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As an example for fluid-structure interaction in biomedipaiblems, the influence of endovascular stent implan-
tation onto cerebral aneurysm hemodynamics is numericallgstigated. The aim is to study the interaction of
the elastic walls of the aneurysm with the geometrical stagbe implanted stent structure for prototypical 2D
configurations. This study can be seen as a basic step towlaedsnderstanding of the resulting complex flow
phenomena so that in future aneurysm rupture shall be sgppteby an optimal setting for the implanted stent
geometry. From the mathematical side, numerical techrddoiesolving the problem of fluid-structure interaction
with an elastic material in a laminar incompressible vissdkow are described. An Arbitrary Lagrangian-Eulerian
(ALE) formulation is employed in a fully coupled monolithiay, considering the problem as one continuum. The
mathematical description and the numerical schemes arigided in such a way that more complicated consti-
tutive relations (and more realistic for biomechanics dpations) for the fluid as well as the structural part can
be easily incorporated. We utilize the well-knowsPQfinite element pair for discretization in space to gain high
accuracy and perform as time-stepping the 2nd order Craigkidson, resp., Fractional-Ste@-scheme for both
solid and fluid parts. The resulting nonlinear discretizdgedoraic system is solved by a Newton method which ap-
proximates the Jacobian matrices by the divided differsrgroach, and the resulting linear systems are solved
by iterative solvers, preferably of Krylov-multigrid typ@reliminary results for the stent-assisted occlusion of
cerebral aneurysm are presented. Since these results amently restricted to 2D configurations, the aim is not
to predict quantitatively the complex interaction meclsamé between stents and elastic walls of the aneurysm,
but to analyse qualitatively the behaviour of the elastici the walls vs. the geometrical details of the stent for
prototypical flow situations.

1 Introduction

In this contribution, we consider the general problem ofwiss flow interacting with an elastic body which is being
deformed by the fluid action. Such a problem is of great irgare in many real life applications, and typical
examples of this type of problem are the areas of biomedig@diwhich include the influence of hemodynamic
factors in blood vessels, cerebral aneurysm hemodynajoins]ubrication and deformable cartilage and blood
flow interaction with elastic veins (Appanaboyina et al.08)) (Valencia et al., 2008), (Fernandez et al., 2008),
(Tezduyaretal., 2007), (Tezduyar et al., 2008). The themaiénvestigation of fluid-structure interaction probis

is complicated by the need of a mixed description for bothgpaihile for the solid part the natural view is the
material (Lagrangian) description, for the fluid it is udyahe spatial (Eulerian) description. In the case of their
combination some kind of mixed description (usually reddrto as the Arbitrary Lagrangian-Eulerian description
or ALE) has to be used which brings additional nonlineanitypithe resulting equations (see (Hron and Turek,
2006b)).

The numerical solution of the resulting equations of thedfistructure interaction problem poses great challenges
since it includes the features of structural mechanics] flynamics and their coupling. The most straightforward
solution strategy, mostly used in the available softwarekpges (see for instance (Hron et al., 2002)), is to de-
couple the problem into the fluid part and solid part, for eafthose parts using some well established method
of solution; then the interaction process is introducedksreal boundary conditions in each of the subproblems.
This has the advantage that there are many well tested neaheréthods for both separate problems of fluid flow
and elastic deformation, while on the other hand the treatmkthe interface and the interaction is problematic
due to high stiffness and sensitivity. In contrast, the niitimo approach discussed here treats the problem as a
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single continuum with the coupling automatically takenecaf as internal interface.

Beside a short description of the underlying numerical efspeegarding discretization and solution procedure for
this monolithic approach (see (Razzaq et al., 2008), (HnahTaurek, 2006a)), we concentrate on prototypical nu-
merical studies for 2D aneurysm configurations. The comedjmg parametrization was based on abstractions of
biomedical data (i.e., cutplanes of 3D specimens from Nealatal white rabbits as well as computer tomographic
and magnetic resonance imaging data of human neurocram@)r studies, we allow the walls of the aneurysm to
be elastic and hence deforming with the flow field in the veddelreover, we examine several configurations for
stent geometries which clearly influence the flow behavisidi@ of the aneurysm such that a very different elastic
displacement of the walls is observed too. We demonstrateeither the elastic modeling of the aneurysm walls
as well as the proper description of the geometrical detdithe shape of the aneurysm and particularly of the
stents is of great importance if the complex interactiomnveen structure and fluid shall be quantitatively analyzed
in future, especially in view of more realistic blood flow nedsl and anisotropic constitutive laws of the elastic
walls.

2 Fluid-structure interaction problem formulation

The general fluid-structure interaction problem consiéti@® description of the fluid and solid fields, appropriate
interface conditions at the interface and conditions fertbmaining boundaries, respectively. In this paper, we
consider the flow of an incompressible Newtonian fluid intérey with an elastic solid. We denote the domain
occupied by the fluid b@P and the solid byRf at the timet € [0, T]. Let? = QPN QF be the part of the boundary
where the elastic solid interacts with the fluid. In the faliog, the description for both fields fields and the
interface conditions are introduced. Furthermore, ditzaon aspects and solution procedures are presented in
the next section.

2.1 Constitutive relations for the fluid

The fluid is considered to lgewtonian, incompressibleand its state is described by theslocityand pressure
fieldsv?, pP respectively. The constant density of the fluigpbsand the kinematic viscosity is denoted ¥, The

balance equations are:
b

Dv . . .
pbﬁ =dive®, divv’=0 in QP (1)
In order to solve the balance equations we need to specifyahstitutive relations for the stress tensors. For the

fluid we use the incompressible Newtonian relation
0° = —p°l + p(OVP + (V) T), @)

whereu represents the dynamic viscosity of the fluid gfds the Lagrange multiplier corresponding to the in-
compressibility constraintin (1). The material time dative depends on the choice of the reference system. There
are basically 3 alternative reference systems: the Eulgihi@ Lagrangian, and the Arbitrary Lagrangian-Eulerian
formulation. The most commonly used description for thedfisiructure interaction is the ALE description. For
the ALE formulation presented in this paper, correspondiisgretization techniques are discussed in section 3.
Let us remark that also nonnewtonian flow models can be usedddeling blood flow, for instance of Power Law
type or even including viscoelastic effects (see (Daman#.e2008)) which is planned for future extensions.

2.2 Constitutive relations for the structure

The structure is assumesd to blasticandcompressible Its configuration is described by the displacemght
with velocity fieldvs = %. The balance equations are:

S

ov . .
PP PNV =diva+p%g, in O} ©)

Written in the more common Lagrangian description, i.ehwéspect to some fixed reference (initial) s@fewe

have
’us .
pS e =divJoSF 1) +p%, in QS (4)
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The constitutive relations for the stress tensors for tepressible structure are presented, however, also incom-
pressible structures can be handled in the same way (see &AtbTurek, 2006b)). The density of the structure in
the undeformed configuration@$. The material elasticity is characterized by a set of twapaaters, the Poisson
ratio vS and the Young modulus. Alternatively, the characterization is described by tlheE coefficientsA S and

the shear moduluygS. These parameters satisfy the following relations

AS US(3AS+2u?)
S_ _— ="
Vo BT osew) ©
E VE
s_ s_
H=3arw A " arwa—ay ©)

wherev® = 1/2 for a incompressible and® < 1/2 for a compressible structure. In the large deformatioe cas
it is common to describe the constitutive equation using@sststrain relation based on the Green Lagrangian
strain tensoE and the 2.Piola-Kirchhoff stress ten&E) as a function oE. The 2.Piola-Kirchhoff stress can be
obtained from the Cauchy streg$ as

S=JF1c5F T, 7
and the Green-Lagrange tengoas
E:%(FTF—I). (8)

In this paper, the material is specified by giving the Caudhgss tensoo® by the following constitutive law for
the St.Venant-Kirchhoff material for simplicity

0= %F(As(trE)l +2UEFT S =ANrE)l + 2. ®)

J denotes the determinant of the deformation gradient teRsdefined as= = | + Dus. Similar as in the case of
more complex blood flow models, also more realistic contieurelations for the anisotropic behavior of the walls
of aneurysms can be included which however is beyond theesafhis contribution.

2.3 Interaction conditions

The boundary conditions on the fluid-solid interface areiasd to be

o’n=0o%, VW=vS on Y (10)
wheren is a unit normal vector to the interfad¢. This implies the no-slip condition for the flow and that the

forces on the interface are in balance.

3 Discretization and solution techniques

In this study, we restrict at the moment to two dimensionsiizillows systematic tests of the proposed methods
for biomedical applications in a very efficient way such tthegt qualitatitive behaviour can be carefully analyzed.
The corresponding fully implicit, monolithic treatmentthie fluid-structure interaction problem suggests that an
A-stable second order time stepping scheme and that thefaaiteeslements for both the solid part and the fluid
region should be utilized. Moreover, to circumvent the flundompressibility constraints, we have to choose a
stable finite element pair. For that reason, the conformiqgddratic, discontinuous line&.P; pair, see Figure

1 for the location of the degrees of freedom, is chosen whitllbe explained in the next section.

3.1 Space discretization

Let us define the usual finite dimensional spaddsr displacementy for velocity, P for pressure approximation
as follows

U={uel*(I,W*?Q)]?),u=00n0dQ},
V ={ve (1, W(Q)]?)nL>(1,[L*()]?),v = 00ndQ},
P={peLl?(I,L*(Q))},
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Figure 1: Location of the degrees of freedom for @, element.

then the variational formulation of the fluid-structureargction problem is to findu,v, p) € U xV x P such that
the equations are satisfied for &1,€,y) € U xV x P including appropriate initial conditions. The spatk¥,P
on an intervalt",t"+1] would be approximated in the case of tBg Py pair as

Un = {un € [C(Qn)]? unlt € [Q(T)]* VT € Fh,un=00n0Q},

Vh = {Vh € [C(Qn)]%,VhlT € [Q2(T)]2 VT € Fh,vh=00n0Q},

Ph = {pn € L*(Qn), prlt € PL(T) VT € %}.

Let us denote byy the approximation ofi(t"), vjj the approximation of(t") and py the approximation op(t").
Consider for eacli € Ty the bilinear transformatiogyr : T — T to the unit squar&. Then,Q»(T) is defined as

Qu(T) = {goyrt: ge span< 1,x,y,xy. X2, y?, X%y, y°X, x%y? >} (11)

with nine local degrees of freedom located at the verticedpaints of the edges and in the center of the quadri-
lateral. The spacky(T) consists of linear functions defined by

Pu(T) = {doyrt:qespan< 1,x,y >} (12)

with the function value and both partial derivatives locaie the center of the quadrilateral, as its three local
degrees of freedom, which leads to a discontinuous presdure inf-sup condition is satisfied (see (Boffi and
Gastaldi, 2002)); however, the combination of the bilinteansformationy with a linear function on the reference
squarePl('f) would imply that the basis on the reference square did nab@othe full basis. So, the method can
at most be first order accurate on general meshes (see (Aghald 2002), (Boffi and Gastaldi, 2002))

[Ip— pnl| = O(h). (13)

The standard remedy is to consider a local coordinate sy&kem) obtained by joining the midpoints of the
opposing faces of (see (Arnold et al., 2002), (Rannacher and Turek, 1992ye[,1999)). Then, we set on each
elementl

P (T):=span< 1,&,n>. (14)

For this case, the inf-sup condition is also satisfied andeicend order approximation is recovered for the pressure
as well as for the velocity gradient (see (Boffi and Gast&d2), (Gresho, 1990))

Ip—pnll =0O(h?) and [|0(u—un)llo = O(?). (15)

For a smooth solution, the approximation error for the viggda the L,-norm is of ordeiO(h®) which can easily
be demonstrated for prescribed polynomials or for smooti oia appropriate domains.

3.2 Time discretization

In view of a more compact presentation, the applied timerdiszation approach is described only for the fluid part
(see (Razzaq, 2009) for more details). In the following, egrnict to the (standard) incompressible Navier-Stokes
equations

vi—VAv+v-Ov+0Op=f, divw=0, in Qx(0,T], (16)
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for given forcef and viscosityv, with prescribed boundary values on the bound#®yand an initial condition at
t =0. Then, the usud-scheme for time discretization reads:
Basic 8-scheme:Givenv" andK = t,, 1 —t,, then solve for = v"*! andp = p™*?1

v—V"
K

+6[-vAv+v.-Ov]+Op=g"?t divwv=0, in Q (17)

with right hand sidg™* := 6f"1 4 (1— 0)f"— (1— 6)[—vAv"+Vv"- Ov"].

The parametef has to be chosen depending on the time-stepping schemef e=gl for the Backward Euler
(BE), or 8 = 1/2 for the Crank-Nicholson-scheme (CN) which we prefer. Thesgure ternilp = Op™* may

be replaced b@Op™* + (1— 8)0p", but with appropriate postprocessing, both strategiastieaolutions of the
same accuracy. In all cases, we end up with the task of sqlatreach time step, a nonlinear saddle point problem
of given type which has then to be discretized in space asitdescabove.

These two methods, CN and BE, belong to the grouPoé-Stepd-schemesThe CN scheme can occasionally
suffer from numerical instabilities because of its only welamping property (not strongly A-stable), while the
BE-scheme is of first order accuracy only (however: it is achcandidate for steady-state simulations). Another
method which has proven to have the potential to excel indhiispetition is the Fractional-Stepscheme (FS).

It uses three different values fé and for the time stef at each time level. In (Razzaq et al., 2008), (Turek
et al., 2006) we additionally described a modified FractiBtap-0-scheme which particularly for fluid-structure
interaction problems seems to be advantageous. A detakstigtion will appear in the thesis (Razzaq, 2009).

3.3 Solution algorithms

The system of nonlinear algebraic equations arising fraagthverning equations described above reads

S S 0 u fu
Sw Sv kB vV | = fv (18)
aB! oBl 0 p fp

which is a typical saddle point problem, whe&eescribes the diffusive and convective terms from the goagr
equations. The above system of nonlinear algebraic equedi®) is solved using Newton method as basic itera-
tion. The basic idea of the Newton iteration is to find a roocadfinction,R(X) = 0, using the available known
function value and its first derivative, wheXe= (un, Vi, Pn) € Un X Vi X By. One step of the Newton iteration can
be written as

-1
XM= xn_ [g—i(x“)} R(X"). (19)

1. LetX" be some starting guess.
2. Set the residuum vect®" = R(X") and the tangent matrik = g—fg(x”).
3. Solve for the correctioX

AdX =R".

4. Find optimal step lengttv.
5. Update the solutioX™! = X" — wdX.

Figure 2: One step of the Newton method with line search.

This basic iteration can exhibit quadratic convergenceides that the initial guess is sufficiently close to the

solution. To ensure the convergence globally, some impneves of this basic iteration are used. The damped
Newton method with line search improves the chance of cgarere by adaptively changing the length of the

correction vector. The solution update step in the Newtothooe(19) is replaced by

XM= X" — wdX, (20)
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where the parametep is determined such that a certain error measure decrease$Tigrek, 1999), (Hron and

Turek, 2006a) for more details). The Jacobian ma@%& can be computed by finite differences from the
residual vectoR(X)

{Z_i] ij xn) ~ RiX"+aje )Z;j[R]i(X” —ai&) (21)

wheree; are the unit basis vectorsRI" and the coefficienta; are adaptively taken according to the change in the
solution in the previous time step. Since we know the spapsttern of the Jacobian matrix in advance, which
is given by the used finite element method, this computataonlze done in an efficient way so that the linear
solver remains the dominant part in terms of the CPU time (Ser=k, 1999), (Turek and Schmachtel, 2002) for
more details). A good candidate, at least in 2D, seems to beeat dolver for sparse systems like UMFPACK
(see (Davis and Duff, 1999)); while this choice providesyverbust linear solvers, its memory and CPU time
requirements are too high for larger systems (i.e. more 800 unknowns). Large linear problems can be
solved by Krylov-space methods (BiCGStab, GMRes, see éBat al., PA 1994)) with suitable preconditioners.
One possibility is the ILU preconditioner with special ti@ant of the saddle point character of our system, where
we allow certain fill-in for the zero diagonal blocks, seegBiley and Wang, 1997).

As an alternative, we also utilize a standard geometricigridtapproach based on a hierarchy of grids obtained
by successive regular refinement of a given coarse mesh. drplete multigrid iteration is performed in the
standard defect-correction setup with the V or F-type cy@lhile a direct sparse solver (Davis and Duff, 1999)
is used for the coarse grid solution, on finer levels a fixed lmem(2 or 4) of iterations by local MPSC schemes
(Vanka-like smoother) (Turek, 1999), (Vanka, 1985), (Heord Turek, 2006a) is performed. Such iterations can
be written as

ul+t ul' Swiei S 01" def,
V|+l — VI —w z S/U Q; SIVJrQi kB‘Qi deﬂ,
pl+t p element; | ¢uBy,  GvByjqg, 0 de f|p

The inverse of the local systems (389) can be done by hardware optimized direct solvers. THenAdal
interpolation is used as the prolongation oper&taiith its transposed operator used as the restrid®ienP’ (see
(Hron et al., 2002), (Turek, 1999) for more details).

4 Problem description

In the following, we consider the numerical simulation oésjal problems encountered in the area of cardiovas-
cular hemodynamics, namely flow interaction with thickledldeformable material, which can become a useful
tool for deeper understanding of the onset of diseases dfuhean circulatory system, as for example blood cell
and intimal damages in stenosis, aneurysm rupture, evafuattthe new surgery techniques of heart, arteries and
veins (see (Appanaboyina et al., 2008), (Lohner et al.32Q¢lencia et al., 2008) and therein cited literature).
In this contribution, prototypical studies are performedtirain aneurysm. The word ‘aneurysm’ comes from the
latin wordaneurysmavhich means dilatation. Aneurysm is a local dilatation ie tmall of a blood vessel, usually

an artery, due to a defect, disease or injury. Typicallyhasaneurysm enlarges, the arterial wall becomes thinner
and eventually leaks or ruptures, causing subarachnoigiteage (SAH) (bleeding into brain fluid) or formation

of a blood clot within the brain. In the case of a vessel rupttirere is a hemorrhage, and when an artery ruptures,
then the hemorrhage is more rapid and more intense. Inestiéré wall thickness can be up to 30% of the diameter
and its local thickening can lead to the creation of an areurso that the aim of numerical simulations is to relate
the aneurysm state (unrupture or rupture) with wall pressswall deformation and effective wall stress. Such a
relationship would provide information for the diagnosigldreatment of unrupture and rupture of an aneurysm
by elucidating the risk of bleeding or rebleeding, respetyi

In order to use the proposed numerical methods for aneurgsnottynamics, simplified two-dimensional exam-
ples, which however include the interaction of the flow witk tleformable material, are considered. Flow through
a deformable vein with elastic walls of a brain aneurysmrisugated to analyse qualitatively the described meth-
ods; here, the flow is driven by prescribing the flow velocityree inflow part of the boundary while the elastic
part of the boundary is either fixed or stress-free. Both erfdise walls are fixed at the inflow and outflow, and
the flow is driven by a periodical change of the inflow at thé éeid.
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4.1 Geometry of the problem

For convenience, the geometry of the fluid domain under denation is currently based on 2D models (see Fig.
3) which allows us to concentrate on the detailed qualigagivaluation of our approach based on the described
monolithic ALE formulation. The underlying constructioftbe (2D) shape of the aneurysm can be explained as
follows:

e The bent blood vessel is approximated by quarter circlegratthe origin.
e The innermost circle has the radiumB) the next has®m and the last one hasZdmm

e This results in one rigid inner wall and an elastic wall besw&mm and 25mmof thickness ®5mm
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Figure 3: Left: Schematic drawing of the measurement sectiMiddle: Mesh without stents (776 elements).
Right: Mesh with stents (1431 elements) which are part osthmilations.

The aneurysm shape is approximated by two arcs and lineséaténg the arcs tangentially. The midpoints of
the arcs are the same (-6.75; 6), they have the radilBommand 125mm They are intersected tangentially by
lines at angular value 1.3 radians. This results in a watktiss of QL25mmfor the elastic aneurysm walls (see
Fig. 3). The examined stents are of circular shape, placédeoneck of the aneurysm, and we use three, resp., five
stents (simplified ‘circles’ in 2D as cutplanes from 3D couafigtions) of different size and position. The stents
also consist of a grid, immersed in the blood flow, which isated at the inlet of the aneurysm so that in future
elastic deformations of the stents can be included, tooesmreal life, the stent is a medical device which consists
of a wire metal wire tube. Stents are typically used to keégrigs open and are located on the vessel wall while
this stent is immersed in the blood flow (Fig. 3). The purpdsthis device is to reduce the flux into and within
the aneurysm in order to occlude it by a clot or rupture. Treugysm is then intersected with the blood vessel and
all missing angular values and intersection points can beraéned.

4.2 Boundary and initial conditions

The (steady) velocity profile, to flow from the right to thetlpfrt of the channel, is defined as parabolic inflow,
namely _

V(0,y)=U(y—6)(y—8). (22)
Correspondingly, the pulsatile inflow profile for the norste tests for which peak systole and diastole occur for
At = 0.25sandAt = 0.75srespectively, is prescribed as

VP(t,0,y) = vP(0,y)(1+0.75sin(27tt)). (23)

The natural outflow condition at the lower left part effeetiv prescribes some reference value for the pressure
variable p, herep = 0. While this value could be arbitrarily set in the incomibke case, in the case of a
compressible structure this might have influence onto thesstand consequently the deformation of the solid.
The no-slip condition is prescribed for the fluid on the other boundamga.e. top and bottom wall, stents and
fluid-structure interface.
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5 Numerical results

The newtonian fluid used in the tests has a densfty= 1.035x 10~%g/mn? and a kinematic viscosity? =
3.38mn¥/swhich is similar to the properties of blood. If we prescribe tnflow speet) = —50mny's, this results

in a Reynolds numbdRe~ 120 based on the prescribed peak systole inflow velocity hedvidth of the veins
which is 2nmsuch that the resulting flow is within the laminar region. dPaeter values for the elastic vein in
the described model are as follows: The density of the uplpstie wall ispS = 1.12 x 10~%kg/mn?, solid shear
modulus isuS = 42.85kg/mmé, Poisson ratio iw’P = 0.4, Young modulus i€ = 120kN/mn?. As described
before, the constitutive relations used for the materiedstlae incompressible Newtonian model (2) for the fluid
and a hyperelastic neo-Hookean material for the solid. Thaice includes most of the typical difficulties the
numerical method has to deal with, namely the incomprdggibind significant deformations.

From a medical point of view, the use of stents provides aniefft treatment for managing the difficult entity of
intracranial aneurysms. Here, the thickness of the ansuwall is attenuated and the aneurysm hemodynamics
changes significantly. Since the purpose of this devicedstdrol the flux within the aneurysm in order to occlude
it by a clot or rupture, the resulting flow behavior into andhin the aneurysm is the main objective, particularly
in view of the different stent geometries. Therefore, weidkest for the 2D studies to locate the (2D parts of the)
stents only in direct connection to the aneurysm.

Comparing our studies with the CFD literature (see (Feraaedtal., 2008), (Appanaboyinaet al., 2008), (Valencia
et al., 2008), (Torri et al., 2007a), (Torri et al., 2007b3dyveral research groups focus on CFD simulations with
realistic 3D geometries, but typically assuming rigid walh contrast, we concentrate on the complex interaction
between elastic deformations and flow perturbations indumethe stents. At the moment, we are only able
to perform these simulations in 2D, however, with theseistidve should be able to analyse qualitatively the
influence of geometrical details onto the elastic materéiddvior, particularly in view of more complex blood

models and constitutive equations for the structure. Tbeggthe aims of our studies can be described as follows:

1. What is the influence of the elasticity of the walls ontoftbes behavior inside of the aneurysm, particularly
w.r.t. the resulting shape of the aneurysm?

2. What is the influence of the geometrical details of the (&Bhts, that means shape, size, position, onto the
flow behavior into and inside of the aneurysm?

3. Do both aspects, small-scale geometrical details asage#llastic fluid-structure interaction, have to be
considered simultaneously or is one of them negligible 8t irder approximation?

4. Are modern numerical methods and corresponding CFD aiiouls tools able to simulate qualitatively the
multiphysics behavior of such biomedical configurations?

In the following, we show some corresponding results fordbscribed prototypical aneurysm geometry, first for
the steady state inflow profile, followed by nonsteady testsfe pulsatile inflow, both with rigid and elastic walls,
respectively.

5.1 Steady configurations

Due to the given inflow profile, which is not time-dependend due to the low Re numbers, the flow behaviour
leads to a steady state which only depends on the elastiaityhe shape of the stents. Moreover, for the following
simulations, we only treat the aneurysm wall as elasticctre. Then, the aneurysm undergoes some slight
deformations which can hardly be seen in the following figutdowever they result in a different volume of the
flow domain (see Fig. 6) and lead to a significantly differextll flow behaviour since the spacing between stents
and elastic walls may change (see the subsequent colorgsgtu
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Figure 4. Deformed mesh for steady configuration withountstewith elastic wall (left). Mesh for rigid wall

(right).
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Figure 5: Deformed mesh for steady configuration with steditgents (left) and 5 stents (right).
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Figure 6: Resulting volume of the fluid domain for differentéigurations.
In the following pictures, we visualize the different flowhziour by coloring due the velocity magnitude and by

showing corresponding vector plots inside of the aneuryanticularly the influence of the number of stents onto
the complete fluid flow through the channel including the apem can be clearly seen.
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Figure 7: Rigid wall without stents.
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Figure 8: Elastic aneurysm wall without stents.
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Figure 9: Elastic aneurysm wall with 3 stents.
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Figure 10: Elastic aneurysm wall with 5 stents.
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Summarizing these results for steady inflow, the simulatgirow that the stent implantation across the neck of the
aneurysm prevents blood penetration into the aneurysnmutinidoreover, the elastic geometrical deformation of
the wall is slightly reduced by implanting the stents while tocal flow behaviour inside of the aneurysm is more
significantly influenced by the elastic properties of theeowmtall, particularly due to different width between stents
and walls of the aneurysm. In the next section, we will coaisitle more realistic behaviour of flow configurations
with time-dependent pulsatile inflow which will be analyzid the case of elastic behaviour of the aneurysm
walls.

5.2 Pulsatile configurations

For the following pulsatile test case, we have taken agairatreurysm part as elastic while the other parts of the
walls belonging to the channel are rigid. First of all, wewhagain (see Fig. 11) the resulting volume of the flow
domain for 5, 3 and no stents. In all cases, the oscillatirgabeur due to the pulsative inflow is visible which
also leads to different volume sizes. Looking carefullytet tesulting flow behaviour, we see global differences
w.r.t. the channel flow near the aneurysm, namely due to fferelit flow rate into the aneurysm, and significant
local differences inside of the aneurysm.

26.63 T T T

T T 26.62 : : . . .
no stents, elastic fundus no stents, elastic fundus
3 stents, elastic fundus ------- 3 stents, elastic fundus -------
5 stents, elastic fundus ------ 5 stents, elastic fundus ------
rigid walls i 26.615

26.62

26.61
26.61

26.605

volume
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26.595

2658 7
2659/

26.57 26.585 | 4

26.56 L L L L L 26.58 L L L L L
1 15 2 25 3 35 4 1.9 2 21 22 23 24

time step time step

Figure 11: Volume of the domain with rigid and elastic belbaviof the aneurysm wall.
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Figure 12: Snapshot for the magnitude of velocity for configions with no, 3 and 5 stents.
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Figure 13: Left column: no stent. Middle column: 3 stentgyiRicolumn: 5 stents. Figures demonstrate the global
behaviour of the velocity magnitude during one cycle.

Cells Vect Mag Cells Vect Mag

&0 &0
[ 50 [ 50
— 40 — 40
30 30
20 20
I 10 I 10

Cells Vect Mag Cells Vect Mag

16
14
12
10
8
&
4

294



Cells Vect Mag

Cells Vect Mag

Cells Vect Mag

Cells Vect Mag

Calls Vect Mag

Cells Vect Mag

Figure 14: Left column: no stent. Middle column: 3 stentgyiRicolumn: 5 stents. Figures demonstrate the local

behaviour of the fluid flow inside of the aneurysm during oneey
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6 Summary and future developments

We presented a monolithic ALE formulation of fluid-struaunteraction problems suitable for applications with
finite deformations of the structure and laminar viscous $loparticularly arising in biomechanics. The corre-
sponding discrete nonlinear systems result from the finéenent discretization by using the high ordgsP;
FEM pair which are solved monolithically via discrete Newiteration and special Krylov-multigrid approaches.
While we restricted in the presented studies to the simglifi@se of newtonian fluids and small deformations,
the used numerical components allow the system to be cowptadadditional models of chemical and electric
activation of the active response of the biological matesawvell as power law models used to describe the shear
thinning property of blood. Further extension to viscogtasmodels and coupling with mixture based models for
soft tissues together with chemical and electric proceasesd allow to perform more realistic simulations for
real applications.

In this contribution, we applied the presented numericaéques to fluid-structure interaction problems which
examine prototypically the influence of endovascular sit@ptantation onto aneurysm hemodynamics. The aim
was, first of all, to study the influence of the elasticity o thalls onto the flow behaviour inside of the aneurysm.
Moreover, different geometrical configurations of impkhstent structures have been analysed in 2D. These 2D
results are far from providing quantitative results fortsaccomplex multiphysics configuration, but they allow

a qualitative analysis w.r.t. both considered componeras)ely the elastic behaviour of the structural parts and
the multiscale flow behaviour due to the geometrical detdithe stents. We believe that such basic studies may
help towards the development of future ‘Virtual Flow Laboréges’ which individually assist to develop personal
medical tools in an individual style.
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