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Introduction

Motivation
Prec. | double double + TC | single single + TC | half half + TC
V100 7.8 - 15.7 - 31.4 125
A100 9.7 19.5 19.5 156 - 312
H100 30 60 60 500 120 1,000

TFlop/s peak rates for NVIDIA V100 (2017), A100 (2020) and H100 (Q3 2022)
(similar: AMD Matrix Core)

100+ TFlop/s only achievable in lower precision by Tensor Cores (TC)

Peak rates only achievable with dense matrix operations

Aim: Profitable use of this hardware for linear systems in FE simulations (CFD)
Consider Poisson’s equation: Global-in-time Navier—Stokes solver allows for solving
Pressure Poisson problems for all time steps at once — many right hand sides (RHS)
4 Standard FEM solvers (MG) require double precision (DP) and include large, sparse
matrices — Prehandling and new Schur complement-based methods



Prehandling Problems with Lower Precision Hardware

How to handle ill-conditioned Poisson-like Problems

e Split the error:
u—up=(u—up)+ (up — Un)
® Discr. Error:
lu — upl| = O (hP+1)
- depending on FEM space and
smoothness
- Here for simplicity: p=1
e Comp. Error:
|lup — Up|| = cond - "data error”
- Data error at least TOL of respective

precision
- Poisson: cond (As) = O (h?)

error

— (relative) error
——computational error
---discretization error

I I I I
10 10? 10* 10" 10°
h71

Source: Ruda et al, 2022

e Critical h at intersection of both errors: Discr. Error = Comp. Error = h ~ (cond - TOL)%
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Prehandling Problems with Lower Precision Hardware

How to handle ill-conditioned Poisson-like Problems

e Critical grid width: h =~ (cond - TOL)% B0 E o E
® Poisson —Au = f: Substitute1 B2 E E
cond =0 (h_2) = h~ TOL:= 1E-4 o J
1 - N 7
® 1D example: (TOLgp)4 = 2727 1E6 - é
1 E —T T 3
(TOLpp)* =271 18 L
* Wish: cond = O(1) = h~ TOL2 o L = ]
— SP (and even HP?) possible g 3
1E-12 L quad precision J
E double precision 3
1E-14 single precision o

M N S

|
234567 8 91011121314151617181920212223
L2-error with standard FEM in 1D, h = 2~ 'evel
Source: Ruda et al., 2022
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Problems with Lover Precision Hardare
Concept of Prehandling of Linear Systems

Preconditioning: xktl = xk — c-1 (Axk - b)
Prehandling:  xk+! = xk — (C—lek - C—lb) = xk — (Z\xk - E)

® Yields same solution (if converged and with “infinite precision”) and same iteration
numbers, but cond(A) < cond (A) since different linear systems
e Central idea: Explicitly transforming Ax = b into equivalent AX = b, BX = x with:
1) cond (74) < cond(A)

2) A only moderately less sparse than A
3) Tranformation to A, b (resp. x via B) fast (i.e. O (Nlog N))
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=N
HFEM: ldeas, Realization & Properties

® Only candidate for prehandling so far: HFEM

® |dea: Use of hierarchical instead of nodal basis starting
from a coarse grid

® Transform linear system A= STAS, b= STh, x = Sx

nodal (1) and hier. (r) basis
Source: Deuflhard et al., 1989

* cond (A) =0 ((log i)z) in 1D, 2D; FEM: cond(4) = O ((;)2>

e Add. partial Cholesky prehandling: (i‘)‘) %) =Tl [7TALT

® Remark: in 3D cond (2\) =0 (% log %) resp. O (%) — Possible in SP



Prehandling HFEM

HFEM: Numerical results (errors)

T T
—— double precision
single precision
half precision

T T
—— double precision;
— single precision
— half precision

8 9 10 1 2

L2-errors for different levels in 2D in DP, SP, HP without (left) and with (right) prehandling via HFEM
for “smooth” solution. Source: Ruda et al., 2020
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Prehandling HFEM

1E+3

1E+2 =

1E+1

1E+0

1E-1

® Fine h for tolerance of ~ 1% for complex
problems
— large problems
— requires HPC

1E-2

1E-3

double precision

half precision (Standard)

half precision (HFEM)

1E-5 | | | | | | | |
1 2 3 4 5 6 7 8 9 10

1 %-errors for different levels in 2D in DP, SP, HP
without and with prehandling via HFEM for
strongly oscillating solution
Source: Ruda et al., 2022
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Direct SC Methods Idea

® Objective: Construct solver consisting as much as possible on multiplications with dense,

well-conditioned matrices

® Starting Point: Linear system after prehandling via HFEM+Cholesky Ax = b

® Subdivide nodes into 3 types (C, £, Z) and renumber

O coarse grid nodes
e interior nodes of macro elements
x nodes on macro edges

Source: Ruda et al., 2022

wof L

200 F

% 3y
2
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Source: Ruda et al., 2022
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Direct SC Methods Idea

I B 0\ [x be
B" E D||xe|=|be
0 DT C) \x bz

® D, E are sparse
® B is moderately dense

® C decomposes into independent blocks (as many
as macro cells)

0 50 100 150 200

Source: Ruda et al., 2022

® Blocks C; of C are equal if they correspond to similar macro cells
e Only C grows like N (= #Dof)
® Applying Schur complement — semi-iterative method
e Applying further Schur complement — completely direct method
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Direct SC Methods Idea

Semi-iterative Method Direct Method

A=E—-DC DT AN=E—-DC DT

Use conjugate gradient method to solve NM=A-B"B

( / B) <XC> B ( be > xe =M1 (bg —BThe — DC*lbI)
T = -1
BT A)\xe) = \be— DC1b; o — bo— Bre
.
xr=C 1 (br—D"x¢
xg = C! (bI - DTXg) ( )

v

Matrices X, A, N, C well-cond. (5-50 on unit square with Q1)
Block structure of C: Only C; ' computed and stored

Semi-iterative: Less storage consuming

Direct: More storage consuming but even higher potential for TC, especially in case of
many RHS



Direct SC Methods Idea

Multiplication with C~!

¢ Both methods require 2 multiplications with C~1

e Efficient implementation by transforming into dense matrix product (also if #RHS = 1):

® Complexity O (N%) but fast calculation by TC

Very Fast FEM Poisson Solvers
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Direct SC Methods Idea

Storage and Computational Cost of the Direct Method

e Consider equidistantly refined unit square, Q1

Direct Method

A=E—-DC™ DT, N=A-B"B

® Let hO = 2€\/E, E =..., —1, 0, ]., 2, e e = n-1 (bg _ BTbC _ DCilbI)
® Relevant for storage: N1, ;! xe = b — Bre
® Relevant for FLOP: N~1, C1(2x) xz = €71 (b — D'xe)
p_ 1 / 1 0 1 2 3
- 1024" | Total NNZ/N | 16,400 14,100 1,000 500 4,200
l -1 0 1 2 3
#FLOP/N°? | 33 12 18 65 256

e Best choice in terms of complexity: hg = vVh (or £ =1 considering storage)

o ~ 12N*? — 12,000 (SC) vs. 1,000 FLOP (MG) for h = 1055

Very Fast FEM Poisson Solvers
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(=] R
Direct Method: Unit Square on A100

Unit Square A100
Unit Square A100 100,000

100,000

10,000
10,000

1,000
1,000
B many RHS

MDof/s

= many RHS
mone RHS

GFlop/s

mone RHS 100
100

25% 512 1024

256 512 1024 256 512 1024 256 512 1024 256

GFLOP/s (left) and MDof/s (right) with direct method on A100 with one and many RHS depending
on h=! in DP, SP and HP (left, middle and right 3 columns, respectively)

— Up to 60 TFlop/s (for problems with many RHS)
— More arithmetic work (x12), but still much faster than standard MG solver on x64 AMD
CPU (8 MDof/s for many rhs)
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Direct SC Methods Numerical Results

Unstructured Coarse Grids

So far: Analysis and numerical tests on unit square

¢ Direct method also applicable to “arbitrary” P1

grids

advantageous — few different C;

Example “flow around a square”

- 3 Groups of similar cells — Cl_l7 Cz_l, C3_1 must be

calculated and stored

Coarse grids with many similar cells are

Very Fast FEM Poisson Solvers

L (Lo) | #Fop NNz
N N3 N
6 (1) 10.5 410
56,896
! (2) 10.9 1,750
228,480
8 (2) 11.6 1,810
915,712
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(=] R
Direct Method: Flow around a Square on A100

Flow around Square A100

Flow around Square A100 100,000

100,000
10,000
10,000
1,000
= many RHS
mone RHS 100
10
39.9
225 | 201 208 J§ 190
6 7 8 6 7

1,000

MDof/s

GFlop/s

100

1

W many RHS
Mone RHS
61.8
294 fl 27.2
6 7 8

GFLOP/s (left) and MDof/s (right) with direct method on A100 with one and many RHS depending
on h=! in DP, SP and HP (left, middle and right 3 columns, respectively)
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Numerical Results
Limitations of the Direct Method

High storage requirement of O (N%) due to N1

Limit of fine grid width in our tests: h = 55, (on one GPU)

Hardly applicable to 3D because storage requirement of O (N%)

Requirement for simple form of the direct method: No coupling between nodes in C and 7
(coarse grid and interior nodes)

- Rectangular Q1 grids

- “arbitrary” P1 grids

¢ Less memory consuming, more versatile but also less performant variant:
Semi-iterative method



Semi-iterative Method

Semi-iterative Method: Storage Requirement

N -1
% W hlo z Ci D tOtaI Semi-iterative Method

16|15 151 10| 31 —E_pc-lpT

1024 1 05 32 25 09 1 6 27 /L\Jse cinjugDafe grgiient method to solve
32119 38 10| 24 I B\ (x) _ b

2008 419 o4 la0 02 16/ 42 (o D))
3216 155 07| 32 ) o7

4096 16.77 xz =7V (bg — D'x
6427 09 10| 29 ( )

Number of nonzero entries relative to N

e Storage requirement: 30N — 40N in SP (in comparison: 9N with standard FEM in DP)



Semi-iterative Method

Semi-iterative Method: Performance Estimate

¢ Basic composition of the method:
- 1xDand1x C!to compute RHS

Semi-iterative Method

A=E—DC™IDT

- lterative Step: 1x Z, 3 AXPY Use conjugate gradient method to solve
and 2 dot products per iteration
— #iter 2NNZ(X) + 6#rows + 44 rows, (B’T f) (Xc) - (b be . )
xe e — 'z
#rows = O (N%) ~—
x

- Intermediate step: 1 x DT sz = € (bg = DTxe)
- Direct step: 1 x C~! )

® Entire method in SP on A100
® Majority of the work: Dense matrix operations; Small part: sparse x dense and BLAS1




Semi-iterative Method

Semi-iterative Method: Performance Estimate

2 xdense AXPY dot product | dense x dense | D x dense
2,375 227 321 150,000 1,200
GFlop/s in benchmarks on A100 in SP

} 7 | #iter | FLOP/Nit. FLOP/N dir. | time it+dir. GFLOP/s MDof/s
1004 16 | 30 913 15,400 0.43 4+ 0.11 31,445 1,926
32| 24 1,217 3,615 0.60 + 0.03 8,206 1,698

2048 32| 28 1,085 15,400 2.04 + 043 27,919 1,694
64 | 23 1,881 3,611 3.53 + 0.10 6,333 1,153

4096 32| 31 1,011 63,543 7.43 +7.10 74,476 1,154
64 | 25 1,374 15,391 10.17 +1.72 23,636 1,410

Performance estimate

Very Fast FEM Poisson Solvers
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Semi-iterative Method

Semi-iterative Method: Accuracy

107! T T T T T
———DP n=10
———SP n=10

1072 ¢

1074 L

llerrls

1070 L 4

10-7 . . I . .
128 256 512 1024 2048 4096

ht

Relative error with semi-iterative method in DP and SP for differently smooth solutions
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Semi-iterative Method

Comparison: MG — semi-iterative — direct

100,000
12,012
10,000 5,716
2,047 1,926 1,694
1,154
1,000
% W x64 MG DP
o n i
s A100 semi SP
100 B A100 direct HP
10 8 8 8 8
1
512 1024 2048 4096

Comparison of MDof/s for many RHS with MG in DP on AMD CPU, direct method in HP on A100
and semi-iterative in SP on A100 (estimate)

Very Fast FEM Poisson Solvers
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Outlook and Conclusion

Outlook and Conclusion

® Implementation of the semi-iterative method on GPU
® Prehandling in 3D

e Analysis of suitable preconditioners for the iterative step and initial guesses for the solution
vector to reduce number of iterations

® Testing semi-iterative Method for other FE spaces and in 3D
® Implementation into FEATFLOW software

® Conclusion: It is possible to exploit Lower-Precision Accelerator Hardware for
PDE computing (under certain conditions)
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