

Performance and Accuracy of Lattice-Boltzmann Kernels on Multi- and Manycore Architectures

Dirk Ribbrock, Markus Geveler, Dominik Göddeke, Stefan Turek

Angewandte Mathematik, Technische Universität Dortmund

May 31, 2010

1 High performance CFD simulations

- Hardware
- Software
- Implementational issues

Conclusion + Future Work

1 High performance CFD simulations

- Hardware
- Software
- Implementational issues

From serial to parallel hardware

Different levels of parallelism

- microprocessor-level (and beyond): IL, SIMD, multi-threading on a chip
- On node-level: parallel microprocessors in a compute-node
- Output clusters: parallel compute-nodes in a cluster

Multi- and many-Core architectures

- $\textbf{0} \quad \text{doubling the amount of transistors} \Rightarrow \text{doubling the amount of cores}$
- Image: multi-core-architectures have been established in the mass market
- Imany-core-architectures too (GPUs)
- ever more heterogeneities: Cell BE

technische universität

The challenge

Application programmers have to deal with...

...both, implementing specific functionality and the paradigm shift of the underlying hardware:

- high-level optimisation on the application level
- hardware-oriented implementation to exploit parallel hardware

today: focus on the method with respect to multi-level parallelism

Efficient methods for CFD

Application programmers have to deal with...

- increase in data being acquired for fast ad-hoc processing or future analysis
- applications hunger for ever larger amounts of processing and memory resources
- application design is highly interdisciplinary

The impact on CFD simulation software

- CFD becomes ubiquitous: applications in many different fields
- fast access to result data is an economic issue, software solutions must be:
 - reliable, portable, designed for testability
 - extendable, flexible
- real-time constraints become more important

Model Problem

incompressible, laminar fluids with free surfaces

Render fluid volumes at *interactive rates* for use in a 3D environment (interactive demonstrations, computer games, tsunami forecast,...)

Quality criteria

- real-time constraint
- embedded in a virtual environment
- qualitative correctness: correct behaviour
- quantitative correctness: numerical quality less important
- stability (!)

Design goals

- implementation within a building blocks library for maximum reusability
- exploit multi-level parallelism

LBM for SWE

o direct method

simulates particle propagation

using a lattice with nine

propagation directions

LBE

$$f_{\alpha}(\mathbf{x} + \mathbf{e}_{\alpha}\Delta t, t + \Delta t) = f_{\alpha}(\mathbf{x}, t) - \frac{1}{\tau}(f_{\alpha} - f_{\alpha}^{eq})$$

Implementation

but: Relying upon compilers? Dealing with hardware details? Memory wall? ...?

Framework: HONEI libraries

Primary design-goal:

Abstract from target-hardware!

Backends:

- x86 SIMD (SSE2 intrinsics)
- x86 multi-core (pthreads)
- distributed memory clusters (MPI)
- NVIDIA GPUs (CUDA 2.2) + multiple GPUs
- Cell BE (libspe2)

Packed lattice, domain decomposition

- cut domain in one dimension
- compress lattice: stationary obstacles
- store contiguously in memory
- well suited for SIMD / SIMT

1 High performance CFD simulations

- Hardware
- Software
- Implementational issues

Solver Performance Type LBM (1500² sites) MFLUPS Speedup QS22 Blade 22.36 1 Core i7 core 15 4 Core i7 cores 40 2.66 1 GTX 285 193 -2 GTX 285 348 1.80 4 CPU cores + 1 GPU217 -4 CPU cores + 2 GPUs 362 1.66

Opteron cluster, MPI, strong scalability 4 nodes, Opteron 2214

LiDO, weak scalability, n=600	
#lattices n^2 $2n^2$ $4n^2$ $8n^2$ $16n^2$	time 9.5 9.7 9.7 9.8 9.9

Real-time performance on the GPU - hardware GTX 8800, GTX 285

- Hardware
- Software
- Implementational issues

Conclusion + Future Work

Conclusion + Future Work

Lessons learned

- Advanced CFD applications can be performed in real-time on a single node with reasonable resolution
- The LBM is well suited for this kind of application: it is
 - easy to extend on the discrete level
 - in its basics, well suited for spatial parallelism
- Drawbacks:
 - presented method only first order accurate
 - always: hard to stabilise

Perspectives

- More numerical and performance comparisons with state-of-the-art SWE solvers (FD, FV)
- Large scale faster-than-real-time simulations for tsunami forecast
- Use higher order numerics for real-time simulations (FEM)

Supported by DFG, project TU 102/22-2 and BMBF, *HPC Software für skalierbare Parallelrechner: SKALB project* 01IH08003D. Thanks to IBM for access to Cell hardware.