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Introduction

Motivation

Prec. double double + TC single single + TC half half + TC
V100 7.8 - 15.7 - 31.4 125
A100 9.7 19.5 19.5 156 - 312
H100 30 60 60 500 120 1,000

TFlop/s peak rates for NVIDIA V100 (2017), A100 (2020) and H100 (Q3 2022)
(similar: AMD Matrix Core)

• 100+ TFlop/s only achievable in lower precision by Tensor Cores (TC)
• Peak rates only achievable with dense matrix operations
• Aim: Profitable use of this hardware for linear systems in FE simulations (CFD)
• Consider Poisson’s equation: Global-in-time Navier–Stokes solver allows for solving

Pressure Poisson problems for all time steps at once → many right hand sides (RHS)
 Standard FEM solvers (MG) require double precision (DP) and include large, sparse

matrices → Prehandling and new Schur complement-based methods
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Prehandling Problems with Lower Precision Hardware

How to handle ill-conditioned Poisson-like Problems

• Split the error:
u − ũh = (u − uh) + (uh − ũh)
• Discr. Error:

‖u − uh‖ = O
(
hp+1)

- depending on FEM space and
smoothness

- Here for simplicity: p = 1
• Comp. Error:
‖uh − ũh‖ ≈ cond · “data error”

- Data error at least TOL of respective
precision

- Poisson: cond (Ah) = O
(
h−2) Source: Ruda et al, 2022

• Critical h at intersection of both errors: Discr. Error ≈ Comp. Error ⇒ h ≈ (cond · TOL)
1
2
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Prehandling Problems with Lower Precision Hardware

How to handle ill-conditioned Poisson-like Problems

• Critical grid width: h ≈ (cond · TOL)
1
2

• Poisson −∆u = f : Substitute
cond = O

(
h−2

)
⇒ h ≈ TOL

1
4

• 1D example: (TOLSP)
1
4 = 2−5.75

(TOLDP)
1
4 = 2−13

• Wish: cond = O(1)⇒ h ≈ TOL
1
2

→ SP (and even HP?) possible

L2-error with standard FEM in 1D, h = 2−level

Source: Ruda et al., 2022
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Prehandling Problems with Lower Precision Hardware

Concept of Prehandling of Linear Systems

Preconditioning: xk+1 = xk − C−1
(
Axk − b

)
Prehandling: xk+1 = xk −

(
C−1Axk − C−1b

)
= xk −

(
Ãxk − b̃

)
• Yields same solution (if converged and with “infinite precision”) and same iteration
numbers, but cond(A) ≶ cond

(
Ã
)
since different linear systems

• Central idea: Explicitly transforming Ax = b into equivalent Ãx̃ = b̃, Bx̃ = x with:
1) cond

(
Ã
)
� cond(A)

2) Ã only moderately less sparse than A
3) Tranformation to Ã, b̃ (resp. x via B) fast (i.e. O (N log N))
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Prehandling HFEM

HFEM: Ideas, Realization & Properties

• Only candidate for prehandling so far: HFEM
• Idea: Use of hierarchical instead of nodal basis starting

from a coarse grid
• Transform linear system Ã = STAS, b̃ = STb, x = Sx̃ nodal (l) and hier. (r) basis

Source: Deuflhard et al., 1989

• cond
(
Ã
)

= O
((

log 1
h

)2)
in 1D, 2D; FEM: cond(A) = O

((
1
h

)2)
• Add. partial Cholesky prehandling:

(
Ã0 0
0 D̃

)
= LTL→ L−1ÃL−T

• Remark: in 3D cond
(
Ã
)

= O
(
1
h log 1

h

)
resp. O

(
1
h

)
→ Possible in SP
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Prehandling HFEM

HFEM: Numerical results (errors)
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L2-errors for different levels in 2D in DP, SP, HP without (left) and with (right) prehandling via HFEM
for “smooth” solution. Source: Ruda et al., 2020
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Prehandling HFEM
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L2-errors for different levels in 2D in DP, SP, HP
without and with prehandling via HFEM for

strongly oscillating solution
Source: Ruda et al., 2022

• Fine h for tolerance of ≈ 1% for complex
problems
→ large problems
→ requires HPC
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Direct SC Methods Idea

• Objective: Construct solver consisting as much as possible on multiplications with dense,
well-conditioned matrices
• Starting Point: Linear system after prehandling via HFEM+Cholesky Ax = b
• Subdivide nodes into 3 types (C, E , I) and renumber A accordingly

Source: Ruda et al., 2022 Source: Ruda et al., 2022
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Direct SC Methods Idea

 I B 0
BT E D
0 DT C


xC

xE
xI

 =

bC
bE
bI


• D, E are sparse
• B is moderately dense
• C decomposes into independent blocks (as many

as macro cells)

Source: Ruda et al., 2022

• Blocks Ci of C are equal if they correspond to similar macro cells
• Only C grows like N (= #Dof)
• Applying Schur complement → semi-iterative method
• Applying further Schur complement → completely direct method
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Direct SC Methods Idea

Semi-iterative Method
Λ = E − DC−1DT

Use conjugate gradient method to solve(
I B

BT Λ

)
︸ ︷︷ ︸

Σ

(
xC
xE

)
=
(

bC
bE − DC−1bI

)

xI = C−1
(
bI − DTxE

)

Direct Method
Λ = E − DC−1DT

Π = Λ− BTB

xE = Π−1
(
bE − BTbC − DC−1bI

)
xC = bC − BxE
xI = C−1

(
bI − DTxE

)
• Matrices Σ, Λ, Π, C well-cond. (5–50 on unit square with Q1)
• Block structure of C: Only C−1i computed and stored
• Semi-iterative: Less storage consuming
• Direct: More storage consuming but even higher potential for TC, especially in case of
many RHS
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Direct SC Methods Idea

Multiplication with C−1

• Both methods require 2 multiplications with C−1

• Efficient implementation by transforming into dense matrix product (also if #RHS = 1):

−→

• Complexity O
(
N 3

2
)
but fast calculation by TC
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Direct SC Methods Idea

Storage and Computational Cost of the Direct Method

• Consider equidistantly refined unit square, Q1
• Let h0 = 2`

√
h, ` = . . . ,−1, 0, 1, 2, . . .

• Relevant for storage: Π−1, C−1i
• Relevant for FLOP: Π−1, C−1(2×)

Direct Method

Λ = E − DC−1DT, Π = Λ − BTB

xE = Π−1
(

bE − BTbC − DC−1bI
)

xC = bC − BxE

xI = C−1
(

bI − DTxE
)

h = 1
1024 :

` -1 0 1 2 3
Total NNZ/N 16,400 14,100 1,000 500 4,200

` -1 0 1 2 3
#FLOP/N3/2 33 12 18 65 256

• Best choice in terms of complexity: h0 =
√

h (or ` = 1 considering storage)
• ≈ 12N3/2 → 12,000 (SC) vs. 1,000 FLOP (MG) for h = 1

1024
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Direct SC Methods Numerical Results

Direct Method: Unit Square on A100
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GFLOP/s (left) and MDof/s (right) with direct method on A100 with one and many RHS depending
on h−1 in DP, SP and HP (left, middle and right 3 columns, respectively)
→ Up to 60 TFlop/s (for problems with many RHS)
→ More arithmetic work (×12), but still much faster than standard MG solver on x64 AMD

CPU (8 MDof/s for many rhs)
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Direct SC Methods Numerical Results

Unstructured Coarse Grids

• So far: Analysis and numerical tests on unit square
• Direct method also applicable to “arbitrary” P1

grids
• Coarse grids with many similar cells are
advantageous → few different Ci
• Example “flow around a square”

- 3 Groups of similar cells → C−1
1 , C−1

2 , C−1
3 must be

calculated and stored

L (L0)
N

#FLOP
N

3
2

NNZ
N

6 (1)
56,896

10.5 410

7 (2)
228,480

10.9 1,750

8 (2)
915,712

11.6 1,810
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Direct SC Methods Numerical Results

Direct Method: Flow around a Square on A100
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GFLOP/s (left) and MDof/s (right) with direct method on A100 with one and many RHS depending
on h−1 in DP, SP and HP (left, middle and right 3 columns, respectively)
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Direct SC Methods Numerical Results

Limitations of the Direct Method

• High storage requirement of O
(
N 3

2
)
due to Π−1

• Limit of fine grid width in our tests: h = 1
1024 (on one GPU)

• Hardly applicable to 3D because storage requirement of O
(
N 5

3
)

• Requirement for simple form of the direct method: No coupling between nodes in C and I
(coarse grid and interior nodes)

- Rectangular Q1 grids
- “arbitrary” P1 grids

• Less memory consuming, more versatile but also less performant variant:
Semi-iterative method
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Semi-iterative Method

Semi-iterative Method: Storage Requirement

1
h

N
106

1
h0 Σ C−1i D total

1024 1.05 16 15 15.1 1.0 31
32 25 0.9 1.6 27

2048 4.19 32 19 3.8 1.0 24
64 40 0.2 1.6 42

4096 16.77 32 16 15.5 0.7 32
64 27 0.9 1.0 29

Number of nonzero entries relative to N

Semi-iterative Method

Λ = E − DC−1DT

Use conjugate gradient method to solve(
I B

BT Λ

)
︸ ︷︷ ︸

Σ

(
xC
xE

)
=
(

bC
bE − DC−1bI

)
xI = C−1

(
bI − DTxE

)

• Storage requirement: 30N − 40N in SP (in comparison: 9N with standard FEM in DP)
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Semi-iterative Method

Semi-iterative Method: Performance Estimate

• Basic composition of the method:
- 1× D and 1× C−1 to compute RHS
- Iterative step: 1× Σ, 3 AXPY
and 2 dot products per iteration
→ #iter [2NNZ(Σ) + 6#rows + 4#rows],
#rows = O

(
N 3

4

)
- Intermediate step: 1× DT

- Direct step: 1× C−1

Semi-iterative Method

Λ = E − DC−1DT

Use conjugate gradient method to solve(
I B

BT Λ

)
︸ ︷︷ ︸

Σ

(
xC
xE

)
=
(

bC
bE − DC−1bI

)
xI = C−1

(
bI − DTxE

)
• Entire method in SP on A100
• Majority of the work: Dense matrix operations; Small part: sparse× dense and BLAS1
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Semi-iterative Method

Semi-iterative Method: Performance Estimate

Σ ∗ dense AXPY dot product dense ∗ dense D ∗ dense
2,375 227 321 150,000 1,200

GFlop/s in benchmarks on A100 in SP

1
h

1
h0 #iter FLOP/N it. FLOP/N dir. time it.+dir. GFLOP/s MDof/s

1024 16 30 913 15,400 0.43 + 0.11 31,445 1,926
32 24 1,217 3,615 0.60 + 0.03 8,206 1,698

2048 32 28 1,085 15,400 2.04 + 0.43 27,919 1,694
64 23 1,881 3,611 3.53 + 0.10 6,333 1,153

4096 32 31 1,011 63,543 7.43 + 7.10 74,476 1,154
64 25 1,374 15,391 10.17 + 1.72 23,636 1,410

Performance estimate
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Semi-iterative Method

Semi-iterative Method: Accuracy

Relative error with semi-iterative method in DP and SP for differently smooth solutions

Dustin Ruda Very Fast FEM Poisson Solvers 8 June 2022 21 / 24



Semi-iterative Method

Comparison: MG – semi-iterative – direct
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Comparison of MDof/s for many RHS with MG in DP on AMD CPU, direct method in HP on A100
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Outlook and Conclusion

Outlook and Conclusion

• Implementation of the semi-iterative method on GPU
• Prehandling in 3D
• Analysis of suitable preconditioners for the iterative step and initial guesses for the solution
vector to reduce number of iterations
• Testing semi-iterative Method for other FE spaces and in 3D
• Implementation into FEATFLOW software

• Conclusion: It is possible to exploit Lower-Precision Accelerator Hardware for
PDE computing (under certain conditions)
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