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SUMMARY

The integration and application of a new multi-objectivbuasearch optimization algorithm for Fluid
Structure Interaction (FSI) problems are presented. Tindsato enhance the computational design process
for real world applications and to achieve higher perforogaaf the whole system for the four considered
objectives. The described system combines the optimizérawvell established FSI solver which is based
on the fully implicit, monolithic formulation of the probte in the Arbitrary Lagrangian-Eulerian FEM
approach. The proposed solver resolves the proposed fluickse interaction benchmark which describes
the self-induced elastic deformation of a beam attachedytirader in laminar channel flow. The optimized
flow characteristics of the aforementioned geometricaragement illustrate the performance of the system
in two dimensions. Special emphasis is given to the anabfsibe simulation package, which is of high
accuracy and is the core of application. The design prodesgifies the best combination of flow features
for optimal system behavior and the most important objestivn addition, the presented methodology has
the potential to run in parallel, which will significantly epd-up the elapsed time.
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KEY WORDS: Finite Element Method (FEM); Fluid-Structuretéraction (FSI); Multi-Ojective Tabu
search (MOTS2).

1. MULTI-OBJECTIVE OPTIMIZATION IN FLUID STRUCTURE INTERACTION

By definition, optimization seeks for the best possible performance of alpvadeh is formulated
in a mathematical way as the minimization of a function or a set of functions at the tme.
This denotes single- and multi-objective optimization, respectively. Theonsgpof the design
space to the objective space (set of problem variables and objectgpgctively) could be either
linear or non-linear, and continuous or discrete. Thus, exploringtafedy the design space and
concentrating around the regions where there most optimal values resfgearamount importance
and the whole optimization process was developed in order to tackle thisewwgunt.

The vast majority of real world applications depends on several vasiaifle& given model.
The handling of participating variables appropriately is the key for ssfeksptimization. The
optimization is applied on a model, which in turn approaches the real beh&vemiaus phenomena
found in nature. Defining performance metric(s) is the considered olgéstiand the goal of
optimization is to discover the best combination of variables that yields the &dstpance. Since
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Figure 1. Overview of the Integrated Optimization Process

no global optimum exists when many objectives are defined, focusing aottikcting objectives
is essential.

Computational tools for multi-objective and multi-disciplinary optimization are oaperunt
importance throughout the design process of real-world applicati@hs[?]. Recently, the
increase of computational power favors implementations, which employ thesspfes. This
can considerably reduce the duration of the design cycle and deliviergoiglity products. The
functionality of a new optimizer and its application on a real world problem egsgmted in this
document. The concept of engineering design optimization was concaigdmplemented by
Cranfield University and TU Dortmund provided the FSI simulation code.opftienization process
is applied on FSI7] and the results are analyzed from a multi-objective optimization point of view.

The integration of the FSI solver into an optimization procedure for FSllenab has been
reported in P] and fluid structure interaction in the context of shape optimization and cotigmah
wind engineering is contributed if?][

The approach presented here treats the problem as a pipeline - a sintfeigm with the
coupling implemented as internal interface, which does not require argiabpgeeatment, as
depicted in Figurel. For further details of the underlying numerical aspects of the discretizatio
and solution algorithms for this monolithic approach, see? ?]. The presented optimization
process follows the methodology of Multi-Objective Tabu Search (MOPEWhich stems from
the original tabu search?’]. Furthermore, a new variant of the former, namely MOTS3R. has
been developed and used in this study. It can be considered as corelteedion of numerical
analysis tools and artificial intelligence optimization methods and techniquegditioa, MOTS2
includes the improvements discussed % dnd, given any parallel framework, it can operate in
parallel mode saving elapsed time. The remaining of this paper is structufelioas. First the
mathematical background for the core simulation model, the FSI packagscidtdel, followed by
the numerical techniques. The computational approach for FSI is illustiratezttion 4. The next
part presents and discusses two optimization cases; one single- andltinelective.

2. GOVERNING EQUATIONS FOR FSiI
The governing equations for fluid and structure are described in thevfoliosubsections. We

denote byQ{ and$2; the domains occupied by the fluid and the structure, resp., at the tinte
LetI'? = Qf N Qs be the part of the boundary where the elastic structure interacts with the fluid
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2.1. Fluid

The fluid is considered to bidewtonian incompressiblend its state is described by the velocity
and pressure fields’, p/. The balance equations are

ov/
o’ A + gf(VVf)vf = dive/

ot nQl. 1)
divv/ =0
The material constitutive equation is
of = —p'T+ o/ (Vv + VVfT). (2)

The constant density of the fluid i€ and the viscosity is denoted oy .

2.2. Structure

The structure is assumed to letastic and compressible Its deformation is described by the
displacement:®, with velocity fieldv® = %. The balance equations are

S

0° o + 0°(VVv*)v® = div(c®) in Q. 3

The material is specified by the Cauchy stress teasar by the 2nd Piola-Kirchhoff stress tensor
S = JF~1o*F~T via theSt. Venant-Kirchhoftonstitutive law

1
o = SF N (trEYI 4+ 2u°E) FT, (4)
S* =X ({trE)I+ 24°E, (5)

whereE = (FTF —I) is the Green-St. Venant strain tensor.

The density of the structure in the undeformed configuratiqri.iF he elasticity of the material
is characterized by the Poisson ratido(v* < 0.5 for a compressible structure) and by the Young
modulusE*. The alternative characterization is described by the & apefficients\* andp® (the
shear modulus):

)\S S )\S 25
s Es_u(3 + 2u°)

YT o ) D (6)
TSRy N = A0 -y ()

2.3. Complete set of equations for Fluid Structure Interaction

In the case of fluid-structure interaction problems the Lagrangian désarfpr the deformation of
the structure part still can be used. The fluid flow now takes place in a damithilboundary given
by the deformation of the structure which can change in time and is influeracddy the fluid
flow. The mixed ALE description of the fluid has to be used in this case. Tidafmental quantity
describing the motion of the fluid is still the velocity vector but the description t®apanied
by a certain displacement field which describes the change of the fluid dofaéndisplacement
field has no connection to the fluid velocity field and the purpose of its inttamuis to provide
a transformation of the current fluid domain and corresponding gowgatnations to some fixed
reference domain. This method is sometimes callpgleaudo-solid mapping method?].
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The complete set of the non-dimensionalized system with the described atfoinaterial
relations reads:

Ju v in Q°
°r ’ 8
ot {Au in Q7. ®
5 Div (=Jp*F~7) inQ°,
ov o
i (Grad v)F (v —5) 9)
+ Div (—prF T—l—JuGradvF’lF’T) in Q7
J—-1 in Q°
= 10
{Div(JvF_T) in Qf (10)

where 8 = £ is the density ratio. The boundary conditions on the fluid-structure inerdae

Q
o
assumed to be

ofn=o0°n
(11)

vi=v*
wheren is a unit normal vector to the interface. This implies the no-slip condition for tve #ind
that the forces on the interface are in balance.
3. FEM DISCRETIZATION
The discretization in space is done by the standard Galerkin finite elementdne#id = [0, T
denote the time interval of interest. The equatid@)g((0) are multiplied by the test functiorns &, v
such that{ = 0 onT'? (external boundary of structured,= 0 onT!' (external boundary of fluid),

and integrated over the space dom@iand the time interval. Using integration by parts on some
of the terms and the boundary conditions leads to

T
/ — Cdth / / v - (dVdt — / / Grad u - Grad (dV dt, (12)
0o Ja s Qf
T T
ov ov
I cavar + / 8% cavar
| /m A R

T
=— / / J GradvF (v — a—u) -&dVdt
o Jor ot

/ / JpF~T . Grad &dVdt (13)
0
T
ov
— A /QS T Grad £dV dt

T
— / / JpGrad v F~T . Grad £dV dt,
Qf

T T
0= / / (J —1)ydVdt + / / Div(JvF~T)ydV dt. (14)
0 s 0 Qf

The treatment of the problem as one monolithic system suggests to use the ratenaldments
on both the structure part and the fluid region. A pair of finite element spgauawn to be stable
for problems with incompressibility constraint is chosen. The compatibility comdiieween the
velocity space and pressure space is satisfied by the so called inf-sBB @ondition named after
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Figure 2. Location of the degrees of freedom for €heP; element

The LBB-stable conforming biquadratic, discontinuous linear finite elerran€p P; is invoked,
which is most accurate and robust finite element pairs for highly viscoovsnpressible flow (see
[?], [?], [?]). This choice results i89 degrees of freedom per element #dp, see Figure for the
location of the degrees of freedom.

Then, the variational formulation of the fluid-structure interaction problemtoisfind
(up, vi,pr) € Up x V3, x P, such that the equationdld), (13) and (L4) are satisfied for all
(Ch,€n,vn) € Up X Vi, x Py, including initial conditions.

The space#},, Vi, P, on an intervalt”, t* 1] are defined in the case of tig P, pair as follows

Up, = {uy, € [C(Q))% up|r € [Q2(T))? VT € Th,uy, = 00N Y, },
Vi = {Vh € [C(Qh)]g,VMT S [QQ(T)]2 VT € 77“Vh =0o0n th},
Py = {pn € L*(Q),pn|r € PI(T) VT € Tp}.

After discretization in space by the finite element method @7, ), derive the system of nonlinear
algebraic equations arising from the governing equations in each time step

Suu Suv 0 up rhsu
Sva Svw kB vp | = | rhsv |, (16)
cuBY CVB? 0 Dh rhsp

whereS describes the reactive, diffusive and convective terms from thergioegequationsB is
the discrete gradient operator aBd is the discrete divergence operator.

4. SOLVER
The above system of nonlinear saddle point type of the algebraic egaiatidio) is solved using

the Newton method as basic iteration which can exhibit quadratic converg€he basic idea of
the Newton iteration is to find a root

R(X) =0, (17)
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using the available known function value and its first derivative. One atéipe Newton iteration
with damping results in iterations of the form

OR(X")

n+1l __ n n
X =X"4w {8X

-1
} R(X") (18)

whereX = (uy, vy, pr). The Jacobian matriﬁ%xn) can be computed by finite differences from
the residual vectoR (X)

; (19)

5‘X 20[j

{5R(X“)} ~ RI(X" + aje)) — [R]i(X" — aje;)
]

wheree; are the unit basis vectors R and the coefficients; > 0 are increments at each iteration
stepn of the iteration {8), which can be taken adaptively according to the change in the solution in
the previous time step or can be fixed. We set this parameter to be fixed, i.e.,

Q; = —b*ej\,[

whereb, parameter to be assigned at start apnd= +DBL _Machine, see7, ?].
The damping parametes® € (—1,0) is chosen such that

R(X™H) . X" < R(X™) - X"

The damping greatly improves the robustness of the Newton iteration in thevbasethe current
approximationX™ is not close enough to the final solution, s@g9] for more details.

In this considere@D problem a direct solver for sparse systems like UMFPACKI$ used.
This choice provides very robust linear solvers however its memory &tflttne requirements are
too high for larger systems (i.e. more thzt 000 unknowns). In that case the standard geometric
multigrid approach is utilized, for details se& P]. As the sparsity pattern of the Jacobian matrix is
known in advance, which is given by the used finite element method, this ¢atigrucan be done
in an efficient way so that the linear solver remains the dominant part in tdriine GPU time (see
[?] for more details).

5. FSI OPTIMIZATION BENCHMARKING

This FSI optimization benchmark is based on the 2D steady FSI problem frerhethchmark
configuration of Turek and Hror?] with additional altered boundary control flows as shown in
Figure??.

5.1. Defining the objective functions

The quantities of interest are with respect to the position of the pb{Figure??):

1. The displacements, (¢) andu,(t) in z- andy-direction of the pointd at the end of the beam
structure (see Figure?).

2. Forces exerted by the fluid on thdrole submerged body, i.e. lift and drag forces acting on
the cylinder and the beam structure together

(FD,FL)T:/afndS:/ afndS+/ o/nds,
S Sl 52

whereS = S; U S; (see Figured) denotes the part of the circle being in contact with the fluid
andn is the outer unit normal vector to the integration path with respect to the fluididoma

Finally, numerical results for this problem involving optimization for a steadid{iiructure
interaction are given here to illustrate the capability of the approach coedide
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Figure 3. Integration path = S; U S, for the force calculation

5.2. Formulating the Optimization Problem

The idea is to integrate the FSI solver into an optimization procedure for BBligmns. Furthermore,
these FSI configurations can be extended towards optimal control gf foocks acting on and
deformations of the elastic object in which case additional outer in flow/outrigions control the
optimal result.

Two scenarios are presented below: one single and one multi-objectingizgiion. As single-
objective optimizer a derivative-free optimization method for this uncongdaiminimization
problem is chosen, which is the SIMPLEX algorithm developed by Nelddr\asad [?, ?]. The
method is wide spread due to the fact that it makes no assumptions aboujebtvelfunction
except that it is continuous and it is quite numerically rob®st?]. Furthermore, MOTS2 will
perform the multi-objective optimization and its functionality is describe®dn

Definition The problem domain, which is based on the 2D version of the well-known FSI
benchmark inP], is illustrated in Figure??. The thickness of the beam is increased frapem
t0 0.04m.

An objective function is the minimization of lift/drag forces on the deformablectiires through
boundary flow control. Mathematically this optimization problem can be written as

miglimgize <lift(V1, Vo) + aVé) (20)

wherea is the normalization parameter. The control velocity profile from the regioand the
regionas is prescribed in the following

Vi(xz — 0.45)(x — 0.60) ay
f 1 ’
,0)=Ve = 21
ve(@,0) = Ve { Vo(z — 0.45)(z — 0.60),  as. (21)
Similarly, the multi-objective optimization problem is formulated as
mi‘r)in‘;ize lift(Vi,Va),drag(Vi, Va), ug(Vi, Va), uy(Vi, Va) (22)
1,V2

whereV; is the magnitude of the parabolic velocity from/to the regigpand the regioiV; velocity
from/to a,. Also, u,,u, denote the horizontal and vertical displacement of pdinespectively.
The regiona; and the regioni, are specified between the poirits45, 0) (0.60,0) and the points
(0.45,0.41) (0.60,0.41), respectively (see Figurg?). A parabolic velocity profile is prescribed at
the left channel inflow

_y(H — Y _ 4.0

2

whereU = 0.2m/s denotes the mean inflow velocity in x-direction afidenotes the channel
height. The outflow condition is chosen stsess freeThe outflow condition effectively prescribes
some reference value for the pressure variabla this paper, the reference pressure at the outflow
is set to haveero mean valuel heno-slipcondition is prescribed for the fluid on the other boundary
parts, i.e. top and bottom wall, circle and fluid-structure interface.

The prototypical parameters for the fluid (glycerine) and rubber-like miadge(polypropylene)
are: The density and kinematic viscosity of the fluid afe= 1000kg/m?, v/ = 10"3m?/s,
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Figure 4. Geometry and computational domain of the configarand details of the structure part

respectively. Thus the Reynolds numberfis = 20 based on the cylinder diameter. The density
of the structure i$® = 1000kg/m?3, the Young modulus ig = 178000kg/ms? and the Poisson
ratio isp® = 0.4.

The domain has lengtlh = 2.5m and heightH = 0.41m, the circle center is positioned at
C = (0.2,0.2) (measured from the left bottom corner of the channel) and the radius i8.05m,
the elastic structure beam has lengith 0.35m and heighth = 0.02m, the right bottom corner is
positioned af0.6,0.19), and the left end is fully attached to the fixed cylinder, the control point is
A, attached to the structure and moving in time witf0) = (0.6,0.2). The setting is intentionally
non-symmetric (se€?]) to prevent the dependence of the onset of any possible oscillatioreon th
precision of the computation. The mesh used for the computations is shownthethgure??.

/
]

level #el #dof
0 62| 1338
1 248 | 5032
2 992 | 19488
3 3968 | 76672

Figure 5. Coarse mesh with number of degrees of freedom fioecktlevels

5.2.1. SIMPLEX Result$he FSI-Opt computations are done on the same the mesh and its
refinement levels, as used for the FSI benchmarR]inlhe reference value of lift coefficient in case
of stationary FSI calculation i8.6e — 1 (see P, ?] for more details). When the flow is introduced
or injected with the constant velocify, = 10m/s, from below the lift on the beam obviously
increases, see FiguR®, which shows that it is the wrong direction to inject flow. For the case of
suction, the flow with same constant velocify = 10m/s from below produces negative values of
liftin increasing order, see FiguR®. If the flow is injected from top and extracted from bottom with
the same velocitieB; = 1V, = 10m /s without considering the SIMPLEX method, then the resulting
lift coefficient on the beam seems to be quite smeared, irregular and hametliot or conclude what
could be best coordinate/direction which can give minimum lift. The vector maigof the flow
behavior is shown in Figure?.

From this it is clear that th&; = V5 > 10m/s is not a good direction to select coordinates of
SIMPLEX. Hence it became clear that for the implementation of SIMPLEX metth@doordinates
of the triangle should be betweén 10]. For the numerical simulation the coordinates—3), (3, 3)

0
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Figure 9. SIMPLEX: Flow vector magnitude (Injection and tsoie) level 3

and(—3, 3) for a two variable Nelder-Mead algorithm are used. For this case, if thdestmpethod

is in place lift coefficient goes to almost zero, as shown in Fi@®and in result the beam became
almost static. Optimal points are then 1§, 2) values which result in minimum lift on the beam
depending on the parameterAs « decreases the reduction of the lift on the beam is visible and the
optimal point(1.06e + 0,1.08 + 1) is for mesh level 1(1.04e + 0,1.05¢ + 01) is for mesh level 2
and(1.04e + 0, 1.05e + 01) is for mesh level 3. Results are shown in Figur@sfor mesh levels 1, 2
and 3 in respective order, which show the optimal velocity valgeandV; providing the minimum

lift on the beam as compared with the FSI1 benchmark reference lift vatbesh is 7.6e — 1.
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@ levell, dof=5032

iter | optimal valuesly, V) lift
le+0| 57| (3.74e —1,3.88¢ — 1) | 8.1904e — 1
le—2 | 60| (1.04e+0,1.06e+0) | 2.2684e — 2
le—4 | 73| (1.06e +0,1.08¢+ 1) | 2.3092¢ — 4
le—6 | 81| (1.06e+0,1.08¢4 1) | 2.3096e — 6

Cells Vect May

045
l: 0.4

—035

E
|

o level2, dof=19488
iter | optimal value$V;, V5) lift
le4+0 | 59| (3.66e—1,3.79¢ —1) | 7.8497¢ — 1
le—2 | 59 (1.026+0,1.04e+0) 2.1755e — 2
le—4 | 71| (1.04e 4+ 0,1.05e + 01) | 2.2147e — 4
le—6 | 86| (1.04¢+0,1.05e +01) | 2.2151e — 6

Cells Vect Mag

045
l: 0.4

—035

— 03

025
0.2
0.15
0.1
[ 005
o

@ level3, dof=76672

iter | optimal values§ly, V) lift
le+0| 67| (3.66e—1,3.79¢ — 1) 7.87e—1
le—2 77 | (1.02e +0,1.06e + 0) 1.97¢ — 2
le—4 | 100 | (1.04e + 0,1.06e + 0) 2.03¢ — 4
le—6 | 100 | (1.04e+ 0,1.06e +0) | 1.3372e —6

Figure 10. No displacement is visible of the beam due to agdtboundary flow control.

In Figure ??, it is easily seen that the beam is not displaced i.e. no lift on the beam isvetiser
due to the boundary control, and results are shown for three differesh refinement levels.The
lift coefficient on the beam with changing parameter is given in the corresponding tables in the
Figure??. Also, for higher mesh refinement levels more iterations are required ardshlt (lifte

0) is better compare to the result for the level 1 and level 2.
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Figure 11. MOTS2 flow diagram

5.3. MOTS2 description

Tabu Search belongs to the category of stochastic search optimizers laaskes in the original
([?]) and the Multi-Objective (P]) version. The current implementation is based on It searches
throughout the design space in a stochastic way and it avoids recently\ds#e&n points, so as to
guarantee more exploitation of the unknown design space. In fact, kmadsP] is combined with
stochastic elements. Three different hierarchical memories are useailticcaisical decisions during
the optimization process. It also keeps track of certain statistics during tlcegs, which direct
the search according to the discovered landscape of the design bpacklition, the optimizer
employs a mechanism for local and global search. The statistics detégh geénts around the
current search point, within relatively short distance, whereas thels@aechanisms attempt to
discover good design points in the entire design space. Consequentiyndtenality of MOTS2,
as depicted in Figur@?, results in better performance throughout the optimization process. The
configuration settings are listed in Talsl@

The search is guided by the current base point and collective memokg.baround the base
point, adjacent candidate design points are investigated and evaluatad. thb corresponding
objective values are sorted according to domination criteria of multi-objegfitienization [?] and
the following base point is resolved. The previous base point and aletently generated points
are inserted into the appropriate memory banks. Aggregated information evillséd in future
steps, when certain conditions are triggered. This procedure keegetirgg until stopping criteria
are met. Depending on the nature of the application these are usually thedetaps, the number
of evaluations, the number of of consecutive failures to find a better paintper of iterations or a
combination of them. Herein, the core is the Update Memories, Hooke andsigbtensify- and
Reduce-Move.

The following parts take place in every iteration as follows:

e TheHooke and Jeeves Moisthe mostimportant as it occurs on every iteration: Starting from
the base point, a couple of valid and non-tabu points are generated bynoogribie current
base point and the current search step. Some of the recently creaitdgre evaluated (by
sampling) and added into the appropriate memory banks. These points arethatltlose
vicinity of the base point and this is the local search phase of the optimizer.

0
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Table I. MOTS2 configuration

performing diversification move after # iterations 20
performing intensification move after # iterations 10
performing reduction move after # iterations| 45
initial search step 0.1
search step retain factor 0.65
# of random samples 6
# of variables 2
# of objectives 4
max objective function evaluations 14000
# of regions in Long Term Memory 4
Short Term Memory size 20
maximum improvements 200
maximum duplicates 30

e Then comes th@attern Move This is just an enhancement of the Hooke and Jeeves Move
where the next base point will be quickly resolved. Whenever Hoollelaaves Move takes
place for second time, the following base point is generated by combiningriafmn from
the last two base points.

e Update MemoriesAt the end of every iteration the newly resolved base point is inserted into
the base memory bank, history bank and pareto front bank (shouldlitteliii corresponding
conditions).

The aforementioned moves are performed several times until certain cosditie met, which will
trigger one of the following moves. During the execution of the algorithm, the mebemnks are
enriched with information which will be exploited later on. Hence, a zerosktedge search starts
and the optimizer learns through information about the intrinsic features afetsign space from
the banks iteration-by-iteration. According to the principles of artificial intetlige, this is the best
method of a heuristic search][

The following moves are carried out when specific numbers of iteratiotigrnc

¢ Intensify Move By definition, contrary to single-objective optimization, during multi-
objective optimization several points form the trade-off. However, dugirery iteration, only
one of them might be the base point. Therefore, the rest of the pointsiminate the current
trade-off, but have not been selected as base points, are storeceiimitetisification memory.
Whenever the search cannot discover any new nor non-tabu poathearpoint from the
back-up bank is selected randomly as the next base point. Hence, thie sstarns back to
the most promising points discovered so far and picks-up the searclafteerd@his is the
most frequent performed move.

o Diversify Move Instead of finding a better point, within a short range, a new non-taiot igo
randomly generated from least explored region of the design spaisisTthe global search
phase of the optimizer and its frequency depends on the problem.

¢ Restart MoveWhenever the search fails to discover a new good point with the cieeanth
step, a new base point is randomly resolved and the search step is.refined

Regarding the FSI optimization, the combination of the rang&;cdind V, defines the design,
which belongs to the design spad?. In an analogous way, the objectives belong to a different
space, namely objective spaé¥,. Every time a single point of the design space maps to a point of
the objective space. The aim of the optimizer is to try different combinatiotigesE two variables
on the given simulation model and detect which areas express the biestrzerce, defined by the
objectives. After successfully iterating through the optimization phase gitadiscovered trade-off
is presented to the designer to choose the final design. This is knowndexikimn phase. The time
required in order to establish the variables-to-objectives mapping is theatea time of the given
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variables via the simulation. This is the most critical part of the optimization pspessit affects
the overall execution time of the whole optimization. In fact, the overall exatuiine can be
expressed as the summation of multiples of the execution time required for asiagiation and
the overhead of the optimizer, which is practically negligible. In this casdy design evaluation
can take up to 1 minute.

5.4. MOTS2 Results

Earlier studies, se@?, attempted to optimize the case described.idby using one composite
objective function - a weighted sum of two objectives - by employing a gensiingle-objective
optimizer. Contrary, MOTS2 deals directly with native multi-objective optimizaticobfems. By
including more objectives the dimensionality (and hence the complexity) ireseamsiderably,
which necessitates the use of a totally new algorithm. MOTS2 has been varifiedalidated 7]
and can handle both constrained and unconstrained cases. By imtigpchare objective functions,
the complexity of the system increases. Therefore, a larger varialge vaili be required in order
to explore the design space sufficiently and not to induce any bias.

The main aim is to minimize the motion features of the beam by controlling the top andnbotto
flow. In particular, this means to minimize lift, drag, horizontal and verticalldsgments of the
point A at the tail of the beam, at the same time. The application involves 2 ceaniables that
correspond to 4 objectives. Various combinations of these two variatdesvaluated through the
FSI simulation, as explained above. Internally, the optimizer ranks thesetigbgefor domination,
generates new designs and the results are presented below. Thiheeé eéiriables and 4 respective
objectives is called a tuple. The objectives, in the order of appearare following Figures are
drag, lift, horizontal displacement.{) and vertical displacement.{) of the beam. The target is
to minimize all of the aforementioned objectives, as this brings stability to the sy&eth.of
the variables range betweerb0 and50 of R. The optimization process generated and evaluated
14000 different design combinations. Among thef600 were feasible. Moreoven 200 tuples
dominate the objective space, with respect to the aforementioned objettngss indicative of the
complexity of the system where the number of the objectives is larger thamithiean of variables.

The optimum discovered tuples are depicted in Fig@feand??. These are the scatter plots and
the parallel coordinates projectior®,[respectively. The former informs the user of the pairwise
relations between each of the components of the optimization process. Théslattealternative
way to represent multivariate data in 2D. In fact, it is a transformation of -a@iniensional space
into an assembly of N mutually and individually scaled parallel axes. Any pditiie original N-
dimensional space is represented by a set of lines connecting paraiéehad intersecting them
in the values of original coordinates. In this projection each line that atamae point from each
axis represents one tuple. The top of each axis corresponds to the maxaiuen Likewise the
minimum value is at the bottom. Both Figures are particularly useful in order tdgifgeelations
and interactions between the variables and objectives. The most interggasgor relations are
the correlations between objectives, and how variables’ variationtafe® or more objectives.
Moreover, the results form 3 different clusters, which will be explaineidw.

A scatter plot matrix is a compact way to represent all of the participating coemts in a
pairwise way of a NxN matrix. The user is informed about each componentidoally and
how each component interacts with the remaining ones. It is important to nofitéhth matrix
is symmetric. The matrix could be split into 4 sub-matrices; a 2x2 on the top-left4adb-
right, a 4x2 bottom-left and a 4x4 bottom-right. These represent the reddiitveen variables vs
variables, variables vs objectives, objectives vs variables and algieet$ objectives, respectively.
The elements in the main diagonal represent the histogram of each vanabtebgective. This
information will be combined with the search for patterns in the parallel coateliplane. The two
pictures for the top-left part depict the optimum samples of the design .sBgosombining the
histograms, the user is informed about which areas the optimiser focus&ti@remaining of the
first two columns and first two rows depict the relationship between ea@bleand the respective
objectives. The big sub-matrix bottom-right shows the relationship betweesbijkctives.
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Figure 12. MOTS2 results on 4-objectives optimization tecgilot matrix. The order of lines and columns
represent$’, Vs, drag, lift, us, uy respectively. Diagonal elements represent the correspgristogram
for each component.
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Figure 13. Full Data-Set

Therefore, the optimizer focuses the search on the regions of nedataed positivel,, near
the origin. In addition, there is a clear relationship betw&grmand lift objective. Obviously, this
trend extends for the rest of the objectives. Each variable forms 2 disétscbetween drag, lift and
u,, Whereas an additional smaller set is formedufgr Moreover, near the most sampled area there
are two parts, which extent towards the origin. It seems obvious thatadhddift are correlated
linearly. In additionu,, is also linearly correlated with the aforementioned objective in a reciprocal
way. In terms of multi-objective optimization, these objectives live in harmomyae of the can
sufficiently describe the case. This is also proven in parallel coordinatésy. Both between the

0
Prepared usindldauth.cls DOI: 10.1002/



15

variables and the remaining of the objectives has 3 distinct regions. Finally, lift and, conflict
each other.

The rest of the analysis is based on the parallel coordinates projectiosomith references to the
scatter plot matrix. For ease of analysis, the Full Data-Set, presenteduire i) breaks down into
Figures??-??by combining positive and negative valuedgfandVs, and excluding the designs for
u, = 1.5e — 5. For completeness a snapshot of the optimal designs that include the mitidie va
of u, are depicted in Figur@?, whereV; is almost zero an#l; takes almost the same value. Fixing
V5 and searching the design space Wowill be part of the future work. Since three objectives are
linearly correlated and the last one takes 3 distinct values, the scatteepl@tdn each variable and
only one objective is present in these Figures. First of all, for the Vasaixes (first two axes), itis
obvious that certain vertices gather more edges, which means that thetsegpe more important
and the optimization process discovered the best objectives around theralsb useful to know
that the design space was searched equally well between the range and50, without any bias.
The search step started franl and was subject to successive step reductions 41G45¢ — 06
step size. Starting from a big step the search narrows down to the most ip@mieas, which
present the best performance and where the search is refinedemh@ing 4 axes represent the
values of the 4 separate objectives.As shown in Fiqiteeven searching throughout the design
space does not achieve objective values close to zero. Cleapyesents discrete clusters of values,
which means that certain performance lies within certain regions of the dgségpe. This means
that there are 3 different operating modes and the number of edgestoleeal of the axis indicates
the preferable areas; for the middle value only a few designs exist whiahgrikat under specific
settings the behavior of the FSI model changes. Drag, liftigngresent a wide range with a few
thicker areas, which present areas of high robustness. Thus, it & imteresting to analyse the
interactions of the wider objectives as the trade-off changes.

Regarding the bottom velocity%), three clusters are formed, based.Qraxis, depicted in Figure
??. The two big clusters split very close to 0.0 and they do not mix. By obsetviagatterns
of the sign ofV4, it it is positive, thenu, = 1.6e — 5 (Figures?? and??). Similarly, whenV; is
positive the lower cluster af, is activated (Figure8? and??). In conjunction with Figure??, 5
acts like a switch for the system, irrespectively of the valueg;oMoreover, Figure?? depicts a
clear relationship betweeli, and drag objective, which extends of course with the other linearly
correlated objectives. By selecting a small region while both variablescasitvie (Figure??), it
seems like lift values overlap/mix with the corresponding lift of negativeln fact the value of
V1 does not have a great impact, while remains constant. Therefor®; is the most important
variable, wherea®; could be considered as a performance offset for controlling the gahcts of
the objectives.

The first two objectives concern drag and lift, respectively. Unlikeodgmamic cases, the
objectives of lift and drag increase and decrease at the same time. This thaaithe objectives
live in harmony. This is confirmed, for example, in Figute for the plot at the positiod, 3. In
other words, this is an indication that one of them could be omitted to reducethglexity of
the optimization. Analyzing drag is equivalent to lift. The only difference isrtnege (length in
the picture) of lift and drag. This is fromb.269 to 15.834 and —2.662 to 0.543, respectively. One
could reduce the dimensionality by excluding one of these objectives. rEas avhere the lines
are thicker are areas of more robust designs; The variation of thenddbi@t map to the objective
space presents stable behavior. Ideally the variation should be zeemybguantity close to zero is
satisfactory. Since lift has larger range, this leaves more options thefumprovement and gives
better control.

The third objectivey,,, has 3 distinct values.4e — 5, 1.5¢ — 5 and1.6e — 5. On one hand these
could be treated as 3 different operating modes/levels for the physigli¢atmon. However, their
relative difference is extremely low. The population of edges for the middige is significantly
low, compared to the other two ends. The latter means that the designs whieheathiose specific
objectives should not be selected at the (final) decision making phaseeHie seems that this
objective is less significant and makes the optimization search more complexo foarticular
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Figure 17. Selecting positivig, and negativé/s,

information gain. In other words, the complexity of adding a third objectivettie amount of
information the user could exploit does not pay off. Therefore it coldd be excluded.

The last axis represents,. Obviously, the designs gather around the extrema of the axes and
form three distinct sets. The middle region contains values which comdsjgospecific designs
and can be disregarded, as discussed above. The remaining twoscategéal the conflicting nature
of the problem. It can be shown that increasing lift results in decreasg afid vice-versa. Again,
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Figure 19. Selecting negatiig and positivel’,

certain areas contain more edges (higher line concentration) whichlatedréo the robustness of
the simulated system.

By observing the element 1,3 of Figu?@, it seems interesting to investigate further the prominent
points that direct towards zero. The linking with parallel coordinates ptadepicted in Figur@?.
For a certain range of drag valu&s andV; take almost the same values forming a subset of size
155, which corresponds &% of the whole trade-off. However, some of the designs correspond to
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Figure 20. Selecting the middle valuewf

u, = 1.5e — 5. This lead to the discovery of the most dense region of the design sppietedi in
Figure??, which was initially pointed out by Figur@?in the elements 1,1 and 2,2. These design
configurations will be investigated in future studies.

In the end, it seems that the considered case could only involve lifugn@he drag objective
is redundant for the optimization process as it directly follows the same teentifs, whereas.,
is reciprocal to lift. Possibly, these could be used for future secordizaiyuctions. This would also
reduce the complexity and speed-up the design cycle. Coming up with mdiietimg objectives
will be part of the future work. At any case, adding an extra objectianiyoptimization problem,
might result in totally different results compared to fewer or more objectikaslly, for the
decision making phase, a design from the isolated regions in Figfyreeems very promising
because they present nearly similar performance within a close distance.

5.5. Selecting the Robust Design

The Multi-Objective Design optimization aims to assist the user to select the dmgn(s) for the
decision making phase. Following the principles of robustness analysetftsmance of the best
designs should lie within a close region. This means that most of the desigulsl stot deviate
significantly from the target values. Furthermore, the performancddhbeuas robust as possible.
So, in this study, the selected designs present no morethamariability for the defined objectives.
As identified earlier, only one objective is sufficient for assessing tHfermeance. Moreover, one of
them ;) has 3 distinct values, which expand in 3 wider sets of the lift@nelxes. By examining
the population of the PF af, with respect to lift and.,,, the ratio of the range of the values of the
objectives over the number of individuals within that range indicates thatigidy probable to find
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Figure 21. Exploring the prominent points of the scattet glag vsV;
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Figure 22. The most dense region for almost fixed valudg @ndV;

several designs within the target performancedprl.6e — 5. This holds both for lift and:, and
was also confirmed computationally. So, the search should focus on thealstef the objective
space where the behavior is robust with respect to lift @apdThis is the cluster which includes
lower part ofu, and is presented in Figufz®h.

Since the target area of performance has been identified, the cordéspaet of designs should
be resolved. Following the same procedure, designs whose perfarisanearly stable should be

0
Prepared usindldauth.cls DOI: 10.1002/



21

V1 V2 I|ft Ux UY
49.676899 49.648701 0.543103 0.00016 -0.00651

-49.9394 -49.943501 -2.66198 0.00014 -0.00286
(a) Robust Design within PF

Figure 23. Selection of Robust Designs

selected. Isolating% of the range of.,, the highest concentration of designs was found between
—0.83 and—0.34. Within that rangéd/; forms two small clusters-24.0, —24.5], [—33.0, —33.3] and

V, spans ovef0.15,0.82]. Likewise, lift's 5% most populated region is-0.31, —0.14], whereV;
spans ovef—24.5, —24.0], [—-33.27, —33.0]. By classifying the designs, the region wh&bebelongs

to [0.16, 0.85] includes29% of the designs, as depicted in Figugeb. This confirms thatx is the
most important variable. However, there is a second area of robughdeghere the corresponding
performance is slightly different, as depicted in the lower part of FiQxeThis cluster emerged

by investigating the 3rd picture of FiguR®. More specifically, the search focused on the part of
the right cluster that extends towards the origin, which contains moreltamf the population of
designs. These are proposed as robust designs and a comprontieedpplication.

Itis important to mention the inherent feature of line-to-point projection betvi-dimensional
planes and parallel coordinates, which is presented in Figiar&he correlation of bottom robust
designs against the objectives is a linear curve. However, this is ndoirtiee top robust designs,
which follow a parabolic trend. In fact, the generated scatter plots bettheemost significant
variable and the objectives demonstrate fabehaves as a switch.

Ultimately, the comparison between the results of multi- and single-objective optioniza
is presented in Figur&?. One design from the top robust designs, which corresponds to
(—33.1711,0.743855) design point, represents the performance of MOTS2 against the optimum
design described iR?. Level 2 comparisons seem nearly identical. The only difference is at the
front side ofS;, where the region of the highest vector magnitude is larger and the moddvake
expands along the beam. However, by employing higher resolution ak et flow behavior is
similar to Figure??. This is expected and justifies the choice of employing MOTS2.
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Figure 24. Focusing on robust designs
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6. CONCLUSION

This study introduced a new methodology for tackling CFD problems of eagirginterest. More
specifically, the integration and the application of a multi-objective optimizer (8®)Rlong with a
FSI package for 2D problems were described. Further details for bothyere presented, followed
by the results. Optimal and robust designs were identified for single and ohjgiitive optimization
cases, respectively. For the latter, the originally formulated 4-objeqbir@sem turns out to be a
single-objective case. It was shown that the lift and drag objectivesiisharmony, whileu,, is
reciprocal to them. So, one of them should only be considered so asucerdfie complexity of
the problem. In addition, two sets of compromise and robust designs wggestad with less than
5% variation of the overall performance. Nonetheless, the performanabo$t design is not the
same, compared to the optimal design identified by SIMPLEX. Sinceorresponds to near zero
value forV; for the middle-range cluster, it is worthwhile to further investigate this regicthe
design space. Finally, it seems promising to explore the design space@asedls where the robust
designs reside.

Future work will investigate the identified regions of interest. Also the simulatiotairand the

optimization process will be expanded in 3D and more search strategipsctigsly. The former
necessitates the porting of the FSI package in 3D and more performanéesrabauld be defined.
More variables and objectives should involved for the latter. This compil&zsnthe potential to
be applied on several real world problems such as cardiovasculasdsén health sciences) and
aero-elasticity (aerodynamics).
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