

A Monolithic ALE-FEM Technique for Numerical Benchmarking and Optimization of Fluid-Structure Interaction Problems

<u>M. Razzaq</u>, S. Turek, Institute of Applied Mathematics, LS III, TU Dortmund http://www.featflow.de

Recent Developments in Fluid Mechanics

August 3-5, 2010 Isamabad, Pakistan

technische universität dortmund

FEM-Multigrid for Multiphase (FSI) Problems With optimization

Aim: FSI-model Benchmark Optimization Extensions

Fluid Structure Interaction (FSI)

technische universität dortmund

- Iarge deformation of a structure in internal/external flow
- aeorelasticity
- bioengineering
- polymer, food, paper processing

physical models

- viscous fluid flow
- elastic body under large deformations
- interaction between the two parts

numerical tasks involved

- space and time discretization
- nonlinear system
- Iarge linear systems

testing and validation

- accuracy, efficiency, robustnes
- benchmarking

Problem description

technische universität dortmund

Structure part

Fluid part

$$\begin{split} \chi^s: \Omega^s \times [0,T] &\mapsto \Omega^s_t \\ u^s &= \chi(X,t) - X, \quad v^s = \frac{\partial u^s}{\partial t} \\ F &= I + \nabla u^s, \quad J = \det{(F)} \end{split}$$

$$\chi^{f}: \Omega^{f} \times [0, T] \mapsto \Omega^{f}_{t}$$
$$u^{f} = \chi(X, t) - X$$
$$v^{f}: \Omega^{f} \times [0, T] \mapsto \mathbb{R}^{n}$$

Governing Equations

structure part

fl	น	id	part
••	u	IU.	part

$\frac{\partial v^s}{\partial t} = \operatorname{div} (J\sigma^s \mathbf{F}^{-T}) + f$	in Ω^s
det(F) = 1	in Ω^s
$u^s = 0$	
$\sigma^{s}n=0$	on Γ^3

$$\frac{\partial v^{f}}{\partial t} + (\nabla v^{f}) v^{f} = \operatorname{div} \sigma^{f} + f \quad \operatorname{in} \Omega^{f}_{t}$$
$$\operatorname{div} v^{f} = 0$$
$$v^{f} = v_{0}$$
$$\operatorname{or} \sigma^{f} n = 0$$

interface conditions

$$v^{f} = v^{s}$$
 on Γ_{t}^{0}
 $\sigma^{f} n = \sigma^{s} n$ on Γ_{t}^{0}

Arbitrary Lagrange-Euler Formulation

$$\chi: \Omega \times [0,T] \square \Omega_t$$
 $v = \frac{\partial \chi}{\partial t}$, $F = \frac{\partial \chi}{\partial X}$, $J = \det F$

$$\zeta_{R} : R \times [0, T] \square R_{t} \qquad R_{t} \subset \Omega_{t} \qquad \forall t \in [0, T], \qquad v_{R} = \frac{\partial \zeta_{R}}{\partial t} \quad F_{R} = \frac{\partial \zeta_{R}}{\partial X} \qquad J_{R} = \det F_{R}$$
$$\frac{\partial}{\partial t} \int_{R} \rho \, dv + \int_{\partial R_{t}} \rho (v - v_{R}) \cdot n_{R_{t}} da = 0$$
$$\frac{\partial}{\partial t} (\rho J_{R}) + \operatorname{div} (\rho J_{R} (v - v_{R}) F_{R}^{-T}) = 0$$

Lagrangian description:

$$\zeta_{R} = \chi \Longrightarrow F_{R} = F, \ J_{R} = J, v_{R} = v$$
$$\frac{\partial}{\partial t} (\rho J) = 0$$

Mesh nodes are not fixed Structure mechanics Mesh tangle expensive

M. Razzaq | ALE-FEM for FSI

Eulerian description

$$\zeta_{R} = \mathrm{Id} \Longrightarrow \mathrm{F}_{R} = \mathrm{I}, \ J_{R} = 1, v_{R} = 0$$
$$\frac{\partial \rho}{\partial t} + \mathrm{div} \left(\rho v\right) = 0$$

Mesh nodes are fixed Fluid mechanics Large distortion handle Numerical instable for convective term

technische universität

Coupling strategies

U technische universität dortmund

Constitutive equations

incompressible Newtonian fluid

$$\sigma^{f} = -pI + 2\nu D$$

➢ hyperelastic material, incompressible
$$\sigma^{f} = -pI + 2F \frac{\partial \Psi}{\partial F} F^{T}, \quad \det F = 1$$

$$\Psi(F) = \alpha(I_{c} - 3) \text{ Neo - Hook}$$

$$\Psi(F) = \alpha_{1}(I_{c} - 3) + \alpha_{2}(I_{c} - 3) + \alpha_{3}(|Fe| - 1)^{2} \text{ Mooney - Rivlin + anisotropic}$$
where $C = FF^{T}$ and $I_{c} = trC, \quad I_{c} = \frac{1}{2}(trC^{2} - (trC)^{2})$

> or **St. Venant--Kirchhoff** material, compressible

where
$$E = \frac{1}{2} (F^T F - I)$$
 $\sigma^s = \frac{1}{J} F(\lambda^s (trE)I + \mu^s E) F^T$

technische universität

Discretization in space and time

 \blacktriangleright Discretization in space: FEM $Q_2/Q_2/P_1^{disc}$

Discretization in time: Crank-Nicholson, BE, FS, schemes

technische universität

$$R(\mathbf{x}) = 0 \quad x = (u_h, v_h, p_h) \in U_h \times V_h \times P_h$$

 $Mu_{h} - \frac{k}{2} (M^{s} v_{h} + L^{f} u_{h}) = \operatorname{rhs}(u_{h}^{n}, v_{h}^{n})$ $(M^{f} + \beta M^{s})v_{h} + \frac{k}{2} N_{1}(v_{h}, u_{h}) + \frac{1}{2} N_{2}(v_{h}, u_{h}) + \frac{k}{2} (S^{s}(u_{h}) + S^{f}(v_{h})) - kBp_{h} = \operatorname{rhs}(u_{h}^{n}, v_{h}^{n}, p_{h}^{n})$ $C(u_{h}) + B^{f^{T}} v_{h} = 1$

∜

$$\frac{\partial R}{\partial X}(X) = \begin{pmatrix} M - \frac{k}{2}L^{f} & \frac{k}{2}M^{s} & 0\\ \frac{1}{2}\frac{\partial (N_{1} + S^{s} + S^{f})}{\partial u_{h}} + k\frac{\partial B}{\partial u_{h}}p_{h} & M^{s} + \beta M^{f} + \frac{1}{2}\frac{\partial N_{2}}{\partial v_{h}} + \frac{k}{2}\frac{\partial (N_{1} + S_{f}^{2})}{\partial v_{h}} & kB\\ B^{s^{T}} + \frac{\partial B^{f^{T}}}{\partial u_{h}}v_{h} & B^{f^{T}} & 0 \end{pmatrix}$$

Discrete nonlinear system

$$R(\mathbf{x}) = 0$$
 $x = (u_h, v_h, p_h) \in U_h \times V_h \times P_h$

$$Mu_{h} - \frac{k}{2} (M^{s}v_{h} + L^{f}u_{h}) = \operatorname{rhs}(u_{h}^{n}, v_{h}^{n})$$
$$(M^{f} + \beta M^{s})v_{h} + \frac{k}{2}N_{1}(v_{h}, u_{h}) + \frac{1}{2}N_{2}(v_{h}, u_{h}) + \frac{k}{2}(S^{s}(u_{h}) + S^{f}(v_{h})) - kBp_{h} = \operatorname{rhs}(u_{h}^{n}, v_{h}^{n}, p_{h}^{n})$$
$$C(u_{h}) + B^{f^{T}}v_{h} = 1$$

∜

$$\begin{bmatrix} S_{uu} & S_{uv} & 0\\ S_{vu} & S_{vv} & kB\\ c_u B_s^T & c_v B_f^T & 0 \end{bmatrix} \begin{bmatrix} u\\ v\\ p \end{bmatrix} = \begin{bmatrix} f_u\\ f_u\\ f_p \end{bmatrix}$$

Typical discrete saddle-point problem

technische universität dortmund

Solve for the residual of the nonlinear system algebraic equations

$$R(\mathbf{x}) = 0, \quad \mathbf{x} = (\mathbf{u}, \mathbf{v}, p)$$

Use Newton method with damping results in iterations of the form

$$\mathbf{x}^{n+1} = \mathbf{x}^n + \boldsymbol{\omega}^n \left[\frac{\partial R(\mathbf{x}^n)}{\partial \mathbf{x}} \right]^{-1} R(\mathbf{x}^n)$$

Continuous Newton: on variational level (before discretization)
 The continuous Frechet operator can be analytically calculated

Inexact Newton: on matrix level (after discretization)

 \rightarrow The Jacobian matrix is **approximated** using finite differences as

$$\left[\frac{\partial R(\mathbf{x}^{n})}{\partial x}\right]_{ij} \approx \frac{R_{i}(\mathbf{x}^{n} + \boldsymbol{\varepsilon}\mathbf{e}_{j}) - R_{i}(\mathbf{x}^{n} - \boldsymbol{\varepsilon}\mathbf{e}_{j})}{2\boldsymbol{\varepsilon}}$$

Multigrid Solver

- standard geometric multigrid approach
- smoother by local MPSC-Ansatz (Vanka-like smoother

$$\begin{bmatrix} u^{l+1} \\ v^{l+1} \\ p^{l+1} \end{bmatrix} = \begin{bmatrix} u^{l} \\ v^{l} \\ p^{l} \end{bmatrix} - \omega \sum_{\text{Patch}\Omega_{i}} \begin{bmatrix} S_{uu|\Omega_{i}} & S_{uv|\Omega_{i}} & 0 \\ S_{vu|\Omega_{i}} & S_{vv|\Omega_{i}} & kB_{|\Omega_{i}} \\ c_{u}B_{s|\Omega_{i}}^{T} & c_{v}B_{f|\Omega_{i}}^{T} & 0 \end{bmatrix}^{-1} \begin{bmatrix} \det_{u}^{l} \\ \det_{v}^{l} \\ \det_{p}^{l} \end{bmatrix}$$

- ➢ full inverse of the local problems by LAPACK (39 x39 systems)
- alternatives: simplified local problems (3x3 systems) or ILU(k)
- combination with GMRES/BiCGStab methods possible
- full (canonical) FEM prolongation, restriction

Very accurate, flexible and highly efficient FSI solver $(\rightarrow$ FSI Benchmarks)

technische universität

<u>1st step</u>: Identification of appropriate FSI settings for numerical benchmarking and calculate

If done \longrightarrow 2nd step

2nd step: Extension to FSI-Optimisation benchmark settings

 Data files are available on http://featflow.de/beta/en/benchmarks.html

Realistic materials

- incompressible Newtonian fluid, laminar flow regime
- elastic solid, large deformations
- Comparative evaluation
 - setup with periodical oscillations
 - non-graphically based quantities
- Computable configurations
 - laminar flow
 - reasonable aspect ratios
 - simple geometry (2D)
- Mainly based on validated CFD benchmarks, but also close to experimental set-up

Material parameters

solid

- ρ^{s} density
- Poisson ratio V^{s}
- μ^{s} shear modulus

Parameter	polybutadiene & glycerine		polypropylene & glycerine		
$\rho^{s}[10^{3} \text{kg/m}^{3}]$ $\nu^{s}[10^{6} \text{kg/ms}^{2}]$	incompressible	0.91 0.50 0.53	compressible	1.1 0.42 317	
$\rho^{f}[10^{3} \text{kg/m}^{3}]$		1.26		1.26	
$v^{f}[10^{-3} \text{ m}^{2}/s]$		1.13		1.13	

Parameter	FSI1	FSI2	FSI3
$\rho^{s}[10^{3} \text{kg/m}^{3}]$ \mathcal{V}^{s} $\mu^{s}[10^{6} \text{kg/ms}^{2}]$	1 0.4 0.5	1 0.4 0.5	1 0.4 2.0
$\frac{\rho^{f} [10^{3} \text{ kg/m}^{3}]}{\nu^{f} [10^{-3} \text{ m}^{2}/s]}$	1 1	1 1	1
$\overline{U}[\mathrm{m/s}]$	0.2	1	2

Parameter	FSI1	FSI2	FSI3
$\beta = \frac{\rho^s}{\rho^f}$ Ae = $\frac{E^s}{\rho^{f/L^2}}$	1 0.4	1 0.4	1 0.4
$\operatorname{Re} = \frac{\overline{Ud}}{\overline{Ud}}$	20	100	200
V^{\prime} \overline{U} [m/s]	0.2	1	2 🔉

density \boldsymbol{v}^{f}

fluid ρ^{f}

kinematic viscosity

Quantities of interest

- > The position A(t) = (x(t), y(t)) of the end of the structure
- > Pressure difference between the points A(t) and B

 $\Delta p^{AB}(t) = p^{B}(t) - p^{A(t)}(t)$

Forces exerted by the fluid on the whole body, i.e. lift and drag forces acting on the cylinder and the structure together

- Frequency and maximum amplitude
- Compare results for *one* full period and 3 different levels of spatial discretization *h* and 3 time step sizes Δt

Parameter	FSI1	FSI2	FSI3
$ ho^{s}[10^{3} \text{kg/m}^{3}]$	1	1	1
$ ho^{s}$	0.4	0.4	0.4
$\mu^{s}[10^{6} \text{kg/ms}^{2}]$	0.5	0.5	2.0
$ ho^{s}[10^{3} \text{kg/m}^{3}]$	1	1	1
$ ho^{s}[10^{-3} \text{m}^{2}/\text{s}]$	1	1	1
$\overline{U}[m/s]$	0.2	1	2

Parameter	FSI1	FSI2	FSI3
$\beta = \frac{\rho^{s}}{\rho^{f}}$ V^{s} $Ae = \frac{E^{s}}{\rho^{f} \overline{U^{2}}}$	1	1	1
	0.4	0.4	0.4
$\operatorname{Re} = \frac{\overline{U}d}{\boldsymbol{v}^{f}}$ $\overline{U}[\mathrm{m/s}]$	20	100	200
	0.2	1	2

	ux of A [×10 ⁻⁵ m]	uy of A $[\times 10^{-4} m]$	drag	lift
FSI1	2.270493	8.208773	14.2942	0.76374

FSI2: large deformations

U technische universität dortmund

Test	ux of A $[\times 10^{-3}m]$	uy of A $[\times 10^{-3}m]$	drag	lift
FSI2	$-14.85 \pm 12.70[3.86]$	1.30±81.7[1.93]	215.06±77.65[3.86]	0.61±237.8[1.93]

Mean ± amplitude[frequency]

FSI3: large deformations

U technische universität dortmund

FSI Optimization

- The main design aims could be
 - I) Drag/Lift minimization
 - II) Minimal pressure loss
 - III) Minimal nonstationary oscillations
- To reach these aims, we might allow
 - 1. Boundary control of inflow section
 - 2. Change of geometry: elastic channel walls or length/thickness of elastic beam
 - 3. Optimal control of volume forces
- Optimal control of nonstationary flow might be hard for the starting
- ➢ Results for the moment are combination of I)-III) with 1)-3).

technische universität

Nelder Mead algorithm

B= Best

G=Good

W=Worst

technische universität dortmund

Reflect, extend point

Contraction point

FSI Optimization

≻ Aim: minimize
$$(lift^2 + \alpha V^2)$$

w.r.t V1, V2. V1 velocity from top V2 velocity from below

FSI Opt1

TESTS for FSI 1 (Boundary control)

level 1

level 2

	lter steps	extreme point	drag	Lift	lter steps	extreme point	drag	Lift
1e0	57	(3.74e-1,3.88e-1)	1.5471e+01	8.1904e-1	59	(3.66e-1,3.79e-1)	1.5550e+01	7.8497e-1
102	60	(1.04e0,1.06e0)	1.5474e+01	2.2684e-2	59	(1.02e0,1.04e0)	1.5553e+01	2.1755e-2
1e-4	73	(1.06e0,1.08e0)	1.5474e+01	2.3092e-4	71	(1.04e0,1.05e0)	1.5553e+01	2.2147e-4
1e-6	81	(1.06e0,1.08e0)	1.5474e+01	2.3096e-6	86	(1.04e0,1.05e0)	1.5553e+01	2.2151e-6

Summary-Outlook

- Numerical benchmarks (tests, comparisons)
- Optimization test case definition and results
- Biomedical application

like

Hemodynamics(aneurysm)

technische universität

dortmund