
Prehandling and Related Hardware-Oriented Finite Element PDE
Solvers Enabling Lower Precision and Tensor Core Computations

Dustin Ruda, Stefan Turek, Dirk Ribbrock

Chair of Applied Mathematics and Numerics (LS3), TU Dortmund University

ENUMATH 2025, September 1–5, Heidelberg

September 4, 2025



Motivation – Hardware trends

Tensor Cores (TC)
■ Processing units by Nvidia specialized to accelerate

AI applications
■ Can perform dense matrix multiplications very fast
■ Examples of TC GPUs: V100 (2017), A100 (2020),

H100 (2023), B200 (2024)
Schematic representation of fused multiply-add

(D = AB + C) with 4 × 4 matrices on TC

FP64 FP64 TC FP32 FP32 TC / TF32 FP16 FP16 TC
V100 7.8 - 15.7 - 31.4 125
A100 9.7 19.5 19.5 156 78 312
H100 34 67 67 495 n/a 990
B200 n/a 40 n/a 1,100 n/a 2,250

TFlop/s peak rates (realistically achievable)

Dustin Ruda Prehandling and Related Hardware-Oriented Finite Element PDE Solvers Enabling Lower Precision and Tensor Core Computations 1/24



Motivation – Hardware trends

Rank Name Accelerator

1 El Capitan MI300A

2 Frontier MI250X

3 Aurora Intel Max GPU

4 JUPITER Booster GH200

5 Eagle H100

6 HPC6 MI250X

7 Fugaku –

8 Alps GH200

9 LUMI MI250X

10 Leonardo A100

Accelerator hardware in supercomputers
■ Technology similar to TC by AMD:

Matrix Cores (MI250X, MI300A)
■ 8 supercomputers in top 10 of TOP500

(June 2025) use Nvidia (4) or AMD (4)
accelerator hardware

Dustin Ruda Prehandling and Related Hardware-Oriented Finite Element PDE Solvers Enabling Lower Precision and Tensor Core Computations 2/24



Motivation – Sparse vs. dense

GFLOPS on A100 for sparse 5-point stencil matrix (CSR) × vector (left) and
TFLOPS for dense matrix × dense matrix (right)

Dustin Ruda Prehandling and Related Hardware-Oriented Finite Element PDE Solvers Enabling Lower Precision and Tensor Core Computations 3/24



Problem statement

■ Consider Poisson’s equation

−∆u = f on Ω ⊂ Rd, d ∈ {2, 3}

as very a common (sub-)problem and bottleneck in many (e.g. CFD) applications
■ TC GPUs have a performance potential of 100+ TFlop/s
■ But it is only achievable in lower precision (SP or HP) and for dense matrix operations

E Both contradict basic principles of standard solvers (e.g. multigrid (MG)) for finite
element (FE) simulations: Low precision might cause loss of accuracy due to high
condition numbers (O(h−2)) and FE matrices are sparse

Dustin Ruda Prehandling and Related Hardware-Oriented Finite Element PDE Solvers Enabling Lower Precision and Tensor Core Computations 4/24



Aims

■ Profitable use of lower precision TC hardware for linear systems in matrix-based FE
simulations by constructing suitable hardware oriented solvers

Two-step process:

■ Step 1: Manipulate linear system to enable SP or HP while preserving
sufficient accuracy

■ Step 2: Adapt solver by densifying operations to leverage TC
(large + sparse → small + dense)

Remark
■ Also consider many right hand sides (RHS), resp., dense matrix as RHS (AX = B)
■ Exemplary use case: Global-in-time Navier–Stokes solver → solve pressure Poisson

problem for all time steps at once

Dustin Ruda Prehandling and Related Hardware-Oriented Finite Element PDE Solvers Enabling Lower Precision and Tensor Core Computations 5/24



Basic procedure

Starting point: Sparse, ill-conditioned linear system

Prehandling to lower condition number

2D: HFEM 3D: Generating systems

Node renumbering exploiting similar cells + Schur complement(s)

(Direct method in 2D) Semi-iterative method in 2D and 3D

Dustin Ruda Prehandling and Related Hardware-Oriented Finite Element PDE Solvers Enabling Lower Precision and Tensor Core Computations 6/24



Prehandling – How to handle ill-conditioned Poisson problems

■ Error consists of discretization and computational
error: u− ũh = (u− uh) + (uh − ũh)

■ Discr. error: ∥u− uh∥ = O(hp+1)

Depends on FE space and smoothness
Here for simplicity: p = 1

■ Comp. error: ∥uh − ũh∥ ≈ cond · “data error”
Data error at least TOL of precision
Poisson: cond(Ah) = O(h−2)

■ Comp. error becomes dominant at hcrit at
intersection of both errors

■ Omit constant factors and equate

⇒ hcrit ≈ (cond · TOL)
1
2

Illustrative example of actual, discretization and

computational error

Dustin Ruda Prehandling and Related Hardware-Oriented Finite Element PDE Solvers Enabling Lower Precision and Tensor Core Computations 7/24



Prehandling – How to handle ill-conditioned Poisson problems

■ Critical mesh size: hcrit ≈ (cond · TOL)
1
2

■ Substitute cond ≈ h−2 for Poisson’s
equation ⇒ hcrit ≈ TOL

1
4

■ Example: (TOLDP)
1
4 = 2−13 ≈ 10−3.9

(TOLSP)
1
4 = 2−5.75 ≈ 10−1.7

(TOLHP)
1
4 = 2−2.5 ≈ 10−0.8

■ Wish: cond = O(1) ⇒ h ≈ TOL
1
2

→ SP (and even HP?) possible

Computational and actual L2-error for 1D example

Dustin Ruda Prehandling and Related Hardware-Oriented Finite Element PDE Solvers Enabling Lower Precision and Tensor Core Computations 8/24



The concept of prehandling of linear systems

Basic idea
■ Apply preconditioner explicitly to Ax = b

■ Equivalent system: Ãx̃ = b̃ where Ã = STAS, b̃ = STb, x = Sx̃

■ Both yield same solution in exact arithmetic, but accuracy (and iteration numbers) differ
in practice because cond(A) ̸= cond(Ã)

Central requirements for prehandling
■ cond(Ã) ≪ cond(A)

■ Ã is still sparse
■ Transformation to Ã, b̃ and x via S is fast (i.e., O(N logN))

Candidates for prehandling
■ So far two candidates fulfill all requirements: Hierarchical Finite Element Method

(HFEM, Yserentant et al., 1980s) in 2D and Generating systems (GS, Griebel et al.,
1990s) in 2D and 3D

Dustin Ruda Prehandling and Related Hardware-Oriented Finite Element PDE Solvers Enabling Lower Precision and Tensor Core Computations 9/24



Candidates for prehandling – HFEM

minimum example of hierarchical basis in 1D

■ Sequence of refined meshes starting from coarse mesh (h0) required
■ Transformation matrix S is square, Ã = STAS is symm. positive-definite and sparse

■ cond(Ã) = O
((

log 1
h

)2) (3D: O(h−1))

■ Partial Cholesky decomposition on coarse mesh to lower cond:(
Ã0 0

0 D̃

)
= LTL → L−1ÃL−T

Dustin Ruda Prehandling and Related Hardware-Oriented Finite Element PDE Solvers Enabling Lower Precision and Tensor Core Computations 10/24



Candidates for prehandling – Generating systems

minimum example of generating system in 1D

■ Also dependent on sequence of refined meshes
■ GS consists of nodal bases on all levels and thus, some mesh points are counted repeatedly
■ Transformation matrix S is rectangular, Ã = STAS is symm. pos. semi-definite (sufficient

for convergence of CG method to non-unique solution) and sparse
■ Transforming back by multiplication with S yields unique solution to original system
■ Magnification factor of problem size: 8/7 in 3D
■ Jacobi preconditioner corresponds to BPX ⇒ cond(Ã) = λmax

λmin,>0
= O(1)

Dustin Ruda Prehandling and Related Hardware-Oriented Finite Element PDE Solvers Enabling Lower Precision and Tensor Core Computations 11/24



The effect of prehandling on accuracy in 2D

L2-errors for different levels in 2D in DP, SP, HP without (dashed) and with (solid) prehandling via
HFEM for “very smooth” (left) and more oscillating (right) solution

Dustin Ruda Prehandling and Related Hardware-Oriented Finite Element PDE Solvers Enabling Lower Precision and Tensor Core Computations 12/24



Solvers taylored for Tensor Core GPUs

■ Low condition numbers by prehandling enable low precision but matrices are still sparse
■ Construct solver consisting as much as possible on multiplications with dense matrices
■ Same principle in 2D (HFEM) and 3D (GS): Subdivide nodes into:

nodes in the interior of the coarse mesh cells (cell by cell in same order)
“all remaining nodes” containing those on coarse mesh edges (+ repeated nodes of GS)

■ Matrix form:(
A1 B

BT C

)(
u
v

)
=

(
b1
b2

)
■ C decomposes into

independent blocks Ci

■ Blocks are equal if
corresponding to similar
cells

■ Only C grows like N
(= #Dof)

Dustin Ruda Prehandling and Related Hardware-Oriented Finite Element PDE Solvers Enabling Lower Precision and Tensor Core Computations 13/24



Solvers taylored for Tensor Core GPUs

■ Applying Schur Complement to
(
A1 B
BT C

)(
u
v

)
=

(
b1
b2

)
yields

Semi-iterative Method

(
A1 −BC−1BT

)︸ ︷︷ ︸
Â

u = b1 −BC−1b2 (with CG)

v = C−1
(
b2 −BTu

)
■ Â can be computed explicitly (2D) or used implicitly (better option in 3D)
■ Robust with respect to anisotropic meshes with high aspect ratios (moderate increase of

iteration numbers)
■ In special cases: Structure of Â allows further Schur complement yielding the direct

method with high memory usage, but highly performant (up to 60 TFlop/s)
(Ruda, D. et al., Very fast finite element Poisson solvers on lower precision accelerator hardware: A proof
of concept study for Nvidia Tesla V100, IJHPCA, 2022)

Dustin Ruda Prehandling and Related Hardware-Oriented Finite Element PDE Solvers Enabling Lower Precision and Tensor Core Computations 14/24



How to treat multiplications with C−1

■ Only Ci need to be inverted (once for each group of similar macro cells)
−→ C−1 block diagonal matrix with dense blocks C−1

i

■ Ci are small, well-conditioned HFEM matrices, O(N) storage for C−1
i

■ Efficient implementation by simultaneous computation

■ Complexity O
(
N 3/2

)
but very fast calculation by TC almost at peak performance

Dustin Ruda Prehandling and Related Hardware-Oriented Finite Element PDE Solvers Enabling Lower Precision and Tensor Core Computations 15/24



Storage requirement of the semi-iterative method

■ Exemplary toy problem: Poisson’s equation on unit square/cube, equidistant Q1 mesh,
variable coarse mesh size h0

■ Relevant for storage: C−1
i , B and Â in 2D / A1 in 3D

2D: HFEM
1
h

N
106

1
h0

Â C−1
i B total

1024 1.05
16 15 15.1 1.0 31
32 25 0.9 1.6 27

2048 4.19
32 19 3.8 1.0 24
64 40 0.2 1.6 42

4096 16.77
32 16 15.5 0.7 32
64 27 0.9 1.0 29

3D: Generating Systems
1
h

N
106

1
h0

A1 C−1
i B total

128 2.05
4 11.3 433.3 15.4 460
8 22,1 5.6 16.6 44
16 37.1 0.1 15.3 52

256 16.58
8 14.2 53.5 16.5 84
16 24.9 0.7 17.7 43
32 39.5 0.01 16.4 56

Number of nonzero entries relative to N

■ Moderate storage requirement for appropriate choice of h0 compared to 9N in 2D / 27N
in 3D with standard FEM (in DP)

■ Explicit Â in 3D: 400N − 1, 400N −→ implicit variant preferred
Dustin Ruda Prehandling and Related Hardware-Oriented Finite Element PDE Solvers Enabling Lower Precision and Tensor Core Computations 16/24



Complexity and performance estimate

Semi-iterative Method

(
A1 −BC−1BT

)︸ ︷︷ ︸
Â

u = b1 −BC−1b2

v = C−1
(
b2 −BTu

)

■ Composition of the method:
1×B, 1× C−1 to compute RHS
Iterative step: 1× Â (explicit or implicit)
+ 2 dot products + 3 axpy per iteration
Intermediate step: 1×BT

Direct Step: 1× C−1

■ Entire method in SP/TF32 on TC GPU
■ Majority of the work: Dense matrix operations; Small part: sparse × dense and BLAS1
■ Matrix properties, iteration numbers and benchmark results on A100 (H100) in SP for all

occuring operations (given many RHS) −→ performance model
■ Metric beyond Flop/s for comparability: millions of unknowns solved per second (MDof/s)

Dustin Ruda Prehandling and Related Hardware-Oriented Finite Element PDE Solvers Enabling Lower Precision and Tensor Core Computations 17/24



Performance estimate

2D:

1
h

1
h0

#iter cond(Ci) total Flop
N

share dense GFlop/s MDof/s

1024
16 30 24 16,400 94.4% 27,400 1,670
32 24 17 4,900 75.4% 6,700 1,360

2048
32 28 24 16,600 93.5% 21,600 1,300
64 23 17 5,600 66.4% 4,100 730

4096
32 31 32 64,700 98.4% 58,700 910
64 25 24 16,900 91.9% 15,600 920

3D:

1
h

1
h0

#iter cond(Ci) total Flop
N

share dense GFlop/s MDof/s

128
4 8 54 555,300 99.9% 110,400 200
8 11 23 75,400 98.3% 50,800 670
16 18 9 12,500 79.3% 6,500 520

256
8 11 54 713,700 99.8% 107,500 150
16 18 23 114,900 98.0% 47,400 410
32 35 9 23,400 77.3% 6,100 260

■ Comparative result with optimized MG in C++-based FE software package (FEAT3) on
AMD CPU in DP: ≤ 15 MDof/s

Dustin Ruda Prehandling and Related Hardware-Oriented Finite Element PDE Solvers Enabling Lower Precision and Tensor Core Computations 18/24



Results on H100

■ Results on H100 GPU1 (≈ 3×peak rates of A100 in SP with TC)
■ Speedup 1.3–1.9 for sparse×dense and 1.5–3.5 for dense×dense compared to A100
■ Comparison of MDof/s:

2D
1
h

1
h0

A100 H100

1024
16 1,670 2,860
32 1,360 2,430

2048
32 1,300 2,220
64 730 1,180

4096
32 910 2,020
64 920 1,540

3D
1
h

1
h0

A100 H100

128
4 200 480
8 670 1,160
16 520 840

256
8 150 440
16 410 680
32 260 400

■ Typical hardware oriented approach: “optimal” configuration depends on
problem(size) and hardware

1Kindly provided for use on JURECA by Forschungszentrum Jülich
https://www.fz-juelich.de/en/ias/jsc/systems/supercomputers/jureca

Dustin Ruda Prehandling and Related Hardware-Oriented Finite Element PDE Solvers Enabling Lower Precision and Tensor Core Computations 19/24

https://www.fz-juelich.de/en/ias/jsc/systems/supercomputers/jureca


Prehandling for convection-diffusion

■ So far: Poisson’s equation; in general similar results for self-adjoint, positive definite,
elliptic, linear, second order PDEs (proven)

■ Study generating systems for stationary convection-diffusion problem numerically (in
spite of lack of proof for cond(Ã) ≪ cond(A))

−ε∆u+ b · ∇u = f on Ω ⊂ R2, diffusion coefficient ε > 0, convection field b : R2 → R2

■ Vortical convection b(x, y) = (1/2 − y, x− 1/2)T moderate (ε ≥ 10−2) so that standard FE
discetization is stable

■ Consider GMRES preconditioned by Jacobi, Gauss–Seidel (GS), symmetric GS (SGS) and
compare matrix density, iteration numbers and accuracy for standard FEM vs. generating
systems

Dustin Ruda Prehandling and Related Hardware-Oriented Finite Element PDE Solvers Enabling Lower Precision and Tensor Core Computations 20/24



Prehandling for convection-diffusion: iteration numbers

plain/Jacobi GS SGS1
h

1
h0

NNZ
N ε = 1 10−1 10−2 1 10−1 10−2 1 10−1 10−2

512

FEM 9 629 678 1,010 728 850 1,797 260 279 527
2 87 19 19 31 11 11 19 6 6 9
4 84 20 21 32 11 11 19 6 6 10
8 78 22 23 36 14 14 20 8 8 10

1024

FEM 9 1,259 1,356 2,018 1,462 1,657 3,694 516 556 1,031
2 98 20 20 32 11 11 19 6 6 9
4 95 21 22 34 11 11 19 6 6 10
8 89 24 24 37 14 14 20 8 8 10

2048

FEM 9 2,517 2,712 4,034 2,861 3,182 7,397 1,031 1,111 2,050
2 109 21 21 34 11 11 19 6 6 10
4 106 23 23 36 11 11 20 6 6 10
8 100 25 26 38 14 15 20 8 9 10

■ Bottom line: Prehandling via generating systems works for moderate convection (Step 1 ✓)
■ Perfomance gain by low precision and sparse × dense (Step 2 more challenging)

Dustin Ruda Prehandling and Related Hardware-Oriented Finite Element PDE Solvers Enabling Lower Precision and Tensor Core Computations 21/24



Prehandling for convection-diffusion: accuracy

Dustin Ruda Prehandling and Related Hardware-Oriented Finite Element PDE Solvers Enabling Lower Precision and Tensor Core Computations 22/24



Conclusion and outlook

Conclusion
■ It is possible to exploit Lower-Precision and also Accelerator Hardware for PDE computing

by prehandling and a related semi-iterative approach

Outlook
■ Deeper analysis of suitable preconditioners for the iterative step and initial guesses for the

solution vector to reduce number of iterations
■ Investigate the feasibility of transforming different matrices Ci into one

Dustin Ruda Prehandling and Related Hardware-Oriented Finite Element PDE Solvers Enabling Lower Precision and Tensor Core Computations 23/24



References

Literature
■ Ruda, D., Turek, S. & Ribbrock, D. (2025). Fast Semi-Iterative Finite Element Poisson Solvers for Tensor Core

GPUs Based on Prehandling. Sequeira, A. et al., Lecture Notes in Computational Science and Engineering, 154,
320–330, Numerical Mathematics and Advanced Applications Enumath 2023, Vol 2., Springer,

DOI: 10.1007/978-3-031-86169-7_33
■ Ruda, D., Turek, S., Zajac, P. & Ribbrock, D. (2022). Very fast finite element Poisson solvers on lower precision

accelerator hardware: A proof of concept study for Nvidia Tesla V100, International Journal of High Performance
Computing Applications 36(4), pp.459–474,

DOI: 10.1177/10943420221084657
■ Ruda, D., Turek, S., Zajac, P. & Ribbrock, D. (2020). The Concept of Prehandling as Direct Preconditioning for

Poisson-like Problems. Vermolen, F., Vuik, C., Lecture Notes in Computational Science and Engineering, 139,
1011-1019, Numerical Mathematics and Advanced Applications Enumath 2019, Springer,

DOI: 10.1007/978-3-030-55874-1_100
■ Yserentant, H. (1986). On the Multi-Level Splitting of Finite Element Spaces. Numer. Math., Vol. 49, pp. 379–412,

DOI: 10.1007/BF01389538
■ Griebel, M. (1994). Multilevelmethoden als Iterationsverfahren über Erzeugendensystemen. Teubner Skripten zur

Numerik.

DOI: 10.1007/978-3-322-89224-9

Figures
■ p.1: https://developer.nvidia.com/blog/tensor-core-ai-performance-milestones/

■ pp. 6, 12: Ruda et al. (2022), IJHPCA 36(4) (see above)
Dustin Ruda Prehandling and Related Hardware-Oriented Finite Element PDE Solvers Enabling Lower Precision and Tensor Core Computations 24/24

https://developer.nvidia.com/blog/tensor-core-ai-performance-milestones/

	Motivation
	Prehandling
	References
	Backup

