
Fast semi-iterative finite element Poisson solvers
for Tensor Core GPUs

Dustin Ruda, Stefan Turek, Dirk Ribbrock, Peter Zajac

Chair of Applied Mathematics and Numerics (LS3), TU Dortmund University

LS3 Oberseminar

July 17, 2023

Motivation
Tensor Cores (TC)

Processing units by Nvidia specialized to accelerate
AI applications
Can perform matrix multiplications very fast
Examples of TC GPUs: V100 (2017), A100 (2020),
H100 (2023)
Comparison: Fujitsu A64FX CPU (powering
Fugaku)

Schematic representation of fused multiply-add

(D = AB + C) with 4 × 4 matrices on TC

FP64 FP64 TC FP32 FP32 TC FP16 FP16 TC
V100 7.8 - 15.7 - 31.4 125
A100 9.7 19.5 19.5 156 78 312
H100 34 67 67 495 n/a 990

A64FX 3.4 - 6.8 - 13.5 -

TFlop/s peak rates (realistically achievable)

Dustin Ruda Fast semi-iterative finite element Poisson solvers for Tensor Core GPUs 1/29

Motivation

Similar technology by AMD: Matrix
Cores
Example AMD Instinct MI250X (2021);
Peak rates:

FP64: 95.7 TFlop/s
FP32: 95.7 TFlop/s
FP16: 383 TFlop/s

Accelerator hardware in supercomputers
7 supercomputers in top 10 of TOP500
(June 2023) use Nvidia or AMD
accelerator hardware

Rank Name Accelerator

1 Frontier MI250X

2 Fugaku -

3 LUMI MI250X

4 Leonardo A100

5 Summit V100

6 Sierra V100

7 Sunway TaihuLight -

8 Perlmutter A100

9 Selene A100

10 Tianhe-2A -

Dustin Ruda Fast semi-iterative finite element Poisson solvers for Tensor Core GPUs 2/29

Motivation

Problem statement
Consider Poisson’s equation as very a common (sub-)problem in many applications
TC GPUs have a performance potential of 100+ TFlop/s
But it is only achievable in lower precision (SP or HP) and for dense matrix operations
Both contradict basic principles of standard solvers (e.g. multigrid (MG)) for finite
element (FE) simulations: Low precision might cause loss of accuracy due to high
condition numbers (O(h−2)) and FE matrices are sparse

Aim
Profitable use of TC hardware for linear systems in FE simulations (particularly for CFD)
by constructing suitable hardware oriented solvers

Remark
Global-in-time Navier–Stokes solver allows for solving pressure Poisson problem for all time
steps at once → many right hand sides (RHS), resp., dense matrix as RHS1

1C. Lohmann, S. Turek: On the Design of Global-in-Time Newton-Multigrid-Pressure Schur Complement
Solvers for Incompressible Flow Problems. J. Math. Fluid Mech. 25, 64 (2023)

Dustin Ruda Fast semi-iterative finite element Poisson solvers for Tensor Core GPUs 3/29

Basic procedure

Starting point: Sparse, ill-conditioned linear system

Prehandling to lower condition number

2D: HFEM 3D: Generating systems

Node renumbering exploiting similar cells + Schur complement(s)

Direct method in 2D Semi-iterative method in 2D and 3D

Dustin Ruda Fast semi-iterative finite element Poisson solvers for Tensor Core GPUs 4/29

Prehandling - How to handle ill-conditioned Poisson problems

Error consists of discretization and computational
error: u− ũh = (u− uh) + (uh − ũh)

Discr. error: ‖u− uh‖ = O(hp+1)

Depends on FE space and smoothness
Here for simplicity: p = 1

Comp. error: ‖uh − ũh‖ ≈ cond · “data error”
Data error at least TOL of precision
Poisson: cond(Ah) = O(h−2)

Comp. error becomes dominant at hcrit at
intersection of both errors

Omit constant factors and equate

⇒ hcrit ≈ (cond · TOL)
1
2

Illustrative example of actual, discretization and

computational error

Dustin Ruda Fast semi-iterative finite element Poisson solvers for Tensor Core GPUs 5/29

Prehandling - How to handle ill-conditioned Poisson problems

Critical mesh size: hcrit ≈ (cond · TOL)
1
2

Substitute cond ≈ h−2 for Poisson’s
equation ⇒ hcrit ≈ TOL

1
4

Example: (TOLDP)
1
4 = 2−13 ≈ 10−3.9

(TOLSP)
1
4 = 2−5.75 ≈ 10−1.7

(TOLHP)
1
4 = 2−2.5 ≈ 10−0.8

Wish: cond = O(1)⇒ h ≈ TOL
1
2

→ SP (and even HP?) possible

Computational and actual L2-error for 1D example

Dustin Ruda Fast semi-iterative finite element Poisson solvers for Tensor Core GPUs 6/29

The concept of prehandling of linear systems

Basic idea
Apply preconditioner explicitly to Ax = b

Equivalent system: Ãx̃ = b̃ where Ã = STAS, b̃ = STb, x = Sx̃

Both yield same solution in exact arithmetic, but accuracy (and iteration numbers) differ
in practice because cond(A) 6= cond(Ã)

Central requirements for prehandling
cond(Ã)� cond(A)

Ã is still sparse
Transformation to Ã, b̃ and x via S is fast (i.e., O(N logN))

Candidates for prehandling
So far two candidates fulfill all requirements: Hierarchical Finite Element Method
(HFEM, Yserentant et al., 1980s) in 2D and Generating systems (Griebel et al., 1990s)
in 2D and 3D

Dustin Ruda Fast semi-iterative finite element Poisson solvers for Tensor Core GPUs 7/29

Candidates for prehandling - HFEM

minimum example of hierarchical basis in 1D

Sequence of refined meshes starting from coarse mesh (h0) required
Transformation matrix S is square, Ã = STAS is symm. positive-definite and sparse

cond(Ã) = O
((

log 1
h

)2) (3D: O(h−1))

Partial Cholesky decomposition on coarse mesh to lower cond:(
Ã0 0

0 D̃

)
= LTL→ L−1ÃL−T

h0 ≈
√
h good choice for variable coarse mesh size

Dustin Ruda Fast semi-iterative finite element Poisson solvers for Tensor Core GPUs 8/29

HFEM in 2D – matrix density, condition and iteration numbers

Results on unit square (Q1):

1
h

1
h0

NNZ
N cond #iter (ichol)

1024

FEM 8.99 212,485.76 1,143 (395)
16 20.32 39.87 49
32 28.20 30.61 40
64 59.95 22.47 31

2048
FEM 8.99 849,943.52 2,307 (771)
32 23.33 39.98 48
64 39.82 30.63 39

4096

FEM 9.00 3,399,774.60 4,658 (1,356)
32 20.84 50.56 56
64 29.24 40.00 47
128 63.02 30.64 39

Termination criterion in
conjugate gradient method for
HFEM based on retransformed
residual to obtain comparable
iteration numbers
Low condition numbers + sparse
matrices by means of prehandling
with HFEM + Cholesky on
coarse mesh
Low iteration numbers by
prehandling (even significantly
lower than standard FE
preconditioned by incomplete
Cholesky)

Dustin Ruda Fast semi-iterative finite element Poisson solvers for Tensor Core GPUs 9/29

HFEM in 3D – matrix density, condition and iteration numbers

Results on unit cube (Q1):

HFEM HFEM + Cholesky
1
h

1
h0

NNZ
N

cond #iter (ichol) NNZ
N

cond #iter

64

FEM 20.25 553.34 72 (36) - - -
4 52.87 247.41 89 55.45 221.80 88
8 51.87 131.02 72 126.00 101.03 64
16 48.01 79.53 54 1,310.97 39.32 37

128

FEM 20.62 2,213.40 145 (64) - - -
4 58.00 553.85 138 97.61 501.92 139
8 57.50 299.33 113 96.59 240.98 100
16 55.55 152.32 82 774.17 103.17 61

256

FEM 20.81 8,853.58 292 (127) - - -
8 61.04 657.87 172 81.08 542.41 155
16 60.06 326.03 125 438.22 - 99
32 57.49 300.52 101 - - -

Decrease of
condition and
iteration
numbers by
HFEM in 3D not
satisfactory
Further
prehandling by
Cholesky
decomposition
on coarse grid
leads to
excessive fill in

Dustin Ruda Fast semi-iterative finite element Poisson solvers for Tensor Core GPUs 10/29

Candidates for prehandling - Generating system

minimum example of generating systemLinear system in 1D

Also dependent on sequence of refined meshes
Generating system consists of nodal bases on all levels and thus, mesh points that do not
exclusively belong to finest mesh are counted repeatedly
Transformation matrix S is rectangular, Ã = STAS is symm. pos. semi-definite (sufficient
for convergence of conjugate gradient method to non-unique solution) and sparse
Transforming back by multiplication with S yields unique solution to original system
Magnification factor of problem size: 8/7 in 3D (4/3 in 2D)
Jacobi preconditioner corresponds to BPX ⇒ cond(Ã) = λmax

λmin,>0
= O(1)

Gauss–Seidel-type iterative methods correspond to MG and SSOR precond. to MGCG
Dustin Ruda Fast semi-iterative finite element Poisson solvers for Tensor Core GPUs 11/29

Generating systems in 2D & 3D – matrix density and iteration numbers

Results in 2D on unit square (Q1):

1
h

1
h0

#rows(Ã)
N

NNZ
N

#iter (ichol)

1024

FEM 1.00 8.99 1,143 (395)
16 1.33 40.00 31
32 1.33 39.39 54
64 1.33 38.07 96

2048
FEM 1.00 8.99 2,307 (771)
32 1.33 40.29 57
64 1.33 39.62 102

4096

FEM 1.00 9.00 4,658 (1,356)
32 1.33 40.78 59
64 1.33 40.44 107
128 1.33 39.73 203

Results in 3D on unit cube (Q1):

1
h

1
h0

#rows(Ã)
N

NNZ
N

#iter (ichol)

64

FEM 1.00 20.25 72 (37)
4 1.13 74.14 15
8 1.13 72.23 17
16 1.13 65.43 23

128

FEM 1.00 20.62 145 (65)
4 1.14 82.32 17
8 1.14 81.35 19
16 1.14 77.84 25

256

FEM 1.00 20.81 292 (128)
8 1.14 87.13 20
16 1.14 85.34 27
32 1.14 80.80 47

Dustin Ruda Fast semi-iterative finite element Poisson solvers for Tensor Core GPUs 12/29

The effect of prehandling on accuracy in 2D

L2-errors for different levels in 2D in DP, SP, HP without (dashed) and with (solid) prehandling via
HFEM for “very smooth” (left) and more oscillating (right) solution

Dustin Ruda Fast semi-iterative finite element Poisson solvers for Tensor Core GPUs 13/29

Solvers taylored for Tensor Core GPUs in 2D

Low condition numbers by prehandling enable low precision, but matrices are still sparse
Construct solver consisting as much as possible on multiplications with dense matrices
Subdivide nodes into:

C: Coarse mesh nodes
E : Nodes on Edges of the coarse mesh
I: Nodes in the Interior of the coarse
mesh cells (cell by cell in same order)

Ax = b system after HFEM prehandling
ACC = I due to Cholesky on coarse mesh
AII =: C decomposes into
#macro cells = O(N 1/2) independent
blocks Ci
Blocks are equal if corresponding to
similar cells
Only C grows like N (= #Dof)

Dustin Ruda Fast semi-iterative finite element Poisson solvers for Tensor Core GPUs 14/29

The direct method in 2D

In special cases (pure Poisson problem in 2D with Q1 on rectangular mesh or P1):
No coupling between coarse mesh nodes and those inside macro cells, i.e., ACI = 0

Matrix form: I ACE 0
AT
CE AEE AEI
0 AT

EI C

xC
xE
xI

 =

bC
bE
bI

A double Schur complement yields:

Direct method
0) Compute inverse of

Π = AEE −AEIC
−1AT

EI −ACEA
T
CE

1) xE = Π−1
(
bE −ACEbC −AEIC

−1bI
)

2) xC = bC −ACExE
3) xI = C−1

(
bI −AT

EIxE
)

Matrices Π and Ci are well-conditioned (<50 on unit square with Q1; SP, HP possible)
Dustin Ruda Fast semi-iterative finite element Poisson solvers for Tensor Core GPUs 15/29

Parenthesis: How to implement multiplications with C−1

Only Ci need to be inverted (once for each group of similar macro cells)
−→ C−1 block diagonal matrix with dense blocks C−1i

Ci are small, well-conditioned HFEM matrices, O(N) storage for C−1i
Efficient implementation by transforming into dense matrix product (also for 1 RHS)

Complexity O
(
N 3/2

)
because O(N 1/2) RHS but very fast calculation by TC almost at

peak performance
Current investigation: Can different Ci be efficiently transformed into one as part of pre-
and post-processing?

Dustin Ruda Fast semi-iterative finite element Poisson solvers for Tensor Core GPUs 16/29

Direct method – recap

Choice of h0 ≈
√
h as a good compromise yields complexity of ≈ 12N 3/2

Performance results on A100 on unit square in SP for many RHS:
up to 60 TFlop/s
5,000 to 15,000 MDof/s (millions of unknowns solved per second)

More arithmetic work (×12), but still much faster than standard MG solver on x64 AMD
CPU (8 MDof/s for many rhs)
Essentially equal results on unstructured coarse mesh (“flow around a square”) with 3
distinct matrices Ci

Dustin Ruda Fast semi-iterative finite element Poisson solvers for Tensor Core GPUs 17/29

Direct method – conclusion

Advantages of the direct method
Highly performant because most operations are dense matrix multiplications also on
unstructured coarse meshes (but higher memory consumption, depends on #Ci)
Almost no sensitivity to anisotropic meshes

Limitations of the direct method
High storage requirement of O

(
N

3
2

)
due to Π−1

Limit of fine mesh size in our tests: h = 1
1024 (on one GPU)

Hardly applicable to 3D because storage requirement of O
(
N

5
3

)
and higher condition

number with HFEM
Requirement for simple form of the direct method: No coupling between nodes in C and I
(coarse mesh nodes and nodes in interior of macro cells) only for Poisson’s equation on P1
and rectangular Q1 meshes

We need a less memory consuming, more versatile variant, also working in 3D,
that is still capable of exploiting Tensor Cores

Dustin Ruda Fast semi-iterative finite element Poisson solvers for Tensor Core GPUs 18/29

The semi-iterative method in 2D

Again Ax = b system after prehandling with HFEM + Cholesky decomposition on coarse
mesh; now ACI 6= 0 possible
Join coarse mesh nodes and those on edges: J = C ∪ E → 2× 2 block matrix(

AJJ AJI
AT
JI C

)(
xJ
xI

)
=

(
bJ
bI

)
⇔:

(
A1 B
BT C

)(
u
v

)
=

(
b1
b2

)
Applying a single Schur complement yields:

Semi-iterative method

(
A1 −BC−1BT

)︸ ︷︷ ︸
Â

u = b1 −BC−1b2 (with conjugate gradient)

v = C−1
(
b2 −BTu

)
Â can be computed explicitly in 2D without excessive storage space (O(N1+ε)) and is
well-conditioned
Majority of operations are still dense due to C−1 and |J | � |I|

Dustin Ruda Fast semi-iterative finite element Poisson solvers for Tensor Core GPUs 19/29

The semi-iterative method in 3D

In 3D: Same approach with slight differences
Ax = b system w.r.t. generating system because HFEM would lead to high condition
numbers of Â in 3D
All basis functions on coarser levels are included in generating system → indices I can be
chosen such that Ci are HFEM matrices (particularly invertible)
All remaining indices (some of which correspond to the same mesh points) are stored in J
The semi-iterative algorithm resulting from Schur complement is the same as in 2D with
HFEM
Â is positive semi-definite and has a lower generalized condition number
Saving Â explicitly would require a lot of storage → apply Â implicitly as A1 −BC−1BT

in each iteration

Dustin Ruda Fast semi-iterative finite element Poisson solvers for Tensor Core GPUs 20/29

Accuracy of the semi-iterative method

Accuracy depends on smoothness
of solution
2D: Loss of accuracy only for
very smooth solution on high
refinement levels
3D: No difference between DP
and SP in considered range of
mesh sizes

L2-errors with semi-iterative method in 2D in DP and SP

for differently smooth solutions

Dustin Ruda Fast semi-iterative finite element Poisson solvers for Tensor Core GPUs 21/29

Storage requirement of the semi-iterative method

Exemplary toy problem: Poisson’s equation on unit square/cube, equidistant Q1 mesh,
variable coarse mesh size h0

Relevant for storage: C−1i , D and Â in 2D / A1 in 3D

2D: HFEM
1
h

N
106

1
h0

Â C−1i B total

1024 1.05
16 15 15.1 1.0 31
32 25 0.9 1.6 27

2048 4.19
32 19 3.8 1.0 24
64 40 0.2 1.6 42

4096 16.77
32 16 15.5 0.7 32
64 27 0.9 1.0 29

3D: Generating Systems
1
h

N
106

1
h0

A1 C−1i B total

128 2.05
4 11.3 433.3 15.4 460
8 22,1 5.6 16.6 44
16 37.1 0.1 15.3 52

256 16.58
8 14.2 53.5 16.5 84
16 24.9 0.7 17.7 43
32 39.5 0.01 16.4 56

Number of nonzero entries relative to N

Moderate storage requirement for appropriate choice of h0 compared to 9N in 2D / 27N
in 3D with standard FEM (in DP)
Explicit Â in 3D: 400N − 1, 400N −→ implicit variant favored

Dustin Ruda Fast semi-iterative finite element Poisson solvers for Tensor Core GPUs 22/29

Complexity and performance estimate

Semi-iterative Method

(
A1 −BC−1BT

)︸ ︷︷ ︸
Â

u = b1 −BC−1b2

v = C−1
(
b2 −BTu

)

Composition of the method:
1×B, 1× C−1 to compute RHS
Iterative step: 1× Â (3D: A1, B

T, C−1, B)
+ 2 dot products + 3 axpy per iteration
Intermediate step: 1×BT

Direct Step: 1× C−1

Number of unknowns u solved iteratively: ∼ 2N 3/4 in 2D, ∼ 3N 5/6 in 3D
Entire method in SP on A100
Majority of the work: Dense matrix operations; Small part: sparse × dense and BLAS1
Own benchmark results on A100 in SP in GFlop/s (given many RHS):

Â× dense axpy dot product dense× dense B × dense
2,375 227 321 150,000 1,200

Dustin Ruda Fast semi-iterative finite element Poisson solvers for Tensor Core GPUs 23/29

Performance estimate

1
h

1
h0

#iter cond(Ci)
Flop
N

dense Flop
N

remainder share dense GFlop/s MDof/s

1024
16 30 24 15,414 913 94.4% 31,445 1,926
32 24 17 3,615 1,217 74.8% 8,206 1,698

2048
32 28 24 15,399 1,085 93.4% 27,919 1,694
64 23 17 3,611 1,881 65.8% 6,333 1,153

4096
32 31 32 63,543 1,011 98.4% 74,476 1,154
64 25 24 15,391 1,374 91.8% 23,636 1,410

1
h

1
h0

#iter cond(Ci)
Flop
N

dense Flop
N

remainder share dense GFlop/s MDof/s

128
4 8 54 554,586 751 99.9% 121,307 218
8 11 23 74,025 1,315 98.3% 36,831 489
16 18 9 9,410 2,578 78.5% 3,799 317

256
8 11 54 712,513 1,131 99.8% 117,465 165
16 18 23 112,550 2,295 98.0% 33,242 289
32 35 9 17,205 5,294 76.5% 3,487 155

Comparative result with optimized MG in C++-based FE software package (FEAT3) on
AMD CPU in DP in 2D: 8 MDof/s

Dustin Ruda Fast semi-iterative finite element Poisson solvers for Tensor Core GPUs 24/29

The semi-iterative method on anisotropic meshes in 2D
Anisotropy types in 2D: left x direction, right x,y direction

2 types of anisotropy on unit square in 2D
Consider condition of Ci (averaged) and
Â and iteration numbers for increasing
aspect ratios

1/2 1/4 1/16

L L0 cond(Ci) cond(Â) #it cond(Ci) cond(Â) #it cond(Ci) cond(Â) #it

x 10
4 23.9 28.3 28 35.0 39.2 35 108.1 111.8 48
5 16.9 22.0 23 24.7 31.5 30 89.3 89.0 43
6 11.1 16.4 18 16.2 24.3 24 67.2 70.5 37

x
,y 10
4 23.9 28.3 28 40.2 52.3 40 303.4 197.7 71
5 16.9 22.0 23 28.4 41.9 33 243.9 202.0 66
6 11.1 16.4 18 18.7 32.6 28 146.7 199.0 61

Max. 3× iterations with conjugate gradient method on very anisotropic meshes
Much higher effort with MG expected (more iterations and more expensive smoother than
for example Jacobi necessary)

Dustin Ruda Fast semi-iterative finite element Poisson solvers for Tensor Core GPUs 25/29

Preconditioning for the semi-iterative method in 2D
Anisotropy types in 2D: left x direction, right x,y direction

Consider iteration numbers with plain
conjugate gradients (pcg) vs.
incomplete Cholesky decomposition
(ichol) as preconditioner

1/2 1/4 1/16

L L0 pcg ichol pcg ichol pcg ichol

x 10
4 28 11 35 13 48 14
5 23 8 30 10 43 14
6 18 6 24 8 37 10

x
,y 10

4 28 11 40 15 71 20
5 23 8 33 12 66 18
6 18 6 28 10 61 14

Iteration numbers can be significantly reduced by means of preconditioning

Dustin Ruda Fast semi-iterative finite element Poisson solvers for Tensor Core GPUs 26/29

The semi-iterative method on anisotropic meshes in 3D

1/2 1/4 1/16

L L0 cond(Ci) #it cond(Ci) #it cond(Ci) #it

x 8
3 54.0 11 94.3 18 435.3 27
4 22.5 18 39.6 35 220.2 44
5 8.7 35 13.8 71 35.3 90

x
,y 8

3 54.0 11 105.6 20 537.9 39
4 22.5 18 45.1 38 281.9 52
5 8.7 35 14.6 77 39.1 98

x
,y

,z

8
3 54.0 11 115.0 21 913.1 44
4 22.5 18 51.0 41 448.9 58
5 8.7 35 13.9 84 51.6 94

Preconditioning without explicit matrix difficult, but might be
possible

Dustin Ruda Fast semi-iterative finite element Poisson solvers for Tensor Core GPUs 27/29

Conclusion and outlook

Conclusion
It is possible to exploit Lower-Precision Accelerator Hardware for PDE computing
A semi-iterative approach and the use of generating systems allows this for more general
problems in 2D and 3D (compared to the fully direct variant)

Outlook
Implementation of the complete semi-iterative method on GPU
Deeper analysis of suitable preconditioners for the iterative step and initial guesses for the
solution vector to reduce number of iterations
Testing semi-iterative Method for other FE spaces and PDEs
(Convection-Diffusion-Reaction)
Investigate the feasibility of transforming different matrices Ci into one

Dustin Ruda Fast semi-iterative finite element Poisson solvers for Tensor Core GPUs 28/29

References

Literature
Ruda, D., Turek, S., Zajac, P. & Ribbrock, D. (2022). Very fast finite element Poisson solvers on
lower precision accelerator hardware: A proof of concept study for Nvidia Tesla V100,
International Journal of High Performance Computing Applications 36(4), pp.459–474,
DOI: 10.1177/10943420221084657
Ruda, D., Turek, S., Zajac, P. & Ribbrock, D. (2020). The Concept of Prehandling as Direct
Preconditioning for Poisson-like Problems. Vermolen, F., Vuik, C., Lecture Notes in
Computational Science and Engineering, 139, 1011-1019, Numerical Mathematics and Advanced
Applications Enumath 2019, Springer, DOI: 10.1007/978-3-030-55874-1_100
Yserentant, H. (1986). On the Multi-Level Splitting of Finite Element Spaces. Numer. Math.,
Vol. 49, pp. 379–412, DOI: 10.1007/BF01389538
Griebel, M. (1994). Multilevelmethoden als Iterationsverfahren über Erzeugendensystemen.
Teubner Skripten zur Numerik. DOI: 10.1007/978-3-322-89224-9

Figures
p.1: https://developer.nvidia.com/blog/tensor-core-ai-performance-milestones/
pp.13,16,17,18: Very fast finite element Poisson solvers on lower precision accelerator hardware:
A proof of concept study for Nvidia Tesla V100, IJHPCA 36(4)

Dustin Ruda Fast semi-iterative finite element Poisson solvers for Tensor Core GPUs 29/29

https://developer.nvidia.com/blog/tensor-core-ai-performance-milestones/

	Motivation
	Prehandling
	References

