

Benchmark computations for high density and viscosity ratio rising bubble problems using coupled Lattice Boltzmann-Level Set Methods

> Amin Safi Stefan Turek

Institute for Applied Mathematics (LSIII), TU Dortmund

July 16, 2014, New York, USA

Multiphase Lattice Boltzmann Models

Chemical potential model (He et al. 1999 & Lee and Lin 2005)

Coupled LBM-Levelset schemes

One-Fluid Approach Pressure Evolution Approach

J technische universität dortmund

Air bubble rising in water, Eo = 100, Re = 16

One-Fluid Coupled Approach

• Turn the N.E. into a desired form for LBM (Mehravaran, 2011)

$$\partial_t \mathbf{u} + \mathbf{u} \cdot \nabla \mathbf{u} + \frac{\nabla P}{\rho(\phi)} - \frac{\nabla \cdot \left(\mu(\phi)(\nabla \mathbf{u} + \nabla \mathbf{u}^T)\right)}{\rho(\phi)} = -\frac{\sigma \kappa(\phi) \mathbf{n}(\phi) \delta_{\varepsilon}(\phi)}{\rho(\phi)}$$

• Assume virtual variables $\bar{\rho} = 1$ and $\bar{\mu} = \mu/\rho$. Move $\frac{\nabla P}{\rho(\phi)}$ to the rhs

$$\bar{\rho}\partial_t \mathbf{u} + \bar{\rho}\mathbf{u}\cdot\nabla\mathbf{u} + \nabla P - \bar{\mu}(\phi)\nabla\cdot(\nabla\mathbf{u} + \nabla\mathbf{u}^T) = \bar{F}$$

$$\bar{F} = -\frac{\sigma\kappa(\phi)\mathbf{n}(\phi)\delta_{\varepsilon}(\phi)}{\rho(\phi)} + \frac{\nabla\mu(\phi)\cdot(\nabla\mathbf{u}+\nabla\mathbf{u}^{T})}{\rho(\phi)} + \nabla P\left(1-\frac{1}{\rho(\phi)}\right)$$

• Solve LBE for f_k with F

$$\frac{\partial f_k}{\partial t} + e_k \cdot \nabla f_k = \frac{1}{\tau} (f_k - f_k^{eq}) + \frac{(e_k - \mathbf{u}) \cdot \overline{F}}{\overline{\rho} c_s^2} f_k^{eq}$$

Pressure Evolution Coupled Appr. U technische universität dortmund

• Intermolecular force (*He et al. 1999*)

 $F = \nabla \rho(\phi) c_s^2 - (\nabla p - F_s)$ where $F_s = \sigma \kappa(\phi) \mathbf{n}(\phi) \delta_{\varepsilon}(\phi)$

• Define a pressure evolution distribution gk

$$g_k = f_k c_s^2 + (p - \rho(\phi)c_s^2)w_k$$

Rewrite LBE for evolution of pressure

$$rac{\partial g_k}{\partial t} + e_k \cdot
abla g_k = rac{1}{ au} (g_k - g_k^{eq}) + (e_k - \mathbf{u}) \cdot (
abla
ho(\phi) c_s^2 (\Gamma_k - w_k) - F_s)$$

where
$$\Gamma_k = f_k^{eq} / \rho(\phi)$$

Coupled Approaches: Summary

- ► One-Fluid (Approach 1)
 - One-fluid LBE for f_k
 - Crank-Nicolson in time and mixed directional differencing in space

technische universität

dortmund

• Obtain velocity and pressure as usual

$$\bar{
ho}\mathbf{u} = \sum_k \mathbf{e}_{k,i} f_k \quad , \quad P = \bar{
ho}c_s^2 = \sum_k f_k c_s^2$$

- Pressure Evolution (Approach 2)
 - Write pressure evolution LBE for g_k
 - Crank-Nicolson in time and mixed directional differencing in space
 - Obtain velocity and pressure as momemts of g_k

$$\rho(\phi)\mathbf{u} = \frac{1}{c_s^2} \sum_k e_{k,i} \bar{g}_k - \frac{\delta t}{2} F_s \quad , \quad p = \sum_k \bar{g}_k + \frac{\delta t}{2} \mathbf{u} \cdot \nabla \rho c_s^2$$

► Solving the Level Set equation

 $\partial_t \phi + \mathbf{u} \cdot \nabla \phi = 0$ where $\phi(\mathbf{x}) = 0$ at $X = \Gamma$

- 2nd order Runge-Kutta time integration
- 5th order WENO finite difference for the convective term
- Weighted reinitialization to the approximated signed distance function every $\triangle T$

$$\phi_{new} = \alpha \phi_{dist} + (1 - \alpha) \phi_{old}$$

Regularized *Heaviside function H(φ)*, for density and viscosity profiles

$$\rho(\phi) = \rho_I H(\phi) + \rho_g (1 - H(\phi))$$
$$\mu(\phi) = \mu_I H(\phi) + \mu_g (1 - H(\phi))$$

▶ Rising bubble; Benchmarking Test Cases

"Proposal for quantitative benchmark computations of bubble dynamics" (2007) Hysing, S.; Turek, S.; Kuzmin, D.; Parolini, N.; Burman, E.; Ganesan, S.; Tobiska, L.

see www.featflow.de/benchmarks/

	$ ho_{\rm I}/ ho_{\rm g}$	$\mu_{\rm I}/\mu_{\rm g}$	Ео	Re
Test case 1	10	10	10	35
Test case 2	1000	100	125	35

$$Eo = rac{4
ho_l g r_0^2}{\sigma}$$
 , $Re = rac{
ho_l \sqrt{g} (2r_0)^{3/2}}{\mu_l}$

► Rising bubble; Test Case 1

Benchmarking time evolution, 0 < T < 3

▶ Rising bubble; Test Case 1 \Rightarrow LBM-LS Approach 1, grid effect, 0 < T < 3

▶ Rising bubble; Test Case 1 \Rightarrow LBM-LS Approach 2, grid effect, 0 < T < 3

► Rising bubble; Test Case 2 ⇒ Benchmarking the picture norm!

▶ Rising bubble; Test Case 2 \Rightarrow LBM-LS Approach 1, grid effect, 0 < T < 3

▶ Rising bubble; Test Case 2 \Rightarrow Benchmark comparison, 320×640 , 0 < T < 3

Parallel Implementation

► CPU Implementation

- Intel C compiler + OpenMP directives for shred-memory
- LBM implemented using Array of Structures (AOS)

Compute platform	No. of Cores	${\sf Max.} \ {\sf Bandwidth(GB/s)}$	Max. GFLOPS	Apprx. price (USD)
Intel Xeon X5680	24	32	20	1500

► GPU Implementation

- nVIDIA's CUDA-C for many core GPUs
- LBM implemented using Structure of Arrays (SOA)
- Shared memory for LBM's streaming step
- Constant cache for fast level set reinitialization

Compute platform	No. of Cores	Max. Bandwidth(GB/s)	Max. GFLOPS	Apprx. price (USD)
nVIDIA Tesla C2070	14(x32)	144	515	1900

Parallel Implementation

► Computational Performance

- Favourable scaling in both weak and strong senses
- GPU vs. CPU performance
- GPU code is in average 5.5 times faster than CPU

Strong Scaling (160²); Intel Xeon

Weak Scaling; Tesla vs. Intel Xeon

- Introduced two coupled 2nd order multiphase flow solvers
- Large density and viscosity ratios; High degree of stability and isotropy
- One-Fluid formulation coupled with level set provides sharp interfaces
- Pressure evolution scheme provides diffused interfaces
- Extensive benchmarking; accuracy of One-Fluid scheme comparable to FEM-based FeatFLOW solutions (www.featflow.de/benchmarks)
- Optimized CPU and GPU implementations; 5.5X speed-up on Tesla GPUs

Acknowledgement

This work was supported (in part) by the German Research Foundation (DFG) through the Priority Programme 1648 Software for Exascale Computing (SPPEXA): projects TU 10248-1 and GO 17582-1.

German Priority Programme 1648 Software for Exascale Computing

Thanks for your attention!

