

Basic Machine Learning Approaches for the Acceleration of PDE Simulations

H. Ruelmann, S. Turek

TU Dortmund University, Vogelpothsweg 87, 44227 Dortmund, hannes.ruelmann@math.tu-dortmund.de

Eccomas Thematic Conference Computational Science and AI in Industry (CSAI) 7th - 9th June 2021, Virtual Conference

Table of Contents

- Motivation:
 - Artificial Neural Networks
 - Pressure-Poisson problem
 - Anisotropies
- Neural Network prototype for Approximate Inverses
- Numerical results
- Extension and alternatives
- Conclusion and future work

 multitude of problems: health, recognition, statistic, logistic, gaming, ...

DeepMind Health

deepmind.com/applied/deepmind-health/

CSAI - Basic Machine Learning Approaches for the Acceleration of PDE Simulations

neuralnetworksanddeeplearning.com

Hannes Ruelmann

- multitude of problems: health, recognition, statistic, logistic, gaming, ...
- technical revolution CPUs, GPUs, TPUs
- good for simulations/ solving PDEs?

Pressure-Poisson problem

• Navier-Stokes equations

$$\underbrace{u_t - \nu \Delta u + u \cdot \nabla u}_{S(u) \cdot u} + \nabla p = f$$
$$-\nabla \cdot u = 0$$

- weak formulation
- FEM discretisation
- time discretisation (theta-scheme)
- decouple u and p: fixpoint solver + Pressure-Poisson problem $P \approx \Delta_h$

P.

(+ some magic...)

 $S(u) \cdot u = f_{FP}$

$$q = \frac{1}{\Delta t} B^T \cdot u$$

CSAI - Basic Machine Learning Approaches for the Acceleration of PDE Simulations

Hannes Ruelmann

Model Problem: Poisson

- find $u: \Omega \to \mathbb{R}$ such that $-\Delta u = f \text{ in } \Omega, \ u = 0 \text{ on } \partial \Omega$
- discretize with FEM $a_h(u_h, v_h) = b_h(v_h) \quad \forall v_h \in V_h$

CSAI - Basic Machine Learning Approaches for the Acceleration of PDE Simulations

Model Problem: Poisson

CSAI - Basic Machine Learning Approaches for the Acceleration of PDE Simulations

Anisotropies

- Real world application
- Complex geometry
- Mesh anisotropies

Anisotropies

	mu	Itig	ric	d so	blv	er, ⁻	fix	ed 8	8 sr	no	oth	er	ste	ps
	IvI		dofs	S	Jac	obi (0,	8)	GS (1	.0)	SF	PAI-1 (1,0)	ILU-0	0 (0,5)
	10	4	1.198	8.401		4			4		3			4
	9	1	L.050	0.625		4			4		3			4
	8		26	3.169		4			4		3			4
	1	lvl	d	ofs	Jacol	oi (0,5)	GS (í	1.0)	SPAI-1 (1,0)	ILU-0 (0	,5) I	LU-RCM	K
		10	2.1	100.225		109		33	24		26		7	
		9	Ę	525.825	:	106		32	23		25		7	
		8	1	131.841	:	103		30	22		24		7	
		7		32.960		98		28	21		23		7	
		6		8.240		90		25	19		21		6	
		5		2.060		78		22	17		18		6	
		4		515		55		16	13		12		6	
		3		129		35		9	10		8		6	
	1													
			IvI	dof	S	Jacobi	(0,5)	GS (0,7)	ILU ((0,7)	SPAI-	1 (1,0)	
			9	2.36	2.369	65	4	37	70	1	102	1	.40	
			8	59)1.361	61	9	35	50		95	1	.30	
			7	14	8.225	56	2	31	19		85	1	18	
			6	3	37.249	48	6	28	39		75	1	.03	
			5		9.409	37	7	21	18		57	8	30	
			4		2.401	25	8	16	66		34	Ę	51	
			3		625	17	5	9	6		20	3	31	

CSAI - Basic Machine Learning Approaches for the Acceleration of PDE Simulations

Hannes Ruelmann

- How to design NN?
 - \rightarrow start straightforward and as simple as possible
 - → fully connected feedforward neural network

- How to design NN?
 - \rightarrow start straightforward and as simple as possible
 - → fully connected feedforward neural network

• Input of the NN: matrix entries

- How to design NN?
 - \rightarrow start straightforward and as simple as possible
 - → fully connected feedforward neural network

1. training phase

\rightarrow supervised learning

→ backpropagation

1. training phase

→ different dataset

2. test phase

 \rightarrow generalization

1. training phase

3. application phase

2. test phase

→ preconditioner

Richardson iteration:

 $x^{(k+1)} = x^{(k)} + \omega M(b_h - A_h x^{(k)})$

condition number

						¥	
		# it			it down	κ	
lvl	n	$J_{\omega=0.7}$	GS	NN		before	after
2	9	49	17	8	2.13	5.9	1.6
3	49	273	95	21	4.52	29.8	2.9
4	225	1 323	463	66	7.02	127.3	7.8
5	961	5879	2057	39	52.74	516.0	23.4
				1			

3 layered NN

reduction factor (GS vs NN)

- first experiments with NN prototype
- adjust training parameters
- batch vs. online learning

condition number

			# it		it down	κ		
lvl	n	$J_{\omega=0.7}$	GS	NN		before	after	
2	9	49	17	8	2.13	5.9	1.6	
3	49	273	95	21	4.52	29.8	2.9	
4	225	1 323	463	66	7.02	127.3	7.8	
5	961	5879	2057	39	52.74	516.0	23.4	

CSAI - Basic Machine Learning Approaches for the Acceleration of PDE Simulations

Hannes Ruelmann

		1:3	aspect ratios			1		
dim	Jac (0,7)	GS	NN		dim	Jac (0,7)	GS	NN
25	422	147	26		25	1001	385	22
121	1955	683	39		121	5036	1762	32
529	8622	3017	64		529	-	7939	37

CSAI - Basic Machine Learning Approaches for the Acceleration of PDE Simulations

0	$O(n^2 \cdot M) \longrightarrow O(\bar{n} \cdot M)$								
n	49	225	961	3969	16129				
full	2 401	50625	923.521	15752961	260144641				
\bar{n}	289	1457	6481	27281	111889				
diag	180	868	3780	15748	64260				
%	7.497	1.715	0.409	0.100	0.025				

system matrix: dense to sparse

 $O(n^2 \cdot M) \longrightarrow O(\bar{n} \cdot M)$

U	(10 101		O(n)	1,1	
n	49	225	961	3969	16129
full	2 401	50625	923.521	15752961	260144641
\bar{n}	289	1457	6481	27281	111889
diag	180	868	3780	15748	64260
%	7.497	1.715	0.409	0.100	0.025

system matrix: dense to sparse

	$NN_{sparse} (1000)$			NN ₃	full(15)	600)	$\operatorname{NN}_{full} (2000)$		
ω	0.6	0.7	0.8	0.6	0.7	0.8	0.6	0.7	0.8
1	33	27	23	118	110	88	29	24	37
2	37	31	26	110	94	82	31	25	20
3	35	29	25	109	93	81	29	24	22

different damping and different size of training data for 3 matrices

$O(n^2 \cdot M)$ –	$\rightarrow O(\bar{n} \cdot M)$
--------------------	----------------------------------

n	49	225	961	3969	16129
full	2 401	50625	923.521	15752961	260144641
\bar{n}	289	1457	6481	27281	111889
diag	180	868	3780	15748	64260
%	7.497	1.715	0.409	0.100	0.025

system matrix: dense to sparse

	NN _{sparse} (1000)			NN ₃	full(15)	600)	$\mathrm{NN}_{full} \ (2\ 000)$		
ω	0.6	0.7	0.8	0.6	0.7	0.8	0.6	0.7	0.8
1	33	27	23	118	110	88	29	24	37
2	37	31	26	110	94	82	31	25	20
3	35	29	25	109	93	81	29	24	22

level	non zeros	time (s)
7	148.225	0.0027
8	591.361	0.0059
9	2.362.369	0.0153
10	9.443.329	0.0498

→ Pruning

different damping and different size of training data for 3 matrices

Extension and alternatives

- sparse matrix formats (more flexibility?)
- one NN vs two NN
- adjust loss function

Extension and alternatives

In cooperation with Enno Tiemann

- now: try prolongation and restriction
- different NN and loss function

Extension and alternatives

CSAI - Basic Machine Learning Approaches for the Acceleration of PDE Simulations

Hannes Ruelmann

achievements:

• simple learning systems

$$\begin{array}{rcl}
\rightarrow & \text{MLPs} \\
\rightarrow & \text{CNNs} \\
\rightarrow & \text{U-nets} \\
\rightarrow & \text{custom NN}
\end{array}$$

achievements:

- simple learning systems
- support solver

- → preconditioner
- → smoother
- \rightarrow operators
 - → parameters

achievements:

- simple learning systems
- support solver
- strong components

- \rightarrow condition number
- → iteration number
- \rightarrow time
- \rightarrow anisotropies

achievements:

- simple learning systems
- support solver
- strong components

- condition number
 iteration number
 time
 anisotropies

make machine learning methods usable for solving linear systems of equations and thus make modern hardware accessible

achievements:

- simple learning systems
- support solver
- strong components

- condition number
 iteration number
 time
 anisotropies

make machine learning methods usable for solving linear systems of equations and thus make modern hardware accessible

but we need more flexibility not (yet) a blackbox solver

Thanks for your attention!

