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Abstract

Numerical techniques for solving the problem of fluid-structure interaction with an
elastic material in a laminar incompressible viscous flow are described. An Arbitrary
Lagrangian-Eulerian (ALE) formulation is employed in a fully coupled monolithic
way, considering the problem as one continuum. The mathematical description and
the numerical schemes are designed in such a way that more complicated constitutive
relations (and more realistic for biomechanics applications) for the fluid as well as
the structural part can be easily incorporated. We utilize the well-known Q2P1

finite element pair for discretization in space to gain high accuracy and perform as
time-stepping the 2nd order Crank-Nicholson, resp., Fractional-Step-θ-scheme for
both solid and fluid parts. The resulting nonlinear discretized algebraic system is
solved by a Newton method which approximates the Jacobian matrices by a divided
differences approach, and the resulting linear systems are solved by iterative solvers,
preferably of Krylov-multigrid type.

For validation and evaluation of the accuracy of the proposed methodology, we
present corresponding results for a new set of FSI benchmarking configurations
which describe the self-induced elastic deformation of a beam attached to a cylinder
in laminar channel flow, allowing stationary as well as periodically oscillating de-
formations. Then, as an example for fluid-structure interaction (FSI) in biomedical
problems, the influence of endovascular stent implantation onto cerebral aneurysm
hemodynamics is numerically investigated. The aim is to study the interaction of
the elastic walls of the aneurysm with the geometrical shape of the implanted stent
structure for prototypical 2D configurations. This study can be seen as a basic step
towards the understanding of the resulting complex flow phenomena so that in fu-
ture aneurysm rupture shall be suppressed by an optimal setting for the implanted



stent geometry.

Key words: Fluid-structure interaction (FSI), monolithic FEM, ALE, multigrid,
incompressible laminar flow

1 Introduction

In this paper, we consider the general problem of viscous flow interacting with
an elastic body which is being deformed by the fluid action. Such a problem is
of great importance in many real life applications, and typical examples of this
type of problem are the areas of biomedical fluids which include the influence
of hemodynamic factors in blood vessels, cerebral aneurysm hemodynamics,
joint lubrication and deformable cartilage and blood flow interaction with
elastic veins [1, 29, 8, 20, 21]. The theoretical investigation of fluid-structure
interaction problems is complicated by the need of a mixed description for both
parts: While for the solid part the natural view is the material (Lagrangian)
description, for the fluid it is usually the spatial (Eulerian) description. In
the case of their combination some kind of mixed description (usually referred
to as the Arbitrary Lagrangian-Eulerian description or ALE) has to be used
which brings additional nonlinearity into the resulting equations (see [14]).

The numerical solution of the resulting equations of the fluid-structure interac-
tion problem poses great challenges since it includes the features of structural
mechanics, fluid dynamics and their coupling. The most straightforward solu-
tion strategy, mostly used in the available software packages (see for instance
[13]), is to decouple the problem into the fluid part and solid part, for each
of those parts using some well established method of solution; then the inter-
action process is introduced as external boundary conditions in each of the
subproblems. This has the advantage that there are many well tested numeri-
cal methods for both separate problems of fluid flow and elastic deformation,
while on the other hand the treatment of the interface and the interaction is
problematic due to high stiffness and sensitivity. In contrast, the monolithic
approach discussed here treats the problem as a single continuum with the
coupling automatically taken care of as internal interface.

Beside a short description of the underlying numerical aspects regarding dis-
cretization and solution procedure for this monolithic approach (see [19, 14]),
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we present corresponding results for a new set of FSI benchmarking test cases
(‘channel flow around cylinder with attached elastic beam’, see [25]), and we
concentrate on prototypical numerical studies for 2D aneurysm configurations.
The corresponding parameterization is based on abstractions of biomedical
data (i.e., cutplanes of 3D specimens from New Zealand white rabbits as well
as computer tomographic and magnetic resonance imaging data of human neu-
rocrania). In our studies, we allow the walls of the aneurysm to be elastic and
hence deforming with the flow field in the vessel. Moreover, we examine several
configurations for stent geometries which clearly influence the flow behavior
inside of the aneurysm such that a very different elastic displacement of the
walls is observed too. We demonstrate that either the elastic modeling of the
aneurysm walls as well as the proper description of the geometrical details of
the shape of the aneurysm and particularly of the stents is of great importance
if the complex interaction between structure and fluid shall be quantitatively
analyzed in future, especially in view of more realistic blood flow models and
anisotropic constitutive laws of the elastic walls.

2 Fluid-structure interaction problem formulation

The general fluid-structure interaction problem consists of the description of
the fluid and solid fields, appropriate interface conditions at the interface and
conditions for the remaining boundaries, respectively. In this paper, we con-
sider the flow of an incompressible Newtonian fluid interacting with an elastic
solid. We denote the domain occupied by the fluid by Ωf

t and the solid by
Ωs

t at the time t ∈ [0, T ]. Let Γ0
t = Ω̄f

t ∩ Ω̄s
t be the part of the boundary

where the elastic solid interacts with the fluid. In the following, the descrip-
tion for both fields and the interface conditions are introduced. Furthermore,
discretization aspects and computational methods used are described in the
following subsections.

2.1 Fluid mechanics

The fluid is assumed to be laminar and it is governed by the Navier-Stokes
equations of incompressible flows derived in the ALE framework:

ρf (
∂vf

∂t
+ v · ∇v) −∇ · σf = 0, ∇ · v = 0 in Ωf

t (1)

where ρf is the constant density and v is the velocity of the fluid. The state
of the flow is described by the velocity and pressure fields vf , pf respec-
tively. The external forces, like due to gravity or human motion, are assumed
to be not significant and are neglected. Although the blood is known to be
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non-Newtonian in general, we assume it to be Newtonian in this study. This
is because we consider large arteries with radii of the order 2.0 mm, where the
velocity and shear rate are high. The kinematic viscosity νf is nearly a con-
stant in arteries with relatively large diameters 5mm [16], and therefore the
non-Newtonian effects are neglected. The constitutive relations for the stress
tensors read

σf = −pfI + 2µε(vf), (2)

where µ is the dynamic viscosity of the fluid, pf is the Lagrange multiplier cor-
responding to the incompressibility constraint in (1), and ε(vf) is the strain-
rate tensor:

ε(vf) =
1

2
(∇vf + (∇vf)T ). (3)

The material time derivative depends on the choice of the reference sys-
tem. There are basically 3 alternative reference systems: the Eulerian, the
Lagrangian, and the Arbitrary Lagrangian-Eulerian formulation. The most
commonly used description for the fluid-structure interaction is the ALE de-
scription. For the ALE formulation presented in this paper, corresponding
discretization techniques are discussed in section 3. Let us remark that also
nonnewtonian flow models can be used for modeling blood flow, for instance of
Power Law type or even including viscoelastic effects (see [6]) which is planned
for future extensions.

2.2 Structural mechanics

The governing equations for the structural mechanics are the balance equa-
tions:

ρs(
∂vs

∂t
+ (∇vs)vs − g) −∇ · σs = 0, in Ωs

t , (4)

where the subscript s denotes the structure, ρs is the density of the material,
gs represents the external body forces acting on the structure, and σs is the
Cauchy stress tensor. The configuration of the structure is described by the
displacement us, with velocity field vs = ∂u

s

∂t
. Written in the more common

Lagrangian description, i.e. with respect to some fixed reference (initial) state
Ωs, we have

ρs(
∂2us

∂t2
− g) −∇ · Σs = 0, in Ωs, (5)

where the tensor Σs = JσsF−T is called the first Piola-Kirchhoff tensor and
(5) is the momentum equation (or the equation of elastodynamics). Unlike the
Cauchy stress tensor σs, the first Piola-Kirchhoff tensor Σs is non-symmetric.
Since constitutive relations are often expressed in terms of symmetric stress
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tensor, it is natural to introduce the second Piola-Kirchhoff tensor Ss

Ss = F−T Σs = JF−1σsF−T , (6)

which is symmetric. For an elastic material (arterial wall is known to be made
of elastic material which is nonlinear, we assume it to be linear in this study)
the stress is a function of the deformation (and possibly of thermodynamic
variables such as the temperature) but it is independent of deformation his-
tory and thus of time. The material characteristics may still vary in space. In a
homogeneous material mechanical properties do not vary, strain energy func-
tion depends only on the deformation. A material is mechanically isotropic
if its response to deformation is the same in all directions. The constitutive
equation is then a function of F. More precisely, it is usually written in terms
of the Green-Lagrange strain tensor, as

E =
1

2
(C − I), (7)

where I is the identity tensor and C = FT F is the right Cauchy-Green strain
tensor. J denotes the determinant of the deformation gradient tensor F, de-
fined as F = I + ∇us.

For the subsequent FSI benchmark we employ a St.Venant-Kirchhoff material
model as an example for hyperelastic homogeneous isotropic material whose
reference configuration is the natural state (i.e. where the Cauchy stress tensor
is zero everywhere). The St.Venant-Kirchhoff material model is specified by
the following constitutive law

σs =
1

J
F(λs(trE)I + 2µsE)FT Ss = λs(trE)I + 2µsE, (8)

where λs denotes the Lamé coefficients, and µs the shear modulus. More com-
plex constitutive relations for hyperelastic materials may be found in [11],
and particular models for biological tissues and blood vessels are reported in
[9, 12]. The material elasticity is characterized by a set of two parameters,
the Poisson ratio νs and the Young modulus E. These parameters satisfy the
following relations

νs =
λs

2(λs + µs)
E =

µs(3λs + 2µ2)

(λs + µs)
(9)

µs =
E

2(1 + νs)
λs =

νsE

(1 + νs)(1 − 2νs)
, (10)

where νs = 1/2 for a incompressible and νs < 1/2 for a compressible structure.
In the large deformation case it is common to describe the constitutive equa-
tion using a stress-strain relation based on the Green Lagrangian strain tensor
E and the 2.Piola-Kirchhoff stress tensor S(E) as a function of E. However,
also incompressible structures can be handled in the same way (see [14]).
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For the hemodynamic applications, a Neo-Hooke material model (J = detF)
is taken which can be used for compressible or incompressible (for νs = 1/2 ⇒
λs → ∞ ) material and which is described by the constitutive laws

σs = −psI +
µs

J
(FFT − I) (11)

0 = −ps +
λs

2
(J −

1

J
) (12)

Both models, the St. Venant Kirchhoff and the Neo-Hooke material model,
share the isotropic and hyperelastic properties, and both can be used for the
computation of large deformations. However, the St. Venant Kirchhoff model
does not allow for large strain computation, while the Neo-Hooke model is
also valid for large strains. After linearization, both material models have to
converge to the same expression, which is then valid only for small strains
and small deformations. We implemented the St. Venant Kirchhoff material
model as the standard model for the compressible case, since the setup of the
benchmark does not involve large strains in the oscillating beam structure. Its
implementation is simpler and, therefore, the FSI benchmark will hopefully
be adopted by a wider group of researchers. If someone wants or has to use
the Neo-Hooke material, the results for a given set of E and ν or λ and µ
are comparable, if the standard Neo-Hooke material model as in (12) is used.
Similarly as in the case of more complex blood flow models, also more realistic
constitutive relations for the anisotropic behavior of the walls of aneurysms
can be included which however is beyond the scope of this paper.

2.3 Interaction conditions

The boundary conditions on the fluid-solid interface are assumed to be

σfn = σsn, vf = vs, on Γ0
t , (13)

where n is a unit normal vector to the interface Γ0
t . This implies the no-slip

condition for the flow and that the forces on the interface are in balance.

3 Discretization and solution techniques

In this study, we restrict at the moment to two dimensions which allows sys-
tematic tests of the proposed methods for biomedical applications in a very ef-
ficient way such that the qualitatitive behaviour can be carefully analyzed. The
corresponding fully implicit, monolithic treatment of the fluid-structure inter-
action problem suggests that an A-stable second order time stepping scheme
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and that the same finite elements for both the solid part and the fluid region
should be utilized. Moreover, to circumvent the fluid incompressibility con-
straints, we have to choose a stable finite element pair. For that reason, the
conforming biquadratic, discontinuous linear Q2P1 pair, see Figure 1 for the
location of the degrees of freedom, is chosen which will be explained in the
next section.

3.1 The conforming Stokes element Q2P1

Let us define the usual finite dimensional spaces U for displacement, V for
velocity, P for pressure approximation as follows

U = {u ∈ L∞(I, [W 1,2(Ω)]2),u = 0 on ∂Ω},

V = {v ∈ L2(I, [W 1,2(Ωt)]
2) ∩ L∞(I, [L2(Ωt)]

2),v = 0 on ∂Ω},

P = {p ∈ L2(I, L2(Ω))},

then the variational formulation of the fluid-structure interaction problem is
to find (u,v, p) ∈ U × V × P such that the equations are satisfied for all
(ζ, ξ, γ) ∈ U × V × P including appropriate initial conditions. The spaces
U, V, P on an interval [tn, tn+1] would be approximated in the case of the
Q2, P1 pair as

Uh = {uh ∈ [C(Ωh)]
2,uh|T ∈ [Q2(T )]2 ∀T ∈ Th,uh = 0 on ∂Ωh},

Vh = {vh ∈ [C(Ωh)]
2,vh|T ∈ [Q2(T )]2 ∀T ∈ Th,vh = 0 on ∂Ωh},

Ph = {ph ∈ L2(Ωh), ph|T ∈ P1(T ) ∀T ∈ Th}.

Let us denote by un
h the approximation of u(tn), vn

h the approximation of
v(tn) and pn

h the approximation of p(tn). Consider for each T ∈ Th the bilinear
transformation ψT : T̂ → T to the unit square T . Then, Q2(T ) is defined as

Q2(T ) =
{
q ◦ ψ−1

T : q ∈ span < 1, x, y, xy, x2, y2, x2y, y2x, x2y2 >
}

(14)

with nine local degrees of freedom located at the vertices, midpoints of the
edges and in the center of the quadrilateral. The space P1(T ) consists of linear
functions defined by

P1(T ) =
{
q ◦ ψ−1

T : q ∈ span < 1, x, y >
}

(15)

with the function value and both partial derivatives located in the center
of the quadrilateral, as its three local degrees of freedom, which leads to a
discontinuous pressure. The inf-sup condition is satisfied (see [4]); however,
the combination of the bilinear transformation ψ with a linear function on the
reference square P1(T̂ ) would imply that the basis on the reference square did
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vh,uh

ph,
∂ph

∂x
, ∂ph

∂y

x

y

Fig. 1. Location of the degrees of freedom for the Q2P1 element.

not contain the full basis. So, the method can at most be first order accurate
on general meshes (see [2, 4])

‖p− ph‖0 = O(h). (16)

The standard remedy is to consider a local coordinate system (ξ, η) obtained
by joining the midpoints of the opposing faces of T (see [2, 17, 24]). Then, we
set on each element T

P1(T ) := span < 1, ξ, η > . (17)

For this case, the inf-sup condition is also satisfied and the second order ap-
proximation is recovered for the pressure as well as for the velocity gradient
(see [4, 10])

‖p− ph‖0 = O(h2) and ‖∇(u− uh)‖0 = O(h2). (18)

For a smooth solution, the approximation error for the velocity in the L2-norm
is of order O(h3) which can easily be demonstrated for prescribed polynomials
or for smooth data on appropriate domains.

3.2 Time discretization

In view of a more compact presentation, the applied time discretization ap-
proach is described only for the fluid part (see [18] for more details). In the
following, we restrict to the (standard) incompressible Navier-Stokes equations

vt − ν∆v + v · ∇v + ∇p = f , ∇ · v = 0, in Ω × (0, T ] , (19)

for given force f and viscosity ν, with prescribed boundary values on the
boundary ∂Ω and an initial condition at t = 0. Then, the usual θ-scheme for
time discretization reads:
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Basic θ-scheme: Given vn and K = tn+1 − tn, then solve for v = vn+1 and
p = pn+1

v − vn

K
+ θ[−ν∆v + v · ∇v] + ∇p = gn+1, div v = 0, in Ω (20)

with right hand side gn+1 := θfn+1 + (1 − θ)fn − (1 − θ)[−ν∆vn + vn · ∇vn].
The parameter θ has to be chosen depending on the time-stepping scheme,
e.g., θ = 1 for the Backward Euler (BE), or θ = 1/2 for the Crank-Nicholson-
scheme (CN) which we prefer. The pressure term ∇p = ∇pn+1 may be replaced
by θ∇pn+1 + (1 − θ)∇pn, but with appropriate postprocessing, both strate-
gies lead to solutions of the same accuracy. In all cases, we end up with the
task of solving, at each time step, a nonlinear saddle point problem of given
type which has then to be discretized in space as described above. These two
methods, CN and BE, belong to the group of One-Step-θ-schemes. The CN
scheme can occasionally suffer from numerical instabilities because of its only
weak damping property (not strongly A-stable), while the BE-scheme is of
first order accuracy only (however: it is a good candidate for steady-state sim-
ulations). Another method which has proven to have the potential to excel in
this competition is the Fractional-Step-θ-scheme (FS). It uses three different
values for θ and for the time step K at each time level. In [19, 26] we ad-
ditionally described a modified Fractional-Step-θ-scheme which particularly
for fluid-structure interaction problems seems to be advantageous. A detailed
description will appear in the thesis [18].

3.3 Solution algorithms

After applying the standard finite element method with the Q2P1 element
pair as described in subsection 3.1, the system of nonlinear algebraic equations
arising from the governing equations described in subsection 2.1 and 2.2, reads





Suu Suv 0

Svu Svv kB

cuB
T
s cvB

T
f 0









u

v

p




=





fu

fv

fp




, (21)

which is a typical saddle point problem, where S describes the diffusive and
convective terms from the governing equations. The above system of nonlinear
algebraic equations (21) is solved using Newton method as basic iteration
which can exhibit quadratic convergence provided that the initial guess is
sufficiently close to the solution. The basic idea of the Newton iteration is to
find a root of a function, R(X) = 0 , using the available known function value
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and its first derivative, One step of the Newton iteration can be written as

Xn+1 = Xn + ωn

[
∂R(Xn)

∂X

]−1

R(Xn), (22)

where X = (uh,vh, ph) and ∂R(Xn)
∂X

is the Jacobian matrix. To ensure the
convergence globally, some improvements of this basic iteration are used. The
damped Newton method with line search improves the chance of convergence
by adaptively changing the length of the correction vector (see [24, 14] for
more details). The damping parameter ωn ∈ (−1, 0) is chosen such that

R(Xn+1) · Xn+1 ≤ R(Xn) · Xn. (23)

The damping greatly improves the robustness of the Newton iteration in the
case when the current approximation Xn is not close enough to the final solu-
tion since the Newton method without damping is not guaranteed to converge
(see [24, 14] for more details). The Jacobian matrix ∂R(Xn)

∂X
can be computed

by finite differences from the residual vector R(X)

[
∂R(Xn)

∂X

]

ij

≈
[R]i(X

n + αjej) − [R]i(X
n − αjej)

2αj

, (24)

where ej are the unit basis vectors in Rn and the coefficients αj are adaptively
taken according to the change in the solution in the previous time step. Since
we know the sparsity pattern of the Jacobian matrix in advance, which is given
by the used finite element method, this computation can be done in an efficient
way so that the linear solver remains the dominant part in terms of the CPU
time (see [24, 27] for more details). A good candidate, at least in 2D, seems to
be a direct solver for sparse systems like UMFPACK (see [7]); while this choice
provides very robust linear solvers, its memory and CPU time requirements
are too high for larger systems (i.e. more than 20.000 unknowns). Large linear
problems can be solved by Krylov-space methods (BiCGStab, GMRes, see
[3]) with suitable preconditioners. One possibility is the ILU preconditioner
with special treatment of the saddle point character of our system, where we
allow certain fill-in for the zero diagonal blocks, see [5]. As an alternative, we
also utilize a standard geometric multigrid approach based on a hierarchy of
grids obtained by successive regular refinement of a given coarse mesh. The
complete multigrid iteration is performed in the standard defect-correction
setup with the V or F-type cycle. While a direct sparse solver [7] is used for
the coarse grid solution, on finer levels a fixed number (2 or 4) of iterations
by local MPSC schemes (Vanka-like smoother) [24, 30, 14] is performed. Such
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iterations can be written as





ul+1

vl+1

pl+1




=





ul

vl

pl




− ω

∑

elementΩi





Suu|Ωi
Suv|Ωi

0

Svu|Ωi
Svv|Ωi

kB|Ωi

cuB
T
s|Ωi

cvB
T
f |Ωi

0





−1 



def l
u

def l
v

def l
p




.

The inverse of the local systems (39×39) can be done by hardware optimized
direct solvers. The full nodal interpolation is used as the prolongation operator
P with its transposed operator used as the restriction R = PT (see [13, 24]
for more details).

4 FSI benchmarking

In order to validate and to analyze different techniques to solve such FSI
problems, also in a quantitative way, a set of benchmark configurations has
been proposed in [25]. The configurations consist of laminar incompressible
channel flow around an elastic object which results in self-induced oscillations
of the structure. Moreover, characteristic flow quantities and corresponding
plots are provided for a quantitative comparison.

L

H
l

h

(0, 0)

C

r
l

h
A

B

Fig. 2. Computational domain with geometrical details of the structure part.

value [m]

channel length L 2.5

channel width H 0.41

cylinder center position C (0.2, 0.2)

cylinder radius r 0.05

value [m]

elastic structure length l 0.35

elastic structure thickness h 0.02

reference point (at t = 0) A (0.6, 0.2)

reference point B (0.2, 0.2)

Table 1
Overview of the geometrcal parameters.
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parameter FSI1 FSI2 FSI3

̺s [103 kg
m3 ] 1 10 1

νs 0.4 0.4 0.4

µs [106 kg
ms2

] 0.5 0.5 2.0

̺f [103 kg
m3 ] 1 1 1

νf [10−3 m2

s ] 1 1 1

Ū [ms ] 0.2 1 2

parameter FSI1 FSI2 FSI3

β = ̺s

̺f 1 10 1

νs 0.4 0.4 0.4

Ae = Es

̺f Ū2
3.5 × 104 1.4 × 103 1.4 × 103

Re = Ūd
νf 20 100 200

Ū 0.2 1 2

Table 2
Parameter settings for the FSI benchmarks.

The domain is based on the 2D version of the well-known CFD benchmark in
[28] and is shown in Figure 2. By omitting the elastic bar behind the cylinder
one can easily recover the setup of the ‘classical’ flow around cylinder config-
uration which allows for validation of the flow part by comparing the results
with the older flow benchmark. The setting is intentionally nonsymmetric [28]
to prevent the dependence of the onset of any possible oscillation on the pre-
cision of the computation. The mesh used for the computations is shown in
Fig. 3.

level #refine #el #dof

0+0 0 62 1338

1+0 1 248 5032

2+0 2 992 19488

3+0 3 3968 76672

4+0 4 15872 304128

Fig. 3. Coarse mesh with number of degrees of freedom for refined levels.

A parabolic velocity profile is prescribed at the left channel inflow

vf(0, y) = 1.5Ū
y(H − y)

(
H
2

)2 = 1.5Ū
4.0

0.1681
y(0.41− y), (25)

such that the mean inflow velocity is Ū and the maximum of the inflow velocity
profile is 1.5Ū . The no-slip condition is prescribed for the fluid on the other
boundary parts. i.e. top and bottom wall, circle and fluid-structure interface
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Γ0
t . The outflow condition can be chosen by the user, for example stress free

or do nothing conditions. The outflow condition effectively prescribes some
reference value for the pressure variable p. While this value could be arbitrarily
set in the incompressible case, in the case of compressible structure this will
have influence on the stress and consequently the deformation of the solid.
In this description, we set the reference pressure at the outflow to have zero

mean value. Suggested starting procedure for the non-steady tests is to use a
smooth increase of the velocity profile in time as

vf(t, 0, y) =





vf(0, y)

1−cos(π
2
t)

2
if t < 2.0

vf(0, y) otherwise
(26)

where vf(0, y) is the velocity profile given in (25).

The following FSI tests are performed for three different inflow speeds. FSI1
is resulting in a steady state solution, while FSI2 and FSI3 result in periodic
solutions. The parameter values for the FSI1, FSI2 and FSI3 are given in the
Table 2. Here, the computed values are summarized in Table 3 for the steady
state test FSI1. In Figure 4 and 5, resulting plots of x-y displacement of the
trailing edge point A of the elastic bar and plots of the forces (lift, drag)
acting on the cylinder attached with an elastic bar are drawn and computed
values for three different mesh refinement levels and two different time steps
for the nonsteady tests FSI2 and FSI3 are presented respectively, which show
the (almost) grid independent solution behaviour (for more details see [25]).

level nel ndof ux of A [×10−3] uy of A [×10−3] drag lift

2 + 0 992 19488 0.022871 0.81930 14.27360 0.76178

3 + 0 3968 76672 0.022775 0.82043 14.29177 0.76305

4 + 0 15872 304128 0.022732 0.82071 14.29484 0.76356

5 + 0 63488 1211392 0.022716 0.82081 14.29486 0.76370

6 + 0 253952 4835328 0.022708 0.82086 14.29451 0.76374

ref. 0.0227 0.8209 14.295 0.7638

Table 3
Results for FSI1.
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FSI2: x & y displacement of the point A
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FSI2: lift and drag force on the cylinder+elastic bar
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lev. ux of A [×10−3] uy of A [×10−3] drag lift

2 −14.00 ± 12.03[3.8] 1.18 ± 78.7[2.0] 209.46 ± 72.30[3.8] −1.18 ± 269.6[2.0]

3 −14.25 ± 12.03[3.8] 1.20 ± 79.2[2.0] 202.55 ± 67.02[3.8] 0.71 ± 227.1[2.0]

4 −14.58 ± 12.37[3.8] 1.25 ± 80.7[2.0] 201.29 ± 67.61[3.8] 0.97 ± 233.2[2.0]

lev. ux of A [×10−3] uy of A [×10−3] drag lift

2 −14.15 ± 12.23[3.7] 1.18 ± 78.8[1.9] 210.36 ± 70.28[3.7] 0.80 ± 286.0[1.9]

3 −13.97 ± 12.01[3.8] 1.25 ± 79.3[2.0] 203.54 ± 68.43[3.8] 0.41 ± 229.3[2.0]

4 −14.58 ± 12.44[3.8] 1.23 ± 80.6[2.0] 208.83 ± 73.75[3.8] 0.88 ± 234.2[2.0]

ref. −14.58 ± 12.44[3.8] 1.23 ± 80.6[2.0] 208.83 ± 73.75[3.8] 0.88 ± 234.2[2.0]

Fig. 4. Results for FSI2 with time step ∆t = 0.002,∆t = 0.001.
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FSI3: x & y displacement of the point A

-0.006

-0.005

-0.004

-0.003

-0.002

-0.001

 0

 19.5  19.6  19.7  19.8  19.9  20

di
sp

la
ce

m
en

t x

time

fsi3

-0.04
-0.03
-0.02
-0.01

 0
 0.01
 0.02
 0.03
 0.04

 19.5  19.6  19.7  19.8  19.9  20

di
sp

la
ce

m
en

t y

time

fsi3
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lev. ux of A [×10−3] uy of A [×10−3] drag lift

2 −3.02 ± 2.78[10.6] 0.99 ± 35.70[5.3] 444.6 ± 31.69[10.6] 9.48 ± 151.55[5.3]

3 −3.02 ± 2.83[10.6] 1.43 ± 35.43[5.3] 457.1 ± 20.05[10.6] 1.23 ± 146.04[5.3]

4 −2.85 ± 2.56[10.9] 1.53 ± 34.35[5.3] 459.8 ± 20.00[10.9] 1.51 ± 148.76[5.3]

lev. ux of A [×10−3] uy of A [×10−3] drag lift

2 −3.00 ± 2.79[10.7] 1.19 ± 35.72[5.3] 445.0 ± 35.09[10.7] 8.26 ± 163.72[5.3]

3 −2.86 ± 2.68[10.7] 1.45 ± 35.34[5.3] 455.7 ± 24.69[10.7] 1.42 ± 146.43[5.3]

4 −2.69 ± 2.53[10.9] 1.48 ± 34.38[5.3] 457.3 ± 22.66[10.9] 2.22 ± 149.78[5.3]

ref. −2.69 ± 2.53[10.9] 1.48 ± 34.38[5.3] 457.3 ± 22.66[10.9] 2.22 ± 149.78[5.3]

Fig. 5. Results for FSI3 with time step ∆t = 0.001,∆t = 0.0005.
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5 Applications to hemodynamics

In the following, we consider the numerical simulation of special problems
encountered in the area of cardiovascular hemodynamics, namely flow inter-
action with thick-walled deformable material, which can become a useful tool
for deeper understanding of the onset of diseases of the human circulatory
system, as for example blood cell and intimal damages in stenosis, aneurysm
rupture, evaluation of the new surgery techniques of heart, arteries and veins
(see [1, 15, 29] and therein cited literature). In this contribution, prototypical
studies are performed for brain aneurysm. The word ‘aneurysm’ comes from
the latin word aneurysma which means dilatation. Aneurysm is a local dilata-
tion in the wall of a blood vessel, usually an artery, due to a defect, disease or
injury. Typically, as the aneurysm enlarges, the arterial wall becomes thinner
and eventually leaks or ruptures, causing subarachnoid hemorrhage (SAH)
(bleeding into brain fluid) or formation of a blood clot within the brain. In
the case of a vessel rupture, there is a hemorrhage, and when an artery rup-
tures, then the hemorrhage is more rapid and more intense. In arteries the
wall thickness can be up to 30% of the diameter and its local thickening can
lead to the creation of an aneurysm so that the aim of numerical simulations
is to relate the aneurysm state (unrupture or rupture) with wall pressure,
wall deformation and effective wall stress. Such a relationship would provide
information for the diagnosis and treatment of unrupture and rupture of an
aneurysm by elucidating the risk of bleeding or rebleeding, respectively.

Fig. 6. Left: Real view of aneurysm. Right: Schematic drawing of the mesh.

As a typical example for the related CFD simulations, a real view is provided in
Fig. 6 which also contains the automatically extracted computational domain
and (coarse) mesh in 2D, however without stents. In order to use the proposed
numerical methods for aneurysm hemodynamics, in a first step, only simplified
two-dimensional examples, which however include the interaction of the flow
with the deformable material, are considered in the following. Flow through a
deformable vein with elastic walls of a brain aneurysm is simulated to analyse
qualitatively the described methods; here, the flow is driven by prescribing
the flow velocity at the inflow section while the elastic part of the boundary
is either fixed or stress-free. Both ends of the walls are fixed, and the flow is
driven by a periodical change of the inflow at the left end.
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5.1 Geometry of the problem

For convenience, the geometry of the fluid domain under consideration is cur-
rently based on simplified 2D models (see Fig. 7) which allows us to con-
centrate on the detailed qualitative evaluation of our approach based on the
described monolithic ALE formulation. The underlying construction of the
(2D) shape of the aneurysm can be explained as follows:

• The bent blood vessel is approximated by quarter circles around the origin.
• The innermost circle has the radius 6mm, the next has 8mm, and the last

one has 8.25mm.
• This results in one rigid inner wall and an elastic wall between 8mm and

8.25mm of thickness 0.25mm.

Fig. 7. Left: Schematic drawing of the measurement section. Middle: Mesh without
stents (776 elements). Right: Mesh with stents (1431 elements) which are part of
the simulations.

The aneurysm shape is approximated by two arcs and lines intersecting the
arcs tangentially. The midpoints of the arcs are the same (-6.75; 6), they have
the radius 1.125mm and 1.25mm. They are intersected tangentially by lines
at angular value 1.3 radians. This results in a wall thickness of 0.125mm for
the elastic aneurysm walls (see Fig. 7). The examined stents are of circular
shape, placed on the neck of the aneurysm, and we use three, resp., five stents
(simplified ‘circles’ in 2D as cutplanes from 3D configurations) of different
size and position. The stents also consist of a grid, immersed in the blood
flow, which is located at the inlet of the aneurysm so that in future elastic
deformations of the stents can be included, too, since in real life, the stent is
a medical device which consists of a wire metal wire tube. Stents are typically
used to keep arteries open and are located on the vessel wall while this stent is
immersed in the blood flow (Fig. 7). The purpose of this device is to reduce the
flux into and within the aneurysm in order to occlude it by a clot or rupture.
The aneurysm is then intersected with the blood vessel and all missing angular
values and intersection points can be determined.
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5.2 Boundary and initial conditions

The (steady) velocity profile, to flow from the right to the left part of the
channel, is defined as parabolic inflow, namely

vf(0, y) = Ū(y − 6)(y − 8). (27)

Correspondingly, the pulsatile inflow profile for the nonsteady tests for which
peak systole and diastole occur for ∆t = 0.25s and ∆t = 0.75s respectively, is
prescribed as

vf (t, 0, y) = vf(0, y)(1 + 0.75sin(2πt)). (28)

The natural outflow condition at the lower left part effectively prescribes some
reference value for the pressure variable p, here p = 0. While this value could
be arbitrarily set in the incompressible case, in the case of a compressible
structure this might have influence onto the stress and consequently the de-
formation of the solid. The no-slip condition is prescribed for the fluid on
the other boundary parts, i.e. top and bottom wall, stents and fluid-structure
interface.

5.3 Numerical results

The newtonian fluid used in the tests has a density ρf = 1.035 × 10−6kg/mm3

and a kinematic viscosity νf = 3.38mm2/s which is similar to the properties
of blood. If we prescribe the inflow speed Ū = −50mm/s, this results in
a Reynolds number Re ≈ 120 based on the prescribed peak systole inflow
velocity and the width of the veins which is 2mm such that the resulting
flow is within the laminar region. Parameter values for the elastic vein in the
described model are as follows: The density of the upper elastic wall is ρs

= 1.12 × 10−6kg/mm3, solid shear modulus is µs = 42.85kg/mms2, Poisson
ratio is νp = 0.4, Young modulus is E = 120kN/mm2. As described before, the
constitutive relations used for the materials are the incompressible Newtonian
model (2) for the fluid and a hyperelastic Neo-Hooke material for the solid.
This choice includes most of the typical difficulties the numerical method has
to deal with, namely the incompressibility and significant deformations. From
a medical point of view, the use of stents provides an efficient treatment for
managing the difficult entity of intracranial aneurysms. Here, the thickness
of the aneurysm wall is attenuated and the aneurysm hemodynamics changes
significantly. Since the purpose of this device is to control the flux within the
aneurysm in order to occlude it by a clot or rupture, the resulting flow behavior
into and within the aneurysm is the main objective, particularly in view of the
different stent geometries. Therefore, we decided for the 2D studies to locate
the stents only in direct connection to the aneurysm. Comparing our studies
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with the CFD literature (see [8, 1, 29, 22, 23]), several research groups focus
on CFD simulations with realistic 3D geometries, but typically assuming rigid
walls. In contrast, we concentrate on the complex interaction between elastic
deformations and flow perturbations induced by the stents. At the moment, we
are only able to perform these simulations in 2D, however, with these studies
we should be able to analyse qualitatively the influence of geometrical details
onto the elastic material behavior, particularly in view of more complex blood
models and constitutive equations for the structure. Therefore, the aims of
our current studies can be described as follows:

(1) What is the influence of the elasticity of the walls onto the flow behav-
ior inside of the aneurysm, particularly w.r.t. the resulting shape of the
aneurysm?

(2) What is the influence of the geometrical details of the (2D) stents, that
means shape, size, position, onto the flow behavior into and inside of the
aneurysm?

(3) Do both aspects, small-scale geometrical details as well as elastic fluid-
structure interaction, have to be considered simultaneously or is one of
them negligible in first order approximation?

(4) Are modern numerical methods and corresponding CFD simulations tools
able to simulate qualitatively the multiphysics behavior of such biomed-
ical configurations?

In the following, we show some corresponding results for the described proto-
typical aneurysm geometry, first for the steady state inflow profile, followed
by nonsteady tests for the pulsatile inflow, both with rigid and elastic walls,
respectively.

5.4 Steady configurations

Due to the given inflow profile, which is not time-dependent, and due to the
low Re numbers, the flow behaviour leads to a steady state which only de-
pends on the elasticity and the shape of the stents. Moreover, for the following
simulations, we only treat the aneurysm wall as elastic structure. Then, the
aneurysm undergoes some slight deformations which can hardly be seen in the
following figures. However they result in a different volume of the flow domain
(see Fig. 10) and lead to a significantly different local flow behaviour since
the spacing between stents and elastic walls may change (see the subsequent
pictures).
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Fig. 8. Deformed mesh for steady configuration without stents, with elastic wall
(left). Mesh for rigid wall (right).

Fig. 9. Deformed mesh for steady configuration with stents: 3 stents (left) and 5
stents (right).
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Fig. 10. Resulting volume of the fluid domain for different configurations.

In the following pictures, we visualize the different flow behaviour by color-
ing due the velocity magnitude and by showing corresponding vector plots
inside of the aneurysm. Particularly the influence of the number of stents onto
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the complete fluid flow through the channel including the aneurysm can be
clearly seen. Summarizing these results for steady inflow, the simulations show
that the stent implantation across the neck of the aneurysm prevents blood
penetration into the aneurysm fundus. Moreover, the elastic geometrical de-
formation of the wall is slightly reduced by implanting the stents while the
local flow behaviour inside of the aneurysm is more significantly influenced
by the elastic properties of the outer wall, particularly due to different width
between stents and walls of the aneurysm. In the next section, we will con-
sider the more realistic behaviour of flow configurations with time-dependent
pulsatile inflow which will be analyzed for the case of elastic behaviour of the
aneurysm walls.

5.5 Pulsatile configurations

For the following pulsatile test case, we have taken again the aneurysm part
as elastic while the other parts of the walls belonging to the channel are rigid.
First of all, we show again (see Fig. 11) the resulting volume of the flow
domain for 5, 3 and no stents. In all cases, the oscillating behaviour due to the
pulsative inflow is visible which also leads to different volume sizes. Looking
carefully at the resulting flow behaviour, we see global differences w.r.t. the
channel flow near the aneurysm, namely due to the different flow rate into the
aneurysm, and significant local differences inside of the aneurysm.
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Fig. 11. Domain volume with rigid and elastic behaviour of the aneurysm wall.
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Fig. 12. Left column: no stent. Middle column: 3 stents. Right column: 5 stents.
Figures demonstrate the local behaviour of the fluid flow inside of the aneurysm
during one cycle.
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6 Summary and future developments

We presented a monolithic ALE formulation of fluid-structure interaction
problems suitable for applications with finite deformations of the structure
and laminar viscous flows, particularly arising in biomechanics. The corre-
sponding discrete nonlinear systems result from the finite element discretiza-
tion by using the high order Q2P1 FEM pair which are solved monolithically
via discrete Newton iteration and special Krylov-multigrid approaches. While
we restricted in the presented studies to the simplified case of newtonian fluids
and small deformations, the used numerical components allow the system to
be coupled with additional models of chemical and electric activation of the
active response of the biological material as well as power law models used to
describe the shear thinning property of blood. Further extension to viscoelas-
tic models and coupling with mixture based models for soft tissues together
with chemical and electric processes would allow to perform more realistic
simulations for real applications.

In this paper, we applied the presented numerical techniques to FSI bench-
marking settings (‘channel flow around cylinder with attached elastic beam’,
see [25]) which allow the validation and also evaluation of different numerical
solution approaches for fluid-structure interaction problems. Moreover, we ex-
amined prototypically the influence of endovascular stent implantation onto
aneurysm hemodynamics. The aim was, first of all, to study the influence of
the elasticity of the walls onto the flow behaviour inside of the aneurysm.
Moreover, different geometrical configurations of implanted stent structures
have been analysed in 2D. These 2D results are far from providing quanti-
tative results for such a complex multiphysics configuration, but they allow
a qualitative analysis w.r.t. both considered components, namely the elastic
behaviour of the structural parts and the multiscale flow behaviour due to
the geometrical details of the stents. We believe that such basic studies may
help towards the development of future ‘Virtual Flow Laboratories’ which
individually assist to develop personal medical tools in an individual style.
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