

Simulation of rising bubbles using a new multiple relaxation time lattice Boltzmann method coupled with level set interface capturing

> Amin Safi Stefan Turek

Institute for Applied Mathematics (LSIII), TU Dortmund

March 11, 2014

The Lattice Boltzmann Method technische universität dortmund

General LBE with single relaxation collision based on Maxwell equilibrium

$$\frac{\partial f_k}{\partial t} + e_k \cdot \nabla f_k = \frac{1}{\tau} (f_k - f_k^{eq}) + \frac{(e_k - u_i) \cdot F_i}{\rho c_s^2} f_k^{eq}$$

Recovers the nearly incompressible N.E. equations through the Chapman-Enskog expansion

$$\partial_t(\rho u_j) + \partial_i(\underbrace{\frac{1}{3}\rho\delta_{ij}}_{\rho} + \rho u_i u_j) - \underbrace{\frac{1}{3}\left(\tau - \frac{1}{2}\right)}_{\nu}\partial_i\left[\partial_j(\rho u_i) + \partial_i(\rho u_j)\right] = F_j$$

Pressure is simply recovered by an equation of state (EOS)

ideal gas EOS
$$P = \frac{1}{3}\rho$$

► Continuum Surface Force (CSF) form of LBM

• Turn the N.E. into a desired form for LBM (Mehravaran, 2011)

$$\partial_t \mathbf{u} + \mathbf{u} \cdot \nabla \mathbf{u} + \frac{\nabla P}{\rho(\phi)} - \frac{\nabla \cdot \left(\mu(\phi)(\nabla \mathbf{u} + \nabla \mathbf{u}^T)\right)}{\rho(\phi)} = -\frac{\sigma \kappa(\phi) \mathbf{n}(\phi) \delta_{\varepsilon}(\phi)}{\rho(\phi)}$$

• Assume virtual variables $\bar{\rho} = 1$ and $\bar{\mu} = \mu/\rho$ and move the $\frac{\nabla P}{\rho(\phi)}$ to the rhs

$$\bar{\rho}(\phi)\partial_t u + \bar{\rho}(\phi)\mathbf{u} \cdot \nabla \mathbf{u} + \nabla P - \bar{\mu}(\phi)\nabla \cdot (\nabla \mathbf{u} + \nabla \mathbf{u}^{\mathsf{T}}) = \bar{F}$$

• The new rhs force takes the form

$$\bar{\pmb{\mathsf{F}}} = -\frac{\sigma\kappa(\phi) \pmb{\mathsf{n}}(\phi) \delta_{\varepsilon}(\phi)}{\rho(\phi)} + \frac{\nabla \mu(\phi) \cdot (\nabla \pmb{\mathsf{u}} + \nabla \pmb{\mathsf{u}}^{\mathsf{T}})}{\rho(\phi)} + \nabla P\left(1 - \frac{1}{\rho(\phi)}\right)$$

► Time Integration

• Forward Euler for the collision term, Crank-Nicolson for the forces

$$f_{k}(x+e_{k}\Delta t,t+\Delta t) = f_{k}(x,t) - \sum_{j} \Lambda_{k,j}(f_{j}(x,t)-f_{j}^{eq}(x,t)) + \frac{\Delta t}{2}S_{k}\Big|_{(x,t)} + \frac{\Delta t}{2}S_{k}\Big|_{(x+e_{k}\Delta t,t+\Delta t)}$$

where $S_{k} = \frac{(e_{k,i}-u_{i})\cdot\bar{F}_{i}}{\rho c_{s}^{2}}f_{k}^{eq}$

• Recast into an explicit form for $g_k = f_k - \frac{\Delta t}{2}S_k$

$$g_k(x+e_k\Delta t, t+\Delta t) = g_k(x,t) - \sum_j \Lambda_{k,j}(g_j(x,t)-g_j^{eq}(x,t)) + (I-\frac{1}{2}\Lambda_{k,j})S_j(x,t)$$

Velocity
$$\bar{\rho}u_i = \sum_k e_{k,i}g_k + 0.5\bar{F}_i$$
, Pressure $P = \frac{\bar{\rho}}{3} = \frac{1}{3}\sum_k g_k$

► Force Discretization; Central differencing approach

- discretization along major directions; (X, Y)
- central differences for $\nabla \mathbf{u}, \nabla \phi, \nabla P$ (∇a in general)

$$\frac{\partial a(x,y)}{\partial x} = \frac{a(x+h,y) - a(x-h,y)}{2h}$$
$$\frac{\partial a(x,y)}{\partial y} = \frac{a(x,y+h) - a(x,y-h)}{2h}$$

• perform the dot product of the force terms as in

$$S_k = \frac{(e_{k,i} - u_i) \cdot \bar{F}_i}{\rho c_s^2} f_k^{eq}$$

► Force Discretization; Directional approach

- discretizing the $(e_k \cdot \nabla)$ terms along the lattice directions, e_k
- central differences for $(e_k \cdot \nabla \mathbf{u})$ and $(e_k \cdot \nabla \phi)$
- *P* ≈ *O*(*f_k*), so we perform an averaged differencing for (*e_k* · ∇*P*) (Lee, Lin, 2005)

$$(e_k \cdot \nabla P)^C = \frac{P(x+e_k\Delta t) - P(x-e_k\Delta t)}{2}$$

$$(e_k \cdot \nabla P)^B = \frac{-P(x+2e_k\Delta t)+4P(x+e_k\Delta t)-3P(x))}{2}$$

Averaged difference $(e_k \cdot \nabla P)^{Avg} = \frac{(e_{k,i} \cdot \partial_i P)^C + (e_{k,i} \cdot \partial_i P)^B}{2}$

► Solving the Level Set equation

 $\partial_t \phi + \mathbf{u} \cdot \nabla \phi = 0$ where $\phi(\mathbf{x}) = 0$ at $X = \Gamma$

- 2nd order Runge-Kutta time integration
- 5th order WENO finite difference for the convective term
- weighted reinitialization to the approximated signed distance function every $\triangle T$

$$\phi_{\textit{new}} = \alpha \phi_{\textit{dist}} + (1 - \alpha) \phi_{\textit{old}}$$

• regularized *Heaviside* function $H(\phi)$, for density and viscosity profiles

$$\begin{cases} \rho(\phi) = \rho_I H(\phi) + \rho_g (1 - H(\phi)) \\ \mu(\phi) = \mu_I H(\phi) + \mu_g (1 - H(\phi)) \end{cases}$$

technische universität dortmund

► Static bubble; Case 1

Density ratio : $\rho_l/\rho_g = 10$ Viscosity ratio: $\mu_l/\mu_g = 10$

Spurious velocity level

► Static bubble; Case 1

Pressure and velocity errors

Shan-Chen LB Model						
1/ <i>h</i> 40 80 160 320						
U _{max}	6.5e-5	1.4e-4	3.00e-4	6.24e-4		
$\left \bigtriangleup P - \sigma / r_0 \right / (\sigma / r_0)$	0.0453	0.0172	0.0017	0.0023		

LBM-Level Set, Approach 1						
1/ <i>h</i> 40 80 160 320						
U _{max}	5.8e-5	3.00e-5	9.8e-6	7.4e-6		
$\left \bigtriangleup P - \sigma / r_0 \right / (\sigma / r_0)$	0.0108	0.0126	0.0087	0.0058		

LBM-Level Set, Approach 2					
1/h	40	80	160	320	
U _{max}	1.93e-5	8.2e-6	4.6e-6	2.6e-6	
$\Delta P - \sigma/r_0 / (\sigma/r_0)$	0.0277	0.0147	0.0086	0.0060	

Numerical Results

► Static bubble; Case 2

Density ratio : $\frac{\rho_I}{\rho_g} = 1000$ Viscosity ratio : $\frac{\mu_I}{\mu_g} = 100$

► Static bubble; Test Case 2

Pressure and velocity errors

LBM-Level Set, Approach 1

1/h	40	80	160	320
U _{max}	4.7e-6	5.0e-6	3.0e-6	2.1e-6
$\left \bigtriangleup P - \sigma / r_0 \right / (\sigma / r_0)$	0.7520	0.4250	0.1331	0.0249

LBM-Level Set, Approach 2

1/h	40	80	160	320
U _{max}	5.7e-6	4.1e-6	8.4e-7	3.6e-7
$\left \bigtriangleup P - \sigma / r_0 \right / (\sigma / r_0)$	0.1611	0.0211	0.0080	0.0060

technische universität dortmund

► Rising bubble; Test Case 1

"Proposal for quantitative benchmark computations of bubble dynamics" (2007) Hysing, S.; Turek, S.; Kuzmin, D.; Parolini, N.; Burman, E.; Ganesan, S.; Tobiska, L.

see www.featflow.de/benchmarks/

$ ho_{\rm I}/ ho_{\rm g}$	$\mu_{\rm I}/\mu_{\rm g}$	Eo	Re
10	10	10	35

$$Eo = rac{4
ho_{l}gr_{0}^{2}}{\sigma}$$
 , $Re = rac{
ho_{l}\sqrt{g}(2r_{0})^{3/2}}{\mu_{l}}$

► Rising bubble; Test Case 1

Bubble at T = 3, Grid: 160×320

► Rising bubble; Test Case 1

Benchmarking time evolution, 0 < T < 3

▶ Rising bubble; Test Case 1 \Rightarrow LBM-LS Approach 2, grid effect, 0 < T < 3

▶ Rising bubble; Test Case 1 \Rightarrow Benchmark comparison, 320×640 , 0 < T < 3

► Rising bubble; Test Case 1

Error Reduction Rate

1/h	e ₁	ROC1	e ₂	ROC ₂	$\parallel e_{\infty} \parallel$	ROC_∞
			Rise Velocity			
40	0.076750		0.149206		0.177204	
80	0.028549	1.426712	0.053590	1.477261	0.055123	1.684686
160	0.007367	1.954169	0.013609	1.977321	0.024643	1.161464

LBM-Level Set, Approach 1

LBM-Level Set, Approach 2

1/h	e ₁	ROC1	e ₂	ROC ₂	$\parallel e_{\infty} \parallel$	${ m ROC}_\infty$
			Rise Velocity			
40	0.096958		0.051369		0.046389	
80	0.042549	1.188226	0.021663	1.245647	0.020337	1.189679
160	0.013890	1.615036	0.000692	1.644344	0.000757	1.424072

► Rising bubble; Test Case 2

• Rising bubble; Test Case 2 LBM-LS Approach 2, 160×160 , 0 < T < 3

► Rising bubble; Test Case 2

Bubble at T = 3, Grid: 160×320

▶ Rising bubble; Test Case 2 \Rightarrow LBM-LS Approach 2, grid effect, 0 < T < 3

► Rising bubble; Test Case 2 ⇒ Benchmarking the picture norm!

▶ Rising bubble; Test Case 2 \Rightarrow Benchmark comparison, 320×640 , 0 < T < 3

Numerical Results

► Computational Performance

- OpenMP implementation on Intel Xeon 1.65 MHz (up to 20 cores)
- Scaling for moderate Nr. of cores keeps a linear trend
- The modified discretization asks for \approx 40% more computational time
- The level set module only adds \approx 18% of extra computational cost

Summary and Conclusions

- A 2nd order multiphase flow solver is designed by means of coupling LBM and Level set
- Sharp interfaces, low spurious velocities and accurate pressure recovery as compared to monolithic Shan-Chen model
- Large density and viscosity ratios attained using the Averaged-Directional force discretization and MRT collision
- High degree of stability and isotropy via the Averaged-Directional approach
- Maintains the nice properties of LBM; highly scalable for HPC purposes
- Extensive benchmarking; accuracy comparable to that from FEM-based FeatFLOW solutions (www.featflow.de/benchmarks)

Thanks for your attention!

- ▶ Use more robust reinitialization tools for updating the level set
- ▶ Use higher order approximations for normals and curvature
- > Add local multi-block mesh refinements around the interface
- Implementation on graphics processing units (GPU)
- Extend the model towards complex and computationally demanding problems e. g. visco-elastic fluids

The Lattice Boltzmann Method technische universität

The continuous Boltzmann equation discretized in phase space

$$\frac{\partial f_k}{\partial t} + e_k \cdot \nabla f_k = \Omega_c - \frac{F}{\rho} \cdot \nabla_e f$$

Hydrodynamic moments

$$\rho = \sum_{k} f_{k} , \quad \rho u_{i} = \sum_{k} e_{i,k} f_{k}$$

Surface tension boundary condition adds to the N.E. equation via a smeared out delta funcion across the interface Γ

$$\rho(\phi)\partial_t \mathbf{u} + \rho(\phi)\mathbf{u} \cdot \nabla \mathbf{u} + \nabla P - \nabla \cdot \left(\mu(\phi)(\nabla \mathbf{u} + \nabla \mathbf{u}^T)\right) = -\sigma\kappa(\phi)\delta_{\varepsilon}(\phi)\mathbf{n}(\phi)$$

Interface is captured by solving for the implicit level set function

$$\partial_t \phi + \mathbf{u} \cdot \nabla \phi = 0$$
 , $\phi(\mathbf{x}) = 0$ at $X = \Gamma$

 $\boldsymbol{\phi}$ is initialized to and maintained as a "signed distance function"

Normal $\mathbf{n}(\phi)$ and curvature $\kappa(\phi)$ obtained via direct differentiation of ϕ

$$\mathbf{n} = \frac{\nabla \phi}{|\nabla \phi|} \qquad , \qquad \kappa = \nabla \cdot \mathbf{n}$$

► Multiple Relaxation Time LBM

• transform the distribution functions into the moment space

$$\hat{f} = \mathbb{T}f = (\rho, e, e^2, \rho u_x, q_x, \rho u_y, q_y, \sigma_{xx}, \sigma_{yy})^T$$

modify the collision operator for the moment space

$$\Omega = \Lambda(f - f^{eq}) \Rightarrow \Omega = \mathbb{T}^{-1} \hat{\Lambda}(\hat{f} - \hat{f}^{eq})$$

moments relax through their individual relaxation times

$$\hat{\Lambda} = \mathsf{diag}\{ \textit{s}_{0}, \textit{s}_{1}, \textit{s}_{2}, \textit{s}_{3}, \textit{s}_{4}, \textit{s}_{5}, \textit{s}_{6}, \textit{s}_{7}, \textit{s}_{8} \}$$

proper choice of relaxation times is crucial

$$\hat{\Lambda} = \mathsf{diag}\{1, s_1, s_2, 1, s_4, 1, s_4, s_7, s_7\}$$

$$s_1 = 0.3$$
 , $s_2 = 1$, $s_4 = 0.7$, $s_7 = 1/ au$

► Static bubble; Case 1

Pressure profile across the interface

▶ Rising bubble; Test Case 1 \Rightarrow LBM-LS Approach 1, grid effect, 0 < T < 3

Numerical Results

► Relaxation time study

Rising Bubble

Static Bubble

 S_1 corresponds to the energy mode of the flow. A good choice is to under-relax for faster relaxation towards equilibrium!