyzhenskaya, Babuska and Brezzi [?],

sup
u∈Wh

∫

Ω
divuq

‖u‖1,Ω
≥ γ ‖q‖0,Ω ∀q ∈ Qh (15)

whereγ is a mesh-independent constant.Wh := Uh × Vh ⊂ C(Ω) andQh ⊂ L2
0(Ω).

vh,uh

ph,
∂ph

∂x
, ∂ph

∂y

x

y

Figure 2. Location of the degrees of freedom for theQ2P1 element

The LBB-stable conforming biquadratic, discontinuous linear finite element pairQ2P1 is invoked,
which is most accurate and robust finite element pairs for highly viscous incompressible flow (see
[?], [?], [?] ). This choice results in39 degrees of freedom per element for2D, see Figure2 for the
location of the degrees of freedom.

Then, the variational formulation of the fluid-structure interaction problem isto find
(uh,vh, ph) ∈ Uh × Vh × Ph such that the equations (12), (13) and (14) are satisfied for all
(ζh, ξh, γh) ∈ Uh × Vh × Ph including initial conditions.

The spacesUh, Vh, Ph on an interval[tn, tn+1] are defined in the case of theQ2P1 pair as follows

Uh = {uh ∈ [C(Ωh)]
2,uh|T ∈ [Q2(T )]

2 ∀T ∈ Th,uh = 0 on∂Ωh},
Vh = {vh ∈ [C(Ωh)]

2,vh|T ∈ [Q2(T )]
2 ∀T ∈ Th,vh = 0 on∂Ωh},

Ph = {ph ∈ L2(Ωh), ph|T ∈ P1(T ) ∀T ∈ Th}.

After discretization in space by the finite element method (i.e.Q2P1), derive the system of nonlinear
algebraic equations arising from the governing equations in each time step





Suu Suv 0

Svu Svv kB
cuB

T
s

cvB
T
f 0









uh

vh

ph



 =





rhsu
rhsv
rhsp



 , (16)

whereS describes the reactive, diffusive and convective terms from the governing equations,B is
the discrete gradient operator andB

T is the discrete divergence operator.

4. SOLVER

The above system of nonlinear saddle point type of the algebraic equations in (16) is solved using
the Newton method as basic iteration which can exhibit quadratic convergence. The basic idea of
the Newton iteration is to find a root

R(X) = 0, (17)
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using the available known function value and its first derivative. One stepof the Newton iteration
with damping results in iterations of the form

X
n+1 = X

n + ωn

[

∂R(Xn)

∂X

]−1

R(Xn) (18)

whereX = (uh,vh, ph). The Jacobian matrix∂R(Xn)
∂X

can be computed by finite differences from
the residual vectorR(X)

[

∂R(Xn)

∂X

]

ij

≈ [R]i(X
n + αjej)− [R]i(X

n − αjej)

2αj

, (19)

whereej are the unit basis vectors inRn and the coefficientsαj > 0 are increments at each iteration
stepn of the iteration (18), which can be taken adaptively according to the change in the solution in
the previous time step or can be fixed. We set this parameter to be fixed, i.e.,

αj = −b∗ǫM

whereb∗ parameter to be assigned at start andǫM =
√

DBL Machine, see [?, ?].
The damping parameterωn ∈ (−1, 0) is chosen such that

R(Xn+1) ·Xn+1 ≤ R(Xn) ·Xn.

The damping greatly improves the robustness of the Newton iteration in the casewhen the current
approximationXn is not close enough to the final solution, see [?, ?] for more details.

In this considered2D problem a direct solver for sparse systems like UMFPACK [?] is used.
This choice provides very robust linear solvers however its memory and CPU time requirements are
too high for larger systems (i.e. more than20, 000 unknowns). In that case the standard geometric
multigrid approach is utilized, for details see [?, ?]. As the sparsity pattern of the Jacobian matrix is
known in advance, which is given by the used finite element method, this computation can be done
in an efficient way so that the linear solver remains the dominant part in terms of the CPU time (see
[?] for more details).

5. FSI OPTIMIZATION BENCHMARKING

This FSI optimization benchmark is based on the 2D steady FSI problem from the benchmark
configuration of Turek and Hron [?] with additional altered boundary control flows as shown in
Figure??.

5.1. Defining the objective functions

The quantities of interest are with respect to the position of the pointA (Figure??):

1. The displacementsux(t) anduy(t) in x- andy-direction of the pointA at the end of the beam
structure (see Figure??).

2. Forces exerted by the fluid on thewholesubmerged body, i.e. lift and drag forces acting on
the cylinder and the beam structure together

(FD, FL)
T
=

∫

S

σf
n dS =

∫

S1

σf
n dS +

∫

S2

σf
n dS,

whereS = S1 ∪ S2 (see Figure3) denotes the part of the circle being in contact with the fluid
andn is the outer unit normal vector to the integration path with respect to the fluid domain.

Finally, numerical results for this problem involving optimization for a steady fluid-structure
interaction are given here to illustrate the capability of the approach considered.
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S1
S2

Figure 3. Integration pathS = S1 ∪ S2 for the force calculation

5.2. Formulating the Optimization Problem

The idea is to integrate the FSI solver into an optimization procedure for FSI problems. Furthermore,
these FSI configurations can be extended towards optimal control of body forces acting on and
deformations of the elastic object in which case additional outer in flow/out flow regions control the
optimal result.

Two scenarios are presented below: one single and one multi-objective optimization. As single-
objective optimizer a derivative-free optimization method for this unconstrained minimization
problem is chosen, which is the SIMPLEX algorithm developed by Nelder and Mead [?, ?]. The
method is wide spread due to the fact that it makes no assumptions about the objective function
except that it is continuous and it is quite numerically robust [?, ?]. Furthermore, MOTS2 will
perform the multi-objective optimization and its functionality is described in??.

Definition The problem domain, which is based on the 2D version of the well-known FSI
benchmark in [?], is illustrated in Figure??. The thickness of the beam is increased from0.02m
to 0.04m.

An objective function is the minimization of lift/drag forces on the deformable structures through
boundary flow control. Mathematically this optimization problem can be written as

minimize
V1,V2

(

lift(V1, V2)
2
+ αV 2

C

)

(20)

whereα is the normalization parameter. The control velocity profile from the regiona1 and the
regiona2 is prescribed in the following

vfC(x, 0) = VC =

{

V1(x− 0.45)(x− 0.60), a1

V2(x− 0.45)(x− 0.60), a2.
(21)

Similarly, the multi-objective optimization problem is formulated as

minimize
V1,V2

lift(V1, V2), drag(V1, V2), ux(V1, V2), uy(V1, V2) (22)

whereV1 is the magnitude of the parabolic velocity from/to the regiona1 and the regionV2 velocity
from/to a2. Also, ux, uy denote the horizontal and vertical displacement of pointA respectively.
The regiona1 and the regiona2 are specified between the points(0.45, 0) (0.60, 0) and the points
(0.45, 0.41) (0.60, 0.41), respectively (see Figure??). A parabolic velocity profile is prescribed at
the left channel inflow

vf (0, y) = 1.5Ū
y(H − y)
(

H
2

)2 = 1.5Ū
4.0

0.1681
y(0.41− y), (23)

where Ū = 0.2m/s denotes the mean inflow velocity in x-direction andH denotes the channel
height. The outflow condition is chosen asstress free. The outflow condition effectively prescribes
some reference value for the pressure variablep. In this paper, the reference pressure at the outflow
is set to havezero mean value. Theno-slipcondition is prescribed for the fluid on the other boundary
parts, i.e. top and bottom wall, circle and fluid-structure interface.

The prototypical parameters for the fluid (glycerine) and rubber-like materials (polypropylene)
are: The density and kinematic viscosity of the fluid areρf = 1000kg/m3, νf = 10−3m2/s,
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a2
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(0, 0)

C
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l

h
A

Figure 4. Geometry and computational domain of the configuration and details of the structure part

respectively. Thus the Reynolds number isRe = 20 based on the cylinder diameter. The density
of the structure isρs = 1000kg/m3, the Young modulus isE = 178000kg/ms2 and the Poisson
ratio isµs = 0.4.

The domain has lengthL = 2.5m and heightH = 0.41m, the circle center is positioned at
C = (0.2, 0.2) (measured from the left bottom corner of the channel) and the radius isr = 0.05m,
the elastic structure beam has lengthl = 0.35m and heighth = 0.02m, the right bottom corner is
positioned at(0.6, 0.19), and the left end is fully attached to the fixed cylinder, the control point is
A, attached to the structure and moving in time withA(0) = (0.6, 0.2). The setting is intentionally
non-symmetric (see [?]) to prevent the dependence of the onset of any possible oscillation on the
precision of the computation. The mesh used for the computations is shown in thethe Figure??.

level #el #dof
0 62 1338
1 248 5032
2 992 19488
3 3968 76672

Figure 5. Coarse mesh with number of degrees of freedom for refined levels

5.2.1. SIMPLEX ResultsThe FSI-Opt computations are done on the same the mesh and its
refinement levels, as used for the FSI benchmark in [?]. The reference value of lift coefficient in case
of stationary FSI calculation is7.6e− 1 (see [?, ?] for more details). When the flow is introduced
or injected with the constant velocityV2 = 10m/s, from below the lift on the beam obviously
increases, see Figure??, which shows that it is the wrong direction to inject flow. For the case of
suction, the flow with same constant velocityV2 = 10m/s from below produces negative values of
lift in increasing order, see Figure??. If the flow is injected from top and extracted from bottom with
the same velocitiesV1 = V2 = 10m/s without considering the SIMPLEX method, then the resulting
lift coefficient on the beam seems to be quite smeared, irregular and hard topredict or conclude what
could be best coordinate/direction which can give minimum lift. The vector magnitude of the flow
behavior is shown in Figure??.

From this it is clear that theV1 = V2 > 10m/s is not a good direction to select coordinates of
SIMPLEX. Hence it became clear that for the implementation of SIMPLEX methodthe coordinates
of the triangle should be between[0, 10]. For the numerical simulation the coordinates(0,−3), (3, 3)
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Prepared usingfldauth.cls DOI: 10.1002/



9

Figure 6. No SIMPLEX: Flow vector magnitude (Injection) level 3

Figure 7. No SIMPLEX: Flow vector magnitude (suction) level3.

Figure 8. No SIMPLEX: Flow vector magnitude (Injection and suction) level 3

Figure 9. SIMPLEX: Flow vector magnitude (Injection and suction) level 3

and(−3, 3) for a two variable Nelder-Mead algorithm are used. For this case, if the simplex method
is in place lift coefficient goes to almost zero, as shown in Figure??and in result the beam became
almost static. Optimal points are then the(V1, V2) values which result in minimum lift on the beam
depending on the parameterα. Asα decreases the reduction of the lift on the beam is visible and the
optimal point(1.06e+ 0, 1.08 + 1) is for mesh level 1,(1.04e+ 0, 1.05e+ 01) is for mesh level 2
and(1.04e+ 0, 1.05e+ 01) is for mesh level 3. Results are shown in Figures??, for mesh levels 1, 2
and 3 in respective order, which show the optimal velocity valuesV1 andV2 providing the minimum
lift on the beam as compared with the FSI1 benchmark reference lift valueswhich is 7.6e− 1.
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α level1, dof=5032
iter optimal values(V1, V2) lift

1e+ 0 57 (3.74e− 1, 3.88e− 1) 8.1904e− 1
1e− 2 60 (1.04e+ 0, 1.06e+ 0) 2.2684e− 2
1e− 4 73 (1.06e+ 0, 1.08e+ 1) 2.3092e− 4
1e− 6 81 (1.06e+ 0, 1.08e+ 1) 2.3096e− 6

α level2, dof=19488
iter optimal values(V1, V2) lift

1e+ 0 59 (3.66e− 1, 3.79e− 1) 7.8497e− 1
1e− 2 59 (1.02e+ 0, 1.04e+ 0) 2.1755e− 2
1e− 4 71 (1.04e+ 0, 1.05e+ 01) 2.2147e− 4
1e− 6 86 (1.04e+ 0, 1.05e+ 01) 2.2151e− 6

α level3, dof=76672
iter optimal values(V1, V2) lift

1e+ 0 67 (3.66e− 1, 3.79e− 1) 7.87e− 1
1e− 2 77 (1.02e+ 0, 1.06e+ 0) 1.97e− 2
1e− 4 100 (1.04e+ 0, 1.06e+ 0) 2.03e− 4
1e− 6 100 (1.04e+ 0, 1.06e+ 0) 1.3372e− 6

Figure 10. No displacement is visible of the beam due to optimal boundary flow control.

In Figure??, it is easily seen that the beam is not displaced i.e. no lift on the beam is observed
due to the boundary control, and results are shown for three differentmesh refinement levels.The
lift coefficient on the beam with changingα parameter is given in the corresponding tables in the
Figure??. Also, for higher mesh refinement levels more iterations are required and the result (lift≈
0) is better compare to the result for the level 1 and level 2.
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Figure 11. MOTS2 flow diagram

5.3. MOTS2 description

Tabu Search belongs to the category of stochastic search optimizers and isbased in the original
([?]) and the Multi-Objective ([?]) version. The current implementation is based on It searches
throughout the design space in a stochastic way and it avoids recently visited design points, so as to
guarantee more exploitation of the unknown design space. In fact, local search [?] is combined with
stochastic elements. Three different hierarchical memories are used to assist critical decisions during
the optimization process. It also keeps track of certain statistics during the process, which direct
the search according to the discovered landscape of the design space.In addition, the optimizer
employs a mechanism for local and global search. The statistics detect design points around the
current search point, within relatively short distance, whereas the search mechanisms attempt to
discover good design points in the entire design space. Consequently, thefunctionality of MOTS2,
as depicted in Figure??, results in better performance throughout the optimization process. The
configuration settings are listed in Table??.

The search is guided by the current base point and collective memory banks. Around the base
point, adjacent candidate design points are investigated and evaluated. Then, the corresponding
objective values are sorted according to domination criteria of multi-objectiveoptimization [?] and
the following base point is resolved. The previous base point and all the recently generated points
are inserted into the appropriate memory banks. Aggregated information will be used in future
steps, when certain conditions are triggered. This procedure keeps repeating until stopping criteria
are met. Depending on the nature of the application these are usually the elapsed time, the number
of evaluations, the number of of consecutive failures to find a better point,number of iterations or a
combination of them. Herein, the core is the Update Memories, Hooke and Jeeves-, Intensify- and
Reduce-Move.

The following parts take place in every iteration as follows:

• TheHooke and Jeeves Moveis the most important as it occurs on every iteration: Starting from
the base point, a couple of valid and non-tabu points are generated by combining the current
base point and the current search step. Some of the recently created points are evaluated (by
sampling) and added into the appropriate memory banks. These points are within the close
vicinity of the base point and this is the local search phase of the optimizer.
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Table I. MOTS2 configuration

performing diversification move after # iterations 20
performing intensification move after # iterations 10

performing reduction move after # iterations 45
initial search step 0.1

search step retain factor 0.65
# of random samples 6

# of variables 2
# of objectives 4

max objective function evaluations 14000
# of regions in Long Term Memory 4

Short Term Memory size 20
maximum improvements 200

maximum duplicates 30

• Then comes thePattern Move. This is just an enhancement of the Hooke and Jeeves Move
where the next base point will be quickly resolved. Whenever Hooke and Jeeves Move takes
place for second time, the following base point is generated by combining information from
the last two base points.

• Update Memories: At the end of every iteration the newly resolved base point is inserted into
the base memory bank, history bank and pareto front bank (should it fulfil their corresponding
conditions).

The aforementioned moves are performed several times until certain conditions are met, which will
trigger one of the following moves. During the execution of the algorithm, the memory banks are
enriched with information which will be exploited later on. Hence, a zero-knowledge search starts
and the optimizer learns through information about the intrinsic features of thedesign space from
the banks iteration-by-iteration. According to the principles of artificial intelligence, this is the best
method of a heuristic search [?].

The following moves are carried out when specific numbers of iterations occur:

• Intensify Move: By definition, contrary to single-objective optimization, during multi-
objective optimization several points form the trade-off. However, during every iteration, only
one of them might be the base point. Therefore, the rest of the points that dominate the current
trade-off, but have not been selected as base points, are stored into the intensification memory.
Whenever the search cannot discover any new nor non-tabu point, another point from the
back-up bank is selected randomly as the next base point. Hence, the search returns back to
the most promising points discovered so far and picks-up the search thereafter. This is the
most frequent performed move.

• Diversify Move: Instead of finding a better point, within a short range, a new non-tabu point is
randomly generated from least explored region of the design space. This is the global search
phase of the optimizer and its frequency depends on the problem.

• Restart Move: Whenever the search fails to discover a new good point with the currentsearch
step, a new base point is randomly resolved and the search step is refined.

Regarding the FSI optimization, the combination of the range ofV1 andV2 defines the design,
which belongs to the design space,R

2. In an analogous way, the objectives belong to a different
space, namely objective space,R

4. Every time a single point of the design space maps to a point of
the objective space. The aim of the optimizer is to try different combinations ofthese two variables
on the given simulation model and detect which areas express the best performance, defined by the
objectives. After successfully iterating through the optimization phase, the best discovered trade-off
is presented to the designer to choose the final design. This is known as thedecision phase. The time
required in order to establish the variables-to-objectives mapping is the evaluation time of the given
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variables via the simulation. This is the most critical part of the optimization process, as it affects
the overall execution time of the whole optimization. In fact, the overall execution time can be
expressed as the summation of multiples of the execution time required for a singleevaluation and
the overhead of the optimizer, which is practically negligible. In this case, each design evaluation
can take up to 1 minute.

5.4. MOTS2 Results

Earlier studies, see??, attempted to optimize the case described in5.2 by using one composite
objective function - a weighted sum of two objectives - by employing a genuine single-objective
optimizer. Contrary, MOTS2 deals directly with native multi-objective optimization problems. By
including more objectives the dimensionality (and hence the complexity) increases considerably,
which necessitates the use of a totally new algorithm. MOTS2 has been verifiedand validated [?]
and can handle both constrained and unconstrained cases. By introducing more objective functions,
the complexity of the system increases. Therefore, a larger variable range will be required in order
to explore the design space sufficiently and not to induce any bias.

The main aim is to minimize the motion features of the beam by controlling the top and bottom
flow. In particular, this means to minimize lift, drag, horizontal and vertical displacements of the
point A at the tail of the beam, at the same time. The application involves 2 controlvariables that
correspond to 4 objectives. Various combinations of these two variables are evaluated through the
FSI simulation, as explained above. Internally, the optimizer ranks these objectives for domination,
generates new designs and the results are presented below. The set ofthe 2 variables and 4 respective
objectives is called a tuple. The objectives, in the order of appearance inthe following Figures are
drag, lift, horizontal displacement (ux) and vertical displacement (uy) of the beam. The target is
to minimize all of the aforementioned objectives, as this brings stability to the system.Both of
the variables range between−50 and50 of R. The optimization process generated and evaluated
14000 different design combinations. Among them,3600 were feasible. Moreover,1200 tuples
dominate the objective space, with respect to the aforementioned objectives. This is indicative of the
complexity of the system where the number of the objectives is larger than the number of variables.

The optimum discovered tuples are depicted in Figures??and??. These are the scatter plots and
the parallel coordinates projections [?], respectively. The former informs the user of the pairwise
relations between each of the components of the optimization process. The latter is an alternative
way to represent multivariate data in 2D. In fact, it is a transformation of an N-dimensional space
into an assembly of N mutually and individually scaled parallel axes. Any pointof the original N-
dimensional space is represented by a set of lines connecting parallel axes and intersecting them
in the values of original coordinates. In this projection each line that connects one point from each
axis represents one tuple. The top of each axis corresponds to the maximumvalue. Likewise the
minimum value is at the bottom. Both Figures are particularly useful in order to identify relations
and interactions between the variables and objectives. The most interestingtypes or relations are
the correlations between objectives, and how variables’ variation affects one or more objectives.
Moreover, the results form 3 different clusters, which will be explainedbelow.

A scatter plot matrix is a compact way to represent all of the participating components in a
pairwise way of a NxN matrix. The user is informed about each component individually and
how each component interacts with the remaining ones. It is important to notice that the matrix
is symmetric. The matrix could be split into 4 sub-matrices; a 2x2 on the top-left, a 2x4 top-
right, a 4x2 bottom-left and a 4x4 bottom-right. These represent the relations between variables vs
variables, variables vs objectives, objectives vs variables and objectives vs objectives, respectively.
The elements in the main diagonal represent the histogram of each variable and objective. This
information will be combined with the search for patterns in the parallel coordinates plane. The two
pictures for the top-left part depict the optimum samples of the design space. By combining the
histograms, the user is informed about which areas the optimiser focused on. The remaining of the
first two columns and first two rows depict the relationship between each variable and the respective
objectives. The big sub-matrix bottom-right shows the relationship between the objectives.
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Figure 12. MOTS2 results on 4-objectives optimization scatter plot matrix. The order of lines and columns
representsV1, V2, drag, lift,ux, uy respectively. Diagonal elements represent the corresponding histogram

for each component.

Figure 13. Full Data-Set

Therefore, the optimizer focuses the search on the regions of negativeV1 and positiveV2, near
the origin. In addition, there is a clear relationship betweenV2 and lift objective. Obviously, this
trend extends for the rest of the objectives. Each variable forms 2 distinct sets between drag, lift and
uy, whereas an additional smaller set is formed forux. Moreover, near the most sampled area there
are two parts, which extent towards the origin. It seems obvious that dragand lift are correlated
linearly. In additionuy is also linearly correlated with the aforementioned objective in a reciprocal
way. In terms of multi-objective optimization, these objectives live in harmony and one of the can
sufficiently describe the case. This is also proven in parallel coordinates, below. Both between the
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variables and the remaining of the objectives,ux has 3 distinct regions. Finally, lift andux conflict
each other.

The rest of the analysis is based on the parallel coordinates projection withsome references to the
scatter plot matrix. For ease of analysis, the Full Data-Set, presented in Figure??, breaks down into
Figures??-??by combining positive and negative values ofV1 andV2, and excluding the designs for
ux = 1.5e− 5. For completeness a snapshot of the optimal designs that include the middle values
of ux are depicted in Figure??, whereV2 is almost zero andV1 takes almost the same value. Fixing
V2 and searching the design space forV1 will be part of the future work. Since three objectives are
linearly correlated and the last one takes 3 distinct values, the scatter plot between each variable and
only one objective is present in these Figures. First of all, for the variables axes (first two axes), it is
obvious that certain vertices gather more edges, which means that these points are more important
and the optimization process discovered the best objectives around them. It is also useful to know
that the design space was searched equally well between the range of−50 and50, without any bias.
The search step started from0.1 and was subject to successive step reductions up to4.97745e− 06
step size. Starting from a big step the search narrows down to the most promising areas, which
present the best performance and where the search is refined. The remaining 4 axes represent the
values of the 4 separate objectives.As shown in Figure??, even searching throughout the design
space does not achieve objective values close to zero. Clearly,ux presents discrete clusters of values,
which means that certain performance lies within certain regions of the designspace. This means
that there are 3 different operating modes and the number of edges on each level of the axis indicates
the preferable areas; for the middle value only a few designs exist which means that under specific
settings the behavior of the FSI model changes. Drag, lift anduy present a wide range with a few
thicker areas, which present areas of high robustness. Thus, it is more interesting to analyse the
interactions of the wider objectives as the trade-off changes.

Regarding the bottom velocity (V2), three clusters are formed, based onux axis, depicted in Figure
??. The two big clusters split very close to 0.0 and they do not mix. By observingthe patterns
of the sign ofV2, it it is positive, thenux = 1.6e− 5 (Figures?? and??). Similarly, whenV2 is
positive the lower cluster ofux is activated (Figures?? and??). In conjunction with Figure??, V2

acts like a switch for the system, irrespectively of the values ofV1. Moreover, Figure?? depicts a
clear relationship betweenV2 and drag objective, which extends of course with the other linearly
correlated objectives. By selecting a small region while both variables are positive (Figure?? ), it
seems like lift values overlap/mix with the corresponding lift of negativeV1. In fact the value of
V1 does not have a great impact, whileV2 remains constant. Therefore,V2 is the most important
variable, whereasV1 could be considered as a performance offset for controlling the exactvalues of
the objectives.

The first two objectives concern drag and lift, respectively. Unlike aerodynamic cases, the
objectives of lift and drag increase and decrease at the same time. This means that the objectives
live in harmony. This is confirmed, for example, in Figure?? for the plot at the position4, 3. In
other words, this is an indication that one of them could be omitted to reduce the complexity of
the optimization. Analyzing drag is equivalent to lift. The only difference is therange (length in
the picture) of lift and drag. This is from15.269 to 15.834 and−2.662 to 0.543, respectively. One
could reduce the dimensionality by excluding one of these objectives. The areas where the lines
are thicker are areas of more robust designs; The variation of the designs that map to the objective
space presents stable behavior. Ideally the variation should be zero, but any quantity close to zero is
satisfactory. Since lift has larger range, this leaves more options for further improvement and gives
better control.

The third objective,ux, has 3 distinct values1.4e− 5, 1.5e− 5 and1.6e− 5. On one hand these
could be treated as 3 different operating modes/levels for the physical application. However, their
relative difference is extremely low. The population of edges for the middle range is significantly
low, compared to the other two ends. The latter means that the designs which achieve those specific
objectives should not be selected at the (final) decision making phase. Hence, it seems that this
objective is less significant and makes the optimization search more complex, for no particular
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Figure 14. Demonstrating linear correlation

Figure 15. Investigating the behavior ofV1
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Figure 16. Selecting positiveV1 andV2

Figure 17. Selecting positiveV1 and negativeV2

information gain. In other words, the complexity of adding a third objective for the amount of
information the user could exploit does not pay off. Therefore it could also be excluded.

The last axis representsuy. Obviously, the designs gather around the extrema of the axes and
form three distinct sets. The middle region contains values which correspond to specific designs
and can be disregarded, as discussed above. The remaining two clusters reveal the conflicting nature
of the problem. It can be shown that increasing lift results in decrease ofuy and vice-versa. Again,
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Figure 18. Selecting negativeV1 and negativeV2

Figure 19. Selecting negativeV1 and positiveV2

certain areas contain more edges (higher line concentration) which are related to the robustness of
the simulated system.

By observing the element 1,3 of Figure??, it seems interesting to investigate further the prominent
points that direct towards zero. The linking with parallel coordinates planeis depicted in Figure??.
For a certain range of drag valuesV1 andV2 take almost the same values forming a subset of size
155, which corresponds to18% of the whole trade-off. However, some of the designs correspond to
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Figure 20. Selecting the middle value ofux

ux = 1.5e− 5. This lead to the discovery of the most dense region of the design space, depicted in
Figure??, which was initially pointed out by Figure?? in the elements 1,1 and 2,2. These design
configurations will be investigated in future studies.

In the end, it seems that the considered case could only involve lift andux. The drag objective
is redundant for the optimization process as it directly follows the same trendsas lift, whereasux

is reciprocal to lift. Possibly, these could be used for future secondary-deductions. This would also
reduce the complexity and speed-up the design cycle. Coming up with more conflicting objectives
will be part of the future work. At any case, adding an extra objective inany optimization problem,
might result in totally different results compared to fewer or more objectives. Finally, for the
decision making phase, a design from the isolated regions in Figure??, seems very promising
because they present nearly similar performance within a close distance.

5.5. Selecting the Robust Design

The Multi-Objective Design optimization aims to assist the user to select the best design(s) for the
decision making phase. Following the principles of robustness analysis, theperformance of the best
designs should lie within a close region. This means that most of the designs should not deviate
significantly from the target values. Furthermore, the performance should be as robust as possible.
So, in this study, the selected designs present no more than5% variability for the defined objectives.
As identified earlier, only one objective is sufficient for assessing the performance. Moreover, one of
them (ux) has 3 distinct values, which expand in 3 wider sets of the lift anduy axes. By examining
the population of the PF ofux with respect to lift anduy, the ratio of the range of the values of the
objectives over the number of individuals within that range indicates that it ishighly probable to find
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Figure 21. Exploring the prominent points of the scatter plot drag vsV1

Figure 22. The most dense region for almost fixed values ofV1 andV2

several designs within the target performance forux=1.6e− 5. This holds both for lift anduy and
was also confirmed computationally. So, the search should focus on the intervals of the objective
space where the behavior is robust with respect to lift anduy. This is the cluster which includes
lower part ofuy and is presented in Figure??b.

Since the target area of performance has been identified, the corresponding set of designs should
be resolved. Following the same procedure, designs whose performance is nearly stable should be
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V1 V2 ux uydrag
49.676899 49.648701 0.543103 0.00016 -0.00651 

-49.9394 -49.943501 -2.66198 0.00014 -0.00286 

lift

(a) Robust Design within PF

Figure 23. Selection of Robust Designs

selected. Isolating5% of the range ofuy, the highest concentration of designs was found between
−0.83 and−0.34. Within that rangeV1 forms two small clusters[−24.0,−24.5], [−33.0,−33.3] and
V2 spans over[0.15, 0.82]. Likewise, lift’s 5% most populated region is[−0.31,−0.14], whereV1

spans over[−24.5,−24.0], [−33.27,−33.0]. By classifying the designs, the region whereV2 belongs
to [0.16, 0.85] includes29% of the designs, as depicted in Figure??b. This confirms thatV2 is the
most important variable. However, there is a second area of robust designs where the corresponding
performance is slightly different, as depicted in the lower part of Figure??. This cluster emerged
by investigating the 3rd picture of Figure??. More specifically, the search focused on the part of
the right cluster that extends towards the origin, which contains more than10% of the population of
designs. These are proposed as robust designs and a compromise forthe application.

It is important to mention the inherent feature of line-to-point projection between N-dimensional
planes and parallel coordinates, which is presented in Figure??. The correlation of bottom robust
designs against the objectives is a linear curve. However, this is not truefor the top robust designs,
which follow a parabolic trend. In fact, the generated scatter plots betweenthe most significant
variable and the objectives demonstrate thatV2 behaves as a switch.

Ultimately, the comparison between the results of multi- and single-objective optimization
is presented in Figure??. One design from the top robust designs, which corresponds to
(−33.1711, 0.743855) design point, represents the performance of MOTS2 against the optimum
design described in??. Level 2 comparisons seem nearly identical. The only difference is at the
front side ofS1, where the region of the highest vector magnitude is larger and the produced wake
expands along the beam. However, by employing higher resolution at Level 3, the flow behavior is
similar to Figure??. This is expected and justifies the choice of employing MOTS2.
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-24.0497 0.485247 -0.198322 0.00017 -0.00035 
V1 V2 ux uydrag

-24.491899 0.161859 -0.306397 0.00015 -0.00067 

lift

(a) Top robust designs parallel coordinates projection

V1 V2 ux uydrag
-33.052299 0.823052 -0.151923 0.00017 -0.00072 

-33.273602 0.598661 -0.181461 0.00017 -0.00081 

lift

(b) Bottom robust designs parallel coordinates projection

(c) Top robust designs scatter plot

(d) Bottom robust designs scatter plot

Figure 24. Focusing on robust designs
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(a) MOTS2 Level 2

(b) SIMPLEX Level 2

(c) MOTS2 Level 3

(d) SIMPLEX Level 3

Figure 25. Comparing the flow between MOTS2 Robust Design andSIMPLEX optimum design
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6. CONCLUSION

This study introduced a new methodology for tackling CFD problems of engineering interest. More
specifically, the integration and the application of a multi-objective optimizer (MOTS2) along with a
FSI package for 2D problems were described. Further details for both parts were presented, followed
by the results. Optimal and robust designs were identified for single and multi-objective optimization
cases, respectively. For the latter, the originally formulated 4-objectivesproblem turns out to be a
single-objective case. It was shown that the lift and drag objectives live in harmony, whileux is
reciprocal to them. So, one of them should only be considered so as to reduce the complexity of
the problem. In addition, two sets of compromise and robust designs were suggested with less than
5% variation of the overall performance. Nonetheless, the performance ofrobust design is not the
same, compared to the optimal design identified by SIMPLEX. Sinceux corresponds to near zero
value forV2 for the middle-range cluster, it is worthwhile to further investigate this region of the
design space. Finally, it seems promising to explore the design space near the areas where the robust
designs reside.

Future work will investigate the identified regions of interest. Also the simulation model and the
optimization process will be expanded in 3D and more search strategies, respectively. The former
necessitates the porting of the FSI package in 3D and more performance metrics should be defined.
More variables and objectives should involved for the latter. This compilationhas the potential to
be applied on several real world problems such as cardiovascular diseases (in health sciences) and
aero-elasticity (aerodynamics).
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