
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 No. 642         April 2021 
 
 

Convergence Analysis of a Local Stationarity  
Scheme for Rate-Independent Systems  

and Application to Damage 
 

M. Sievers 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ISSN: 2190-1767 



Noname manuscript No.
(will be inserted by the editor)

Convergence Analysis of a Local Stationarity Scheme for
Rate-Independent Systems and Application to Damage

Michael Sievers

Received: date / Accepted: date

Abstract This paper is concerned with an approximation scheme for rate-independent sys-
tems governed by a non-smooth dissipation and a possibly non-convex energy functional.
The scheme is based on the local minimization scheme introduced in [EM06], but relies on
local stationarity of the underlying minimization problem. Under the assumption of Mosco-
convergence for the dissipation functional, we show that accumulation points exist and are
so-called parametrized solutions of the rate-independent system. In particular, this guaran-
tees the existence of parametrized solutions for a rather general setting. Afterwards, we apply
the scheme to a model for the evolution of damage.

Keywords Rate independent evolutions · parametrized solutions · unbounded dissipation ·
existence · finite elements · semi-smooth Newton methods · damage

1 Introduction

The effect of rate-independence occurs in various different areas of mechanics. This con-
cerncs for example the field of elastoplasticity, damage and shape-memory, to only mention
a few (see, e.g., [KRZ13, FM06, Mai04, AMS08, MM09]). One main characteristic of such
systems is the fact that changes in the state are solely driven by an external force. What
is more, as the name already suggests, the system is independent of the rate at which the
loading is applied, that is to say, whenever z is a solution to some external load `, then z ◦ α
is a solution to ` ◦ α for every monotone increasing function α.
In this paper we consider rate-independent systems that can be described by the following
differential inclusion

0 ∈ ∂R(ż(t)) +DzI(t, z(t)) a.e. in [0, T ] . (RIS)
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Onemay see this inclusion as a balance of forces, i.e. the dissipative force ∂R and the potential
force−DzI(t, z) must annihilate each other. Implicitly hidden within this formulation is the
fact that the potential force as well as the dissipative force result from a (possibly non-convex)
energy functional I and a dissipation functionalR. While we postpone the exact assumptions
to Section 2, let us mention at this point that the characteristic feature of the formulation in
(RIS) is the positive 1-homogeneity of the dissipation R. It is this property which induces
that (RIS) is indeed rate-independent. However, the combination of non-convex energies and
positive 1-homogeneous dissipations allow the formation of abrupt changes in the state, even
if the external forces evolve smoothly. Hence, suitable notions of solutions for (RIS) need to
be able to handle temporal discontinuities. One such concept are the so-called parametrized
solutions, whose exact definition is given in Definition 2.4. Loosely speaking, such solutions
are considered as curves in the extended phase space [0, T ] × Z and parametrized by arc-
length. The jump path from one state to the other thus becomes an integral part of the solution
itself. This idea was first applied in [MMMG94, MSGMM95, Bon96] for systems with dry
friction and later on generalized in [EM06] and [MRS09, MZ14] for finite and infinite
dimensional problems, respectively. Particularly, in [EM06], the authors introduced the
following time-incremental local minimization scheme for the approximation of parametrized
solutions:

zk ∈ arg min{I(tk−1, z) +R(z − zk−1) : z ∈ Z, ‖z − zk−1‖V ≤ τ}, (1.1a)
tk = min{tk−1 + τ − ‖zk − zk−1‖V , T}. (1.1b)

It was moreover shown that, for τ ↘ 0, subsequences of discrete solutions generated by (1.1)
(weakly) converge to a parametrized solution. While the authors in [EM06] considered a
finite dimensional setting, in [Neg14, MS17] and particularly [Kne19] the results have been
generalized to the infinite dimensional problems at least for semilinear energies. Furthermore,
in [MS19a] the scheme was combined with a discretization in space. In this paper we
extend these result to more general energy and dissipation functionals on the one side and,
additionally, build the scheme upon stationary points rather then minimizer of (1.1). The
actual scheme (LISS) is presented in Section 3. Let us underline that the consideration of
stationary points instead of (global) minimizers is of major importance from a numerical
point of view, since optimization algorithms can in general only compute stationary points.
What is more, we incorporate unbounded dissipations into our convergence analysis, which
allows us to apply our scheme to a model for the evolution of damage.

Now, let us shortly outline the paper. In Section 2, we introduce our notation and
state the assumptions on the energy and the dissipation functional. Moreover, we recall the
precise notion of parametrized solutions. Section 3 is then devoted to the presentation of the
actual local stationarity scheme and its convergence analysis. Particularly, since we allow the
dissipation to be approximated by some functionalRδ , we provide suitably adapted a-priori
estimates for the discrete solution which still meets a discrete version of an energy-equality.
Building on that, we derive our main convergence result in Theorem 3.14. In Section 4, we
then focus on a rate-independent damage model and describe the algorithmic realization of
the discrete stationarity scheme based on a semismooth Newton-method. Finally, we present
a numerical example and compare it with results from the literature.

2 Basic notations and standing assumptions

Let us start with some basic notation used throughout the paper. In the following, C > 0
always stands for a generic constant. Moreover, given two normed linear spaces X,Y , we
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denote by 〈·, ·〉X∗,X the dual pairing and suppress the subscript, if there is no risk for
ambiguity. By ‖ · ‖X , we denote the norm in X and L(X,Y ) is the space of linear and
bounded operators fromX to Y . IfX is even a Hilbert space, we write JX : X∗ → X for the
Riesz isomorphism. Furthermore, BX(x, r) is the open ball inX around x ∈ X with radius
r > 0. Given a convex functional f : X → R∪ {∞}, we denote the (convex) subdifferential
of f at x by ∂f(x) ⊂ X∗ and its conjugate functional by f∗ : X∗ → R ∪ {∞}. Finally,
|Ω| stands for the Lebesgue measure of a set Ω ⊂ Rd, d ∈ N and Rd≥0 describes the set of
vectors in Rd whose components are greater or equal to 0.

2.1 Assumptions on the data

Let us now introduce the assumptions on the quantities in (RIS). We assume that the under-
lying spaces X ,V and Z are Banach spaces with Z ↪→c,d V ↪→ X . Moreover, Z and V are
required to be reflexive and separable.

Energy
The energy I(t, z) is supposed to fulfill:
(E1) I ∈ C1([0, T ]×Z;R).
(E2) For all t ∈ [0, T ] the energy I(t, ·) is weakly lower semicontinuous and coercive on Z

with I(t, z) ≥ c1‖z‖Z − c0 for some constants c0, c1 > 0.
(E3) There exists β > 0 and µ ∈ L1(0, T ) such that for all t ∈ [0, T ]:

|∂tI(t, z)| ≤ µ(t)(I(t, z) + β) ∀z ∈ Z.

(E4) For all sequences tk → t and zk ⇀ z in Z it holds:

∂tI(tk, zk)→ ∂tI(t, z).

Note that the combination of (E1)–(E3) already yields that, for all sequences tk → t and
zk ⇀ z in Z , it holds

I(t, z) ≤ lim inf
k→∞

I(tk, zk). (2.1)

Moreover, we assume that I satisfies the following Gårding-like inequality:

∀z1, z2 ∈ Z with ‖z1‖Z , ‖z2‖Z ≤ ρ there exists c(ρ) ≥ 0 :

〈DzI(t, z1)−DzI(t, z2), z1 − z2〉Z∗,Z ≥ α‖z1 − z2‖2Z − c(ρ)‖z1 − z2‖
2
V .

(2.2)

With respect to the time component we require

∀z, v ∈ Z with ‖z‖Z ≤ ρ there exists C(ρ) ≥ 0 :

〈DzI(t, z)−DzI(s, z), v〉Z∗,Z ≤ C(ρ)|t− s|‖v‖Z .
(2.3)

Finally, we assume that DzI is (strong,weak)-weak-continuous, i.e.,

for all sequences tk → t, and zk ⇀ z in Z : DzI(tk, zk) ⇀ DzI(t, z) in Z∗. (2.4)

The above assumptions combined with Gronwall’s lemma allow us to obtain the following
estimates that hold for all t, s ∈ [0, T ], z ∈ Z:

I(t, z) + β ≤ (I(s, z) + β) exp

(
|
∫ t

s

µ(r) dr|
)

(2.5)

and |∂tI(t, z)| ≤ µ(t)(I(s, z) + β) exp

(
|
∫ t

s

µ(r) dr|
)
. (2.6)

An energy functional that satisfies all assumptions made here is given in Section 4.
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Dissipation
Regarding the dissipation R : X → [0,∞], we assume that

(R1) R is proper, convex and lower semicontinuous,
(R2) R is positively 1-homogeneous, i.e., R(λv) = λR(v) ∀v ∈ X , λ > 0,
(R3) ∃κ > 0 : κ ‖v‖X ≤ R(v).

Remark 2.1. Note that we allow for an unbounded dissipation, which is essential for the
application of our method to the damage model in Section B.

Combining the convexity and the positive 1-homogeneity of R, it is easy to verify the
following triangle inequality

R(u− w) ≤ R(u− v) +R(v − w) ∀u, v, w ∈ Z. (2.7)

In factwe allow for an approximation of the "original" dissipation in our convergence analysis.
In general, this corresponds to an approximation using e.g. finite elements. However, we will
keep the setting general here, that is, we assume Rδ : X → [0,∞] satisfies the same
assumptions as R, i.e. (R1)-(R3), and Mosco-converges to R w.r.t. the space Z in the
following sense:

for all sequences zδ ⇀ z in Z (for δ → 0) : lim inf
δ→0

Rδ(zδ) ≥ R(z) (2.8a)

∀z ∈ Z ∃ a sequence zδ → z in Z (for δ → 0) : lim sup
δ→0

Rδ(zδ) ≤ R(z) (2.8b)

Remark 2.2. Note that from now on, we consider R and Rδ , respectively, as mapping from
Z into [0,∞]. In fact, we will subsequently always evaluateR at a point inZ . Thus, the space
X is not used in the convergence analysis. Moreover, the choiceRδ = R (i.e., no additional
approximation of R) is clearly possible and fulfills all these assumptions. Another example
that complies with all the assumptions (R1)-(R3) and (2.8) but satisfies Rδ 6= R is given in
Section 4.2 below.

Remark 2.3. In view of the previous Remark 2.2, for any z ∈ Z the subdifferential ∂Rδ(z)
is subsequently considered as a subset of Z∗, i.e., by Lemma A.1 we have ξ ∈ ∂Rδ(z) iff

Rδ(w) ≥ 〈ξ, w〉Z∗,Z ∀w ∈ Z
Rδ(z) = 〈ξ, z〉Z∗,Z .

In particular, in order to ease notation, we will refrain from using ∂ZRδ(z) keeping in mind
that ∂Rδ(z) ⊂ Z∗. Clearly, by the convexity and lower semicontinuity ofRδ , the set ∂Rδ(0)
is also weakly closed in Z∗.

Initial state
The initial value z0 is supposed to satisfy z0 ∈ Z and the local stability −DzI(0, z0) ∈
∂R(0). Moreover, we assume that the approximations of the initial value as well satisfy
−DzI(0, zδ0) ∈ ∂Rδ(0) for all δ > 0 and that zδ0 is bounded in Z independent of δ.
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2.2 Definition of parametrized solutions

We now turn to the actual definition of the so-called parametrized solutions. As indicated
in the introduction, this concept takes care of possible jump paths and relies on an energy
identity.

Definition 2.4. Let an initial value z0 ∈ Z be given. We call a tuple (t̂, ẑ) parametrized
solution of (RIS), if there exists an artificial end timeS ≥ T such that the following conditions
are satisfied:

(i) Regularity:

t̂ ∈W 1,∞(0, S), ẑ ∈W 1,∞(0, S;V) ∩ L∞(0, S;Z) (2.9)

(ii) Initial and end time condition:

t̂(0) = 0, ẑ(0) = z0, t̂(S) = T. (2.10)

(iii) Complementarity-like relations:

t̂′(s) ≥ 0, t̂′(s) + ‖ẑ′(s)‖V ≤ 1, (2.11a)
t̂′(s) distV∗{−DzI(t̂(s), ẑ(s)), ∂R(0)} = 0 f.a.a. s ∈ (0, S), (2.11b)

where distV∗{η, ∂R(0)} = inf{‖η − w‖V∗ : w ∈ ∂R(0)}, see also Lemma A.2.
(iv) Energy identity:

I(t̂(s), ẑ(s)) +

∫ s

0

R(ẑ′(σ)) + ‖ẑ′(σ)‖V distV∗{−DzI(t̂(σ), ẑ(σ)), ∂R(0)}dσ

= I(0, z0) +

∫ s

0

∂tI(t̂(σ), ẑ(σ))t̂′(σ) dσ ∀ s ∈ [0, S].

(2.12)

If, in addition to the second inequality in (2.11a), there is a constant γ > 0 such that t̂′(s) +
‖ẑ′(s)‖V > γ f.a.a. s ∈ (0, S), then the solution is called non-degenerate parametrized
solution, otherwise we call it degenerate parametrized solution.

We point out that it is always possible to rescale the artificial time in order to obtain a
normalized parametrized solution, where t̂′(s) + ‖ẑ′(s)‖V = 1 f.a.a. s ∈ (0, S). The key
idea here is to cut out all intervals where t′(s)+‖z′(s)‖V = 0 and to scale the artificial time
appropriately, see, e.g., [Sie20, Lem. A.4.3]. Moreover, let us mention that the regularity
conditions in our definition of parametrized solutions are chosen in such a way, that all terms
contained are well-defined. Depending on the actual setting, particularly the choice ofR and
I, there might exist slightly different requirements, see, e.g., [MRS16, Def. 4.2].

3 Local stationarity scheme

The ultimate goal of this section is to prove that the subsequent algorithm, which is based
on the local incremental minimization scheme (1.1), provides an approximation scheme for
parametrized solutions. The difference compared to (1.1) is that we search for stationary
points of the constrained problem rather than global minima, see (alg1). Thus, for a given
time-discretization parameter T ≥ τ > 0, the algorithm reads as follows:
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Algorithm (LISS).

1: Let zδ0 ∈ Z be given with −DzI(0, zδ0) ∈ ∂Rδ(0). Set t0 = 0, and k = 1.
2: while tτ,δk < T do
3: Compute a stationary point zτ,δk , i.e.,

0 ∈ ∂Z(Rδ + Iτ )(zτ,δk − zτ,δk−1) +DzI(tτ,δk−1, z
τ,δ
k ) (alg1)

with the indicator function Iτ (see (A.2)), which, additionally, satisfies

I(tτ,δk−1, z
τ,δ
k ) +Rδ(z

τ,δ
k − zτ,δk−1) ≤ I(tτ,δk−1, z

τ,δ
k−1). (alg2)

4: Time update:
tτ,δk = tτ,δk−1 + τ − ‖zτ,δk − zτ,δk−1‖V. (alg3)

5: Set k → k + 1.
6: end while

Note that merely for technical reasons, we do not use the "min" from (1.1b) in the
time-update. In addition, the notation ∂Z is used here only once more to highlight that
the subdifferential is in fact calculated in terms of the space Z , see also Remark 2.3. The
proposed method is closely related to (1.1), since a local minimizer of

min{I(tτ,δk−1, z) +Rδ(z − z
τ,δ
k−1) : z ∈ Z, ‖z − zτ,δk−1‖V ≤ τ} (3.1)

necessarily satisfies (alg1). Moreover, thanks to the assumptions on I and Rδ , in particular
weak lower semicontinuity, the existence of a global minimum of (3.1) and therefore also
the existence of a stationary point fulfilling (alg2) is guaranteed by the direct method in
the calculus of variations. The reason for investigating (LISS) instead of (1.1), is the fact
that a numerical algorithm for solving (1.1a) or rather (3.1) naturally provides a stationary
point zτ,δk that satisfies I(tτ,δk−1, z

τ,δ
k ) +Rδ(z

τ,δ
k − zτ,δk−1) ≤ I(tτ,δk−1, z

τ,δ
k−1) but, in case of a

nonconvex energy, is not guaranteed to be a global optimum of (1.1a) and (3.1), respectively.
Moreover, since the concept of parametrized solutions is based on a local stability condition,
it is consistent to look for locally stable points, which are exactly the stationary points of
(1.1a). Despite its necessity for the convergence analysis, the inequality in (alg2) is also
physically meaningful since it enforces the system to look for energetically preferable states,
i.e., states with a lower energy cost. Concerning the exploration of this algorithm, particularly
with a view to convergence, we proceed as follows: We start with characterizing properties
of the stationary points. Afterwards, we turn to the essential a priori estimates that will allow
a passage to the limit in the discrete version of the energy identity in (2.12), which is deduced
in Lemma 3.10. The limit procedure itself is elaborated in the final Section 3.4.

3.1 Approximate discrete parameterized solution

The foundation for both, the a priori estimates and the discrete version of the energy identity,
is given by the following Lemma 3.1. It provides various properties of a stationary point zτ,δk
in (alg1) and shows some similarities with the complementarity in (2.11). Indeed, we will
see that one can interpret the stationarity condition as a discrete version of (2.11).
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Lemma 3.1 (Discrete optimality System). Let k ≥ 1 and zτ,δk be an arbitrary stationary
point in the sense of (alg1)with associated tτ,δk−1 given by (alg3). Then the following properties
are satisfied: There exists a subgradient ζτ,δk ∈ ∂Iτ (zτ,δk − zτ,δk−1) such that

‖ζτ,δk ‖V∗(‖z
τ,δ
k − zτ,δk−1‖V − τ) = 0, (3.2a)

τ distV∗{−DzI(tτ,δk−1, z
τ,δ
k ), ∂Rδ(0)} = 〈ζτ,δk , zτ,δk − zτ,δk−1〉V∗,V , (3.2b)

Rδ(z
τ,δ
k − zτ,δk−1) + τ distV∗{−DzI(tτ,δk−1, z

τ,δ
k ), ∂Rδ(0)}

= 〈−DzI(tτ,δk−1, z
τ,δ
k ), zτ,δk − zτ,δk−1〉Z∗,Z

}
(3.2c)

Rδ(v) ≥ −〈ζ
τ,δ
k +DzI(tτ,δk−1, z

τ,δ
k ), v〉Z∗,Z ∀v ∈ Z. (3.2d)

Herein, distV∗{ · , ∂Rδ(0)} denotes the extended distance as defined in Lemma A.2

Proof. The proof is given, e.g., in [MS19a, Sie20] under a slightly different setting. For
convenience of the reader, we thus repeat the main steps. To shorten the notation we also set
Rτ,δ = Rδ + Iτ , cf. (A.3), and suppress the superscripts τ, δ for the iterates throughout the
proof. Thanks to a classical result of convex analysis, (alg1) is equivalent to

Rτ,δ(zk − zk−1) +R∗τ,δ(−DzI(tk−1, zk))

= 〈−DzI(tk−1, zk), zk − zk−1〉Z∗,Z
(3.3)

Since ‖zk − zk−1‖V ≤ τ we have

Rτ,δ(zk − zk−1) = Rδ(zk − zk−1). (3.4)

Moreover, from Lemma A.2, we infer

R∗τ,δ(−DzI(tk−1, zk)) = τ distV∗{−DzI(tk−1, zk), ∂Rδ(0)}.

Inserting this together with (3.4) in (3.3) gives (3.2c).
To prove (3.2a), we consider (alg1) once more. Since 0 ∈ dom(Rδ) ∩ dom(Iτ ) and Iτ is
continuous in 0, the sum rule for convex subdifferentials is applicable giving the existence
of a ζk ∈ ∂Iτ (zk − zk−1), such that

0 ∈ ∂Rδ(zk − zk−1) + ζk +DzI(tk−1, zk) (3.5)

and thereby

Rδ(zk − zk−1) +R∗δ(−ζk −DzI(tk−1, zk))

= −〈ζk +DzI(tk−1, zk), zk − zk−1〉V∗,V
= −〈ζk, zk − zk−1〉V∗,V − 〈DzI(tk−1, zk), zk − zk−1〉Z∗,Z .

A comparison with (3.2c), shows that

R∗δ(−ζk −DzI(tk−1, zk))

= τ distV∗{−DzI(tk−1, zk), ∂Rδ(0)} − 〈ζk, zk − zk−1〉V∗,V .
(3.6)

Now, the fact that ζk ∈ ∂Iτ (zk−zk−1), and the characterization in Lemma A.3 immediately
yields (3.2a). Next, we verify (3.2b). For this purpose, we observe that by assumption Rδ is
also convex and positively 1-homogeneous so that Lemma A.1 implies ∂Rδ(zk − zk−1) ⊂
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∂Rδ(0). The characterization of the conjugate functional from Lemma A.1 in combination
with (3.5) thus yields

−ζk −DzI(tk−1, zk) ∈ ∂Rδ(zk − zk−1) ⊂ ∂Rδ(0) (3.7)
=⇒ R∗δ(−ζk −DzI(tk−1, zk)) = 0. (3.8)

Inserting this into (3.6) we arrive at (3.2b). Finally, (3.2d) is an immediate consequence of
(3.7).

ut

Remark 3.2. In fact, since (alg1) is equivalent to the properties (3.2a)–(3.2d) it might be
practical to exploit the characterization via (3.2a)–(3.2d) for the actual numerical realization
of (LISS) instead of (alg1) in order to calculate a stationary point. Moreover, we will solely
build upon this discrete optimality system (and the inequality (alg2)) for the convergence
analysis.

Let us take a further look at (3.2d). Exploiting the properties of ζτ,δk from (A.6) it is easy
to see that 〈ζτ,δk , zτ,δk − zτ,δk−1〉V∗,V = τ‖ζτ,δk ‖V∗ . Inserting this into (3.2d) we find that

distV∗{−DzI(tτ,δk−1, z
τ,δ
k ), ∂Rδ(0)} = ‖ζτ,δk ‖V∗ .

Combining this with (3.2a) and the time-update tτ,δk − t
τ,δ
k−1 = τ −‖zτ,δk −z

τ,δ
k−1‖V ≥ 0 from

(alg3) we therefore obtain

tτ,δk − t
τ,δ
k−1

τ
≥ 0 ,

tτ,δk − tτ,δk−1

τ
+
‖zτ,δk − zτ,δk−1‖V

τ
= 1(

tτ,δk − t
τ,δ
k−1

τ

)
distV∗{−DzI(tτ,δk−1, z

τ,δ
k ), ∂Rδ(0)} = 0

(3.9)

which is a discrete version of the complementarity condition in the definition of parametrized
solutions, cf. (2.11).

3.2 A-priori estimates

Based on the previous Lemma 3.1, we subsequently provide several a priori estimates that
will allow a passage to the limit in the discrete energy identity in Section 3.3 and 3.4,
respectively. Furthermore, we show that the discrete physical time tτ,δk given the time update
in (alg3) reaches the final time T in a finite number of iterations, see Proposition 3.7 below.
We start with the following collection of results, whose proofs are basic so that we refer to
[MS19a, Kne19] here. Let us, nevertheless, remark that these a priori estimates are the only
point where one needs to exploit that zτ,δk is energetically preferred, that means (alg2) holds,
and not only a stationary point satisfying (3.2a)-(3.2d).
Lemma 3.3 (Boundedness for energy and dissipation). For all δ, τ > 0 and all k ∈ N, it
holds

I(tτ,δk , zτ,δk ) +
k∑
i=1

Rδ(z
τ,δ
i − zτ,δi−1) ≤ (β + I(0, zτ,δ0 )) exp

(∫ T

0

µ(s) ds

)
, (3.10)

sup
δ,τ>0, k∈N

‖zτ,δk ‖Z <∞. (3.11)

where β and µ are the components from Section 2.
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Proof. The proof mainly relies on the estimates in (2.5) - (2.6) and the coercivity of the
energy from assumption (E2), cf. [MS19a, Kne19]. ut

Remark 3.4. As a consequence of Lemma 3.3 and the boundedness of zδ0 by assumption we
have that zτ,δk ∈ BZ(0, R) for some R > 0 independent of τ and δ.

The estimate (3.11) will, on the one hand, provide us with a uniform L∞-bound for the
linear interpolants and, on the other hand, allows us to obtain a bound for the derivativeDzI.
In preparation for that, we derive the following:

Lemma 3.5. For every ρ > 0, there exists C1(ρ), C2(ρ) > 0, such that

〈DzI(t, v)−DzI(s, w), v − w〉Z∗,Z

≥ α

2
‖v − w‖2Z − C1(ρ) ‖v − w‖V Rδ(v − w)− C2(ρ) (t− s)2 (3.12)

for all v, w ∈ BZ(0, ρ) and t, s ∈ [0, T ].

Proof. According to Ehrling’s lemma, for every ε > 0, there exists a constant Cε such that

‖z‖V ≤ ε‖z‖Z + Cε‖z‖X ∀ z ∈ Z. (3.13)

Combining the Garding-like inequality from (2.2) with (2.3) we find

〈DzI(t, v)−DzI(s, w), v − w〉Z∗,Z
≥ α‖v − w‖2Z − c(ρ)‖v − w‖

2
V − C(ρ)|t− s|‖v − w‖Z . (3.14)

To proceed, we consider each of the two last terms separately. For the first one, we exploit
(3.13) for ε = α

4cVc(ρ)
(recall that cV denotes the embedding constant of Z ↪→ V) to obtain

c(ρ)‖v − w‖2V
≤ (

α

4cV
‖v − w‖Z + C(α, ρ, cV)‖v − w‖X ) ‖v − w‖V

≤ α

4
‖v − w‖2Z + C(α, ρ, cV , κ)Rδ(v − w)‖v − w‖V

(3.15)

where we used the lower bound forRδ from (R3) and the embedding Z ↪→ V in the last line.
Next, we turn to the last term in (3.14). For this, we take advantage of Young’s inequality
which gives

C(ρ) |t− s| ‖v − w‖Z ≤
α

4
‖v − w‖2Z + C(α, ρ) (t− s)2. (3.16)

Inserting (3.15) and (3.16) in (3.14) we eventually arrive at (3.12).
ut

Clearly, from the uniform boundedness of the iterates and ‖zk+1 − zk‖V ≤ τ we can
conclude the following result.

Corollary 3.6. For all iterates zk ∈ Z there exists constants C1, C2 > 0 such that

〈DzI(tk, zk+1)−DzI(tk−1, zk), zk+1 − zk〉Z∗,Z

≥ α

2
‖zk+1 − zk‖2Z − C1 τ Rδ(zk+1 − zk)− C2 τ (tk − tk−1). (3.17)
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Proof. By Remark 3.4 all iterates are bounded by some constant, i.e., zk ∈ BZ(0, R) for
some R > 0 for every k ∈ N. Hence, combining (3.12) with ‖zk+1 − zk‖V ≤ τ and
tk − tk−1 ≤ τ , we immediately have (3.17). ut

One major issue in the convergence analysis for parametrized solutions concerns the
boundedness of the artificial time, even in the continuous setting, see, e.g., the discussion
in [MR15, p. 218]. For the discrete counterpart, the artificial time reads sn =

∑n
k=1 tk −

tk−1 +‖zk−zk−1‖V . In order to bound this term, we need to estimate
∑n
k=1‖zk−zk−1‖V ,

which is purpose of the next proposition. Moreover, we will show that the physical end time
T is reached after a finite number of iterations, which guarantees that the algorithm finishes
in a finite number of steps.

Proposition 3.7 (Bound on artificial time). For every parameter δ, τ > 0 there exists an
index N(τ, δ) ∈ N such that tτ,δN(τ,δ) ≥ T . Moreover, there are constants C1, C2, C3 > 0

independent of τ, δ such that, for all δ, τ > 0, it holds

N(τ,δ)∑
i=1

‖zτ,δi − zτ,δi−1‖V ≤ C1, (3.18)

N(τ,δ)∑
i=1

‖zτ,δi − zτ,δi−1‖
2
Z ≤ C2 τ, (3.19)

and distV∗{−DzI(tk−1, zk), ∂Rδ(0)} ≤ C3 ∀ k = 0, ..., N(τ, δ). (3.20)

Proof. The arguments are similar to [Kne19, MS19a]. However, since there are some sig-
nificant differences, particularly the estimate (3.19), we present the arguments in detail. Let
k ∈ N be arbitrary. For convenience, we again suppress the superscript τ, δ throughout the
proof, except for zτ,δ0 in order to avoid confusion with the initial data. We start by testing
(3.2d) with v = zk+1 − zk to obtain

Rh(zk+1 − zk) ≥ −〈ζk, zk+1 − zk〉V∗,V − 〈DzI(tk−1, zk), zk+1 − zk〉Z∗,Z . (3.21)

Inserting (3.2b) into (3.2c) and rewriting this identity for the index k+ 1 (instead of k) gives
Rh(zk+1−zk)+〈ζk+1, zk+1−zk〉V∗,V = 〈−DzI(tk, zk+1), zk+1−zk〉Z∗,Z . Subtracting
this from (3.21) implies

0 ≥ 〈ζk+1, zk+1 − zk〉V∗,V − 〈ζk, zk+1 − zk〉V∗,V
+ 〈DzI(tk, zk+1)−DzI(tk−1, zk), zk+1 − zk〉Z∗,Z .

Thanks to the constraint ‖zk+1 − zk‖V ≤ τ and (A.6), that is ‖ζk‖V∗ τ = 〈ζk, zk −
zk−1〉V∗,V , we have

〈ζk, zk+1 − zk〉V∗,V ≤ ‖ζk‖V∗‖zk+1 − zk‖V ≤ ‖ζk‖V∗ τ = 〈ζk, zk − zk−1〉V∗,V .

Consequently, it holds

0 ≥ 〈ζk+1, zk+1 − zk〉V∗,V − 〈ζk, zk − zk−1〉V∗,V
+ 〈DzI(tk, zk+1)−DzI(tk−1, zk), zk+1 − zk〉Z∗,Z .
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Now, inserting the estimate from Corollary 3.6 gives

0 ≥ 〈ζk+1, zk+1 − zk〉V∗,V − 〈ζk, zk − zk−1〉V∗,V

+
α

2
‖zk+1 − zk‖2Z − C1 τ Rδ(zk+1 − zk)− C2 τ (tk − tk−1)

Rearranging terms and summing up the resulting estimate with respect to k, we arrive at

〈ζk+1, zk+1 − zk〉V∗,V + c

k∑
i=1

‖zi+1 − zi‖2Z

≤ 〈ζ1, z1 − z0〉V∗,V + Cτ
(
tk +

k∑
i=1

Rδ(zi+1 − zi)
)
. (3.22)

Thanks to (3.10) it now suffices to estimate 〈ζ1, z1−z0〉V∗,V to proof (3.19), which is shown
next. To this end, we again insert (3.2b) into (3.2c) to obtain for k = 1:

Rδ(z1 − z0) + 〈ζ1, z1 − z0〉V∗,V = 〈−DzI(0, z1), z1 − zτ,δ0 〉Z∗,Z .

Adding a zero, and rearranging terms yields

〈−DzI(0, zτ,δ0 ), z1 − zτ,δ0 〉Z∗,Z ≥ 〈DzI(0, z1)−DzI(0, zτ,δ0 ), z1 − zτ,δ0 〉Z∗,Z
+Rδ(z1 − z

τ,δ
0 ) + 〈ζ1, z1 − z0〉V∗,V . (3.23)

By assumption, we have −DzI(0, zτ,δ0 ) ∈ ∂Rδ(0) which gives 〈−DzI(0, zτ,δ0 ), z1 −
zτ,δ0 〉Z∗,Z ≤ Rh(z1 − zτ,δ0 ) by the characterization in Lemma A.2, so that (3.23) implies

〈DzI(0, z1)−DzI(0, zτ,δ0 ), z1 − zτ,δ0 〉Z∗,Z + 〈ζ1, z1 − z0〉V∗,V ≤ 0. (3.24)

For the first term on the left-hand side we take advantage of the assumption in (2.2) and the
boundedness of the iterates from Lemma 3.3 which results in

α‖z1 − zτ,δ0 ‖
2
Z − C‖z1 − z

τ,δ
0 ‖

2
V + 〈ζ1, z1 − z0〉V∗,V ≤ 0. (3.25)

Hence, using again the constraint ‖zk+1 − zk‖V ≤ τ we obtain

〈ζ1, z1 − z0〉V∗,V + c‖z1 − zτ,δ0 ‖
2
Z ≤ C τ

2. (3.26)

By adding (3.26) to (3.22) and applying (3.10), we arrive at

〈ζk+1, zk+1 − zk〉V∗,V + c

k∑
i=0

‖zi+1 − zi‖2Z

≤ C τ
(
tk +

k∑
i=0

Rh(zi+1 − zi) + τ
)

≤ C τ
(
T + (I(0, zτ,δ0 ) + β) exp

(∫ T

0

µ(s) ds

))
,

(3.27)

where we used that tk ≤ T + τ ≤ 2T by the time update in (alg3) and τ ≤ T for the
last estimate. Clearly, by the uniform boundedness of zτ,δ0 by assumption and the continuity
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of I(0, ·), the term I(0, zτ,δ0 ) is also bounded independent of τ and δ, which yields that
T + (I(0, zτ,δ0 ) + β) exp

(∫ T
0
µ(s) ds

)
≤ C. This in turn implies

〈ζk+1, zk+1 − zk〉V∗,V + c

k∑
i=0

‖zi+1 − zi‖2Z ≤ C τ, (3.28)

which already gives (3.19) for k ≥ 0 since 〈ζk+1, zk+1 − zk〉V∗,V ≥ 0 by (3.2b). Moreover,
(3.20) is an easy consequence of the characterization in (3.2b). Note that the constant C
is independent of τ , δ, and k. Now, let us turn towards (3.18). From the identity (3.2b)
we infer that 〈ζk+1, zk+1 − zk〉V∗,V ≥ 0. Moreover, thanks to the time-update it holds
tk+1 − tk + ‖zk+1 − zk‖V = τ so that

k∑
i=0

‖zi+1 − zi‖V =
1

τ

k∑
i=0

‖zi+1 − zi‖V
(
ti+1 − ti + ‖zi+1 − zi‖V

)
=

k∑
i=0

(ti+1 − ti)
‖zi+1 − zi‖V

τ
+

1

τ

k∑
i=0

‖zi+1 − zi‖2V

≤
k∑
i=0

(ti+1 − ti) +
1

τ

k∑
i=0

‖zi+1 − zi‖2V

≤ C (3.29)

where we used (3.28) together with the embedding Z ↪→ V as well as the fact that τ ≤ T

for the last estimate. This verifies (3.18). Finally, we show that the final time T is reached
after a finite number of steps. For this, we observe that by the embedding Z ↪→ V estimate
(3.28) implies that

∑∞
k=1‖zk − zk−1‖V is convergent, thus bounded. Summing up (alg3)

from k = 1 to n and exploiting (3.18) we therefore obtain

tn = t0 + nτ −
n∑
k=1

‖zk − zk−1‖V ≥ t0 + nτ − C →∞ for n→∞.

Hence, there must exist a finite index N(τ, δ), possibly depending on τ and δ, so that
tN(τ,δ) ≥ T . Lastly, since (3.28) and (3.29) hold for every k, we obtain (3.18) and (3.19),
respectively. ut

In what follows we will abbreviate the index N(τ, δ) simply by N having in mind that
the number N of time steps always depends on τ and δ.

3.3 Discrete energy-equality

In the following section, we aim at deriving a discrete analogon to the energy identity (2.12).
To this end, we introduce the piecewise affine as well as the left- and right-continuous
piecewise constant interpolants associated with the iterates zτ,δk . As indicated in the intro-
duction, potential discontinuities of the parametrized solution are resolved by introducing
an artificial time. The physical time is accordingly interpreted as a function of the very
same and jumps are characterized by the plateaus of this function. This is also reflected
by the time-incremental stationarity scheme (LISS), where, loosely speaking, the artificial
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time is divided into equidistant subintervals with step size τ and the approximation of the
parametrized solution is implicitly defined through the optimization in (LISS). To be more
precise, we set sτ,δk := kτ , so that

sτ,δN = Nτ =
N∑
i=1

(tτ,δi − t
τ,δ
i−1 + ‖zτ,δi − zτ,δi−1‖V)

= tτ,δN +
N∑
i=1

‖zτ,δi − zτ,δi−1‖V ≤ T + τ +
N∑
i=1

‖zτ,δi − zτ,δi−1‖V ≤ CS
(3.30)

by Proposition 3.7 with a constant CS > 0 which is neither depending on τ nor δ so that
the artificial time interval is indeed bounded. Hence, we can proceed with the construction
of the interpolants. For s ∈ [sτ,δk−1, s

τ,δ
k ) ⊂ [0, sτ,δN ), the continuous and piecewise affine

interpolants are defined through

ẑτ,δ(s) := zτ,δk−1 +
(s− sτ,δk−1)

τ
(zτ,δk − zτ,δk−1),

t̂τ,δ(s) := tτ,δk−1 +
(s− sτ,δk−1)

τ
(tτ,δk − tτ,δk−1),

(3.31)

while the piecewise constant interpolants are given by

zτ,δ(s) := zτ,δk , tτ,δ(s) := tτ,δk , zτ,δ(s) := zτ,δk−1, tτ,δ(s) := tτ,δk−1. (3.32)

Moreover, we define the artificial end time Sτ,δ as that point where t̂ reaches the end time
T , i.e., it holds (see also Figure 3.1)

t̂τ,δ(Sτ,δ) = T, sτ,δN−1 < Sτ,δ ≤ s
τ,δ
N and Sτ,δ ≤ CS , (3.33)

whereby the boundedness follows directly from (3.30). Since the artificial end time Sτ,δ
depends on the chosen discretization level, we extend all interpolants constantly onto [0, S̃]

with S̃ := supτ,h Sτ,δ where this is necessary, i.e., where s
τ,δ
N < S̃. Hence, we let

zτ,δ(s) = zτ,δ(s)= ẑτ,δ(s) := zτ,δN

and tτ,δ(s) = tτ,δ(s) = t̂τ,δ(s) := T

}
∀ s ∈ [sτ,δN , S̃] . (3.34)

Observe that still S̃ ≤ CS by (3.33). Moreover, due to the time update in (alg3), we clearly
have that (t̂τ,δ, ẑτ,δ) ∈ W 1,∞(0, S̃;R)×W 1,∞(0, S̃;V), but we even obtain the following
pointwise properties.

Lemma 3.8 (Properties of affine interpolants). For almost all s ∈ [0, Sτ,δ], the affine
interpolants from (3.31) fulfill

t̂′τ,δ(s) ≥ 0, t̂′τ,δ(s) + ‖ẑ′τ,δ(s)‖V = 1, (3.35)
t̂′τ,δ(s) distV∗{−DzI(tτ,δ(s), zτ,δ(s)), ∂Rδ(0)} = 0. (3.36)

Proof. The statements are a direct consequence of the properties in (3.9). ut

Once more, we note the similarity between the continuous case in (2.11a) and (2.11b)
and its discrete version in Lemma 3.8. In the subsequent, last preparatory lemma, we collect
the main a priori bounds of our interpolants, which will be essential to pass to the limit in
the discrete energy identity, which is elaborated afterwards.



14 Michael Sievers

sτ,δN−2 sτ,δN−1
Sτ,δ sτ,δN S̃

0

T

tτ,δN

Fig. 3.1: Qualitative illustration of the affine interpolant t̂, the choice of the artificial end
time Sτ,δ via the equality t̂(Sτ,δ) = T and the upper bound S̃.

Lemma 3.9. There exists C > 0, independent of τ and δ, so that

‖t̂τ,δ‖W 1,∞(0,S̃), ‖ẑτ,δ‖W 1,∞(0,S̃;V), ‖ẑτ,δ‖L∞(0,S̃;Z), ‖ẑτ,δ‖H1(0,S̃;Z) ≤ C.

Proof. While the first three bounds are an immediate consequence of the results in Lemma3.8
and Lemma 3.3, the last one requires some slighlty more explanation. Due to the bound in
L∞(0, S̃;Z), it suffices to estimate the L2(0, S̃;Z)-norm of the time-derivative ẑ′τ,δ . Hence,
inserting the definition of ẑ from (3.34) and keeping in mind that Sτ,δ ≤ sτ,δN , we have

‖ẑ′τ,δ‖
2
L2(0,S̃;Z)

=

∫ Sτ,δ

0

‖ẑ′τ,δ(r)‖
2
Z dr

≤
N∑
k=1

∫ sτ,δk

sτ,δk−1

∥∥∥∥∥z
τ,δ
k − zτ,δk−1

τ

∥∥∥∥∥
2

Z

dr =
1

τ

N∑
k=1

‖zτ,δk − zτ,δk−1‖
2
Z .

Lemma 3.7, precisely estimate (3.19), thus implies that this term is bounded independent of
τ and δ, which proves the desired H1(0, S̃;Z) estimate. ut

Eventually, we are now in the position to show a discrete version of the energy equality.
Its proof is based on Lemma 3.8, Lemma 3.9 and the a priori estimates derived in Section 3.2.

Lemma 3.10 (Discrete energy equality). For all s ∈ [0, Sτ,δ], it holds

I(t̂τ,δ(s), ẑτ,δ(s))

+

∫ s

0

Rδ(ẑ′τ,δ(σ)) + distV∗{−DzI(tτ,δ(σ), zτ,δ(σ)), ∂Rδ(0)} dσ

= I(t̂τ,δ(0), ẑτ,δ(0))

+

∫ s

0

∂tI(t̂τ,δ(σ), ẑτ,δ(σ)) t̂′τ,δ(σ) dσ +

∫ s

0

rτ,δ(σ) dσ ,

(3.37)

where

rτ,δ(s) := 〈DzI(t̂τ,δ(s), ẑτ,δ(s))−DzI(tτ,δ(s), zτ,δ(s)), ẑ
′
τ,δ(s)〉Z∗,Z . (3.38)
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Moreover, the complementarity condition

t̂′τ,δ(s) distV∗{−DzI(tτ,δ(s), zτ,δ(s)), ∂Rδ(0)} = 0 (3.39)

is fulfilled f.a.a. s ∈ (0, Sτ,δ), and there exists a constant C > 0 such that the remainder
rτ,δ satisfies for all τ, δ > 0 and all s ∈ [0, Sτ,δ]

∫ s

0

rτ,δ(σ) dσ ≤ Cτ. (3.40)

Proof. The complementarity in (3.39) has already been proven in Lemma 3.8. Hence, we
turn to the discrete energy identity. Since the affine interpolants in (3.31) are by construction
elements ofW 1,∞(0, Sτ,δ) andW 1,∞(0, Sτ,δ;Z), respectively, and due to I ∈ C1([0, T ]×
Z) by assumption, the chain rule is applicable and gives for s ∈ (sτ,δk−1, s

τ,δ
k ) that

d
dsI(t̂τ,δ(s), ẑτ,δ(s))

= ∂tI(t̂τ,δ(s), ẑτ,δ(s)) t̂
′
τ,δ(s) + 〈DzI(t̂τ,δ(s), ẑτ,δ(s)), ẑ

′
τ,δ(s)〉Z∗,Z

= ∂tI(t̂τ,δ(s), ẑτ,δ(s)) t̂
′
τ,δ(s) +

1

τ
〈DzI(tτ,δ(s), zτ,δ(s)), z

τ,δ
k − zτ,δk−1〉Z∗,Z

+ 〈DzI(t̂τ,δ(s), ẑτ,δ(s))−DzI(tτ,δ(s), zτ,δ(s)), ẑ
′
τ,δ(s)〉Z∗,Z .

From (3.2c), we have in combination with the 1-homogeneity of Rδ that

− 1

τ
〈DzI(tτ,δ(s), zτ,δ(s)), z

τ,δ
k − zτ,δk−1〉Z∗,Z

=
1

τ

(
Rδ(z

τ,δ
k − zτ,δk−1) + τ distV∗{−DzI(tτ,δk−1, z

τ,δ
k ), ∂Rδ(0)}

)
= Rδ(ẑ′τ,δ) + distV∗{−DzI(tτ,δk−1, z

τ,δ
k ), ∂Rδ(0)}).

By taking into account the definition of rτ,δ in (3.38), integration over (σ1, σ2) then yields
(3.37).
It remains to estimate rτ,δ . To this end, first observe that the definition of the affine and
constant interpolants in (3.31) and (3.32) implies for every k ∈ {1, ..., N} and every s ∈
[sτ,δk−1, s

τ,δ
k ) that

ẑτ,δ(s)− zτ,δ(s) = (s− sτ,δk )ẑ′τ,δ(s) and t̂τ,δ(s)− tτ,δ(s) = (s− sτ,δk−1)t̂′τ,δ(s),

which is frequently used in the following estimates. Now, let k ∈ {1, ..., N} and s ∈
[sτ,δk−1, s

τ,δ
k ) be arbitrary. Then, since (s − sτ,δk ) < 0 the Garding-like inequality from (2.2)
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implies

〈DzI(t̂τ,δ(s), ẑτ,δ(s))−DzI(tτ,δ(s), zτ,δ(s)), ẑ
′
τ,δ(s)〉Z∗,Z

=
1

s− sτ,δk
〈DzI(t̂τ,δ(s), ẑτ,δ(s))−DzI(t̂τ,δ(s), zτ,δ(s)), ẑτ,δ(s)− zτ,δ(s)〉Z∗,Z

+
1

s− sτ,δk
〈DzI(t̂τ,δ(s), zτ,δ(s))−DzI(tτ,δ(s), zτ,δ(s)), ẑτ,δ(s)− zτ,δ(s)〉Z∗,Z

≤ 1

|s− sτ,δk |

(
− α

2
‖ẑτ,δ(s)− zτ,δ(s)‖2Z + C1 ‖ẑτ,δ(s)− zτ,δ(s)‖2V

)
+

1

|s− sτ,δk |

(
C2|t̂τ,δ(s)− tτ,δ(s)|‖ẑτ,δ(s)− zτ,δ(s)‖Z

)
≤ |s− sτ,δk |

(
C1 ‖ẑ′τ,δ(s)‖

2
V
)

+ C2|t̂τ,δ(s)− tτ,δ(s)|‖ẑ
′
τ,δ(s)‖Z .

(3.41)
Now, since |s− sτ,δk |, |t̂τ,δ(s)− tτ,δ(s)| ≤ τ we obtain from the identity in (3.38) that

rτ,δ(s) ≤ τ
(
C1 ‖ẑ′τ,δ(s)‖

2
V + C2‖ẑ′τ,δ(s)‖Z)

for almost all s ∈ [0, Sτ,δ]. Thus (3.40) easily follows from the bounds in Lemma 3.9. ut

Remark 3.11. A comparison of the discrete energy identity in (3.37) and the continuous
one in (2.12) shows that the coefficient ‖ẑ′τ,δ‖ is missing in front of the distance. It would
be possible to reformulate the optimality conditions in Lemma 3.1 in a way such that this
coefficient would arise in (3.37). This, however, would complicate the passage to the limit in
the next section. As we will see at the end of the proof of Theorem 3.14, (3.37) is sufficient
to obtain the desired energy identity in (2.12).

3.4 Main Convergence Theorem

Before we come to the main result, i.e., the passage to the limit in the discrete energy
identity and therewith ultimately the existence of parametrized solutions, we need one last
preparatory result, which guarantees the weak lower semicontinuity of the distance term in
(3.37).

Lemma 3.12. Let ξδ ∈ Z∗ with ξδ ⇀ ξ in Z∗ for δ → 0. Suppose, moreover, that the
distance is uniformly bounded, i.e., distV∗{−ξδ, ∂Rδ(0)} ≤ C with C independent of δ.
Then the following weak lower semicontinuity result holds true:

lim inf
δ→0

distV∗{−ξδ, ∂Rδ(0)} ≥ distV∗{−ξ, ∂R(0)}. (3.42)

Proof. First of all, we know that the minimum in the definition of the distance is attained,
cf. Lemma A.2, so that there exists µδ ∈ ∂Rδ(0) ⊂ Z∗ with

distV∗{−ξδ, ∂Rδ(0)} = ‖µδ + ξδ‖V∗ . (3.43)

Therewith, we define ηδ := µδ + ξδ and infer ‖ηδ‖V∗ ≤ C by assumption. Hence, we may
extract a weakly convergent subsequence ηδn ⇀ η in V∗ for n → ∞. In particular, due to
the lower semicontinuity of the norm ‖·‖V∗ , it holds

‖η‖V∗ ≤ lim inf
n→∞

‖ηδn‖V∗ = lim inf
n→∞

distV∗{−ξδn , ∂Rδn(0)}. (3.44)
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We proceed with showing that η = µ+ ξ for some µ ∈ ∂R(0). To this end, we first note that
by V∗ ⊂ Z∗ and the weak convergence of ξδn it holds µδn = ξδn − ηδn ⇀ ξ − η in Z∗ and
we define µ = ξ − η. Now, µδn ∈ ∂Rδn(0) is equivalent to

Rδn(z) ≥ 〈µδn , z〉Z∗,Z ∀ z ∈ Z

and this inequality remains in the limit n → ∞. Indeed, given z ∈ Z , by assumption (2.8)
there exists a sequence zn ∈ Z converging to z with R(z) ≥ lim supn→∞Rδn(zn). The
strong convergence of zn also implies that the dual pairing 〈µδn , z〉Z∗,Z converges so that

R(z) ≥ lim sup
n→∞

Rδn(zn) ≥ lim sup
n→∞

〈µδn , zn〉Z∗,Z = 〈µ, z〉Z∗,Z . (3.45)

Since z ∈ Z was arbitrary, we find µ ∈ ∂R(0). Hence, we conclude from (3.44) that

distV∗{−ξ, ∂R(0)} ≤ ‖µ+ ξ‖V∗ = ‖η‖V∗ ≤ lim inf
n→∞

distV∗{−ξδn , ∂Rδn(0)}.

Since this holds for all subsequence of ηδ , we ultimately arrive at the desired lower semicon-
tinuity in (3.42). ut

Example 3.13. Note that it is indeed possible that ξ ∈ Z∗ \V∗ while distV∗{−ξ, ∂R(0)} <
∞. To see this, let us take Z = H1(0, 1), V = L2(0, 1) and R(v) = ‖v‖L1(0,1) + IK(v)

where K = {v ∈ H1(0, 1) : v ≥ 0 a.e. in (0, 1)}. Moreover, we let ξ = δ1/2 ∈ H−1(0, 1)
with δ1/2 the delta distribution in x = 1/2, i.e., 〈ξ, z〉Z∗,Z = z(1/2). By the characterization
of ∂R(0) in LemmaA.1, we easily see thatR(v) ≥ 0 ≥ −z(1/2) = 〈−ξ, z〉Z∗,Z . Therefore,
it holds −ξ ∈ ∂R(0) and consequently distV∗{−ξ, ∂R(0)} = 0 although ξ 6∈ V∗. Clearly,
this property is related to the unboundedness of R, i.e., R does not fulfill the upper bound
R(v) ≤ C‖v‖V , which is a frequently used assumption in the context of parametrized
solutions.

We now have everything at hand to prove our main convergence result.

Theorem 3.14 (Convergence towards parametrized solutions) Assume that zδ0 converges
to the initial state z0 for δ → 0. Then there exists a sequence of parameters {τn, δn}n∈N ⊂
R+ × R+ converging to zero so that the affine interpolants generated by the fully discrete
local stationarity scheme (LISS) and the artificial end time defined in (3.33) satisfy

Sτn,δn → S, (3.46)

t̂τn,δn
∗
⇀ t̂ in W 1,∞(0, S;R), (3.47)

ẑτn,δn
∗
⇀ ẑ in W 1,∞(0, S;V) ∩H1(0, S;Z), (3.48)

ẑτn,δn(s) ⇀ ẑ(s) in Z for every s ∈ [0, S], (3.49)

and the limit (t̂, ẑ) is a parametrized solution in the sense of Definition 2.4.
Moreover, every accumulation point (t̂, ẑ) of sequences in the sense of (3.46)–(3.49) is

a parametrized solution.

Proof. The arguments are analog to the ones in [MS19a, Sie20]. For convenience of the
reader, we briefly repeat the main steps.
The existence of a (sub-)sequence satisfying (3.46)–(3.48) is an immediate consequence of
the uniform estimates in Lemma 3.3, Lemma 3.9, and (3.33). The pointwise convergence
in (3.49) follows from the Aubin-Lions lemma, i.e. W 1,∞(0, S;V) ∩ L∞(0, S;Z) ↪→c
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C(0, S;V), the density of Z in V and the fact that for every s ∈ [0, S], {ẑτn,δn(s)}n∈N is
bounded in Z by Lemma 3.3.
It remains to show that every (weak) limit is a parametrized solution. For this purpose,
let {τn, δn} be an arbitrary null sequence and assume that the convergences in (3.46)–
(3.49) hold. In order to simplify the notation, we indicate by {·}n the sequence of {·}τ,δ
corresponding to {τn, δn}. Analogously, we abbreviate the index δn simply by n. We proceed
in several steps and start with the following:

Convergence of piecewise constant interpolants. One easiy verifies using the estimate

‖ẑn(s)− zn(s)‖V = |s− snk | ‖ẑ
′
n(s)‖V ≤ τ → 0,

which holds for all k ∈ {1, ..., N} and all s ∈ [snk−1, s
n
k ) that the piecewise constant

interpolants converge pointwise to the same limit as the affine interpolants. We therefore
have

tn(s), tn(s)→ t̂(s), zn(s), zn(s) ⇀ ẑ(s) in Z ∀ s ∈ [0, S]. (3.50)

Initial and end time conditions. By assumption we have ẑn(0) = zδ0 → z0 in Z , so
that the pointwise convergence in (3.49) implies ẑ(0) = z0 as desired. Moreover, thanks to
(3.47), t̂n converges uniformly to t̂ so that

0 = t̂n(0)→ t̂(0) and T = t̂n(Sn)→ t̂(S),

where we also used (3.46).
Complementarity relations. We continue with the complementarity-like relations in

(2.11). First, the set

{(τ, ζ) ∈ L2(0, S)× L2(0, S;V) : τ(s) ≥ 0, τ(s) + ‖ζ(s)‖V ≤ 1 f.a.a. s ∈ (0, S)}

is clearly convex and closed, thus weakly closed and consequently, we obtain that the weak
limit (t̂, ẑ) satisfies the inequalities in (2.11a). Next, we turn to (2.11b), whose derivation
is by far more involved. On account of the weak continuity assumptions for DzI, it follows
from (3.50) that

DzI(tn(s), zn(s)) ⇀ DzI(t̂(s), ẑ(s)) in Z∗ ∀ s ∈ [0, S].

Combining this with the uniform boundedness of the distance from (3.20) allow us to apply
Lemma 3.12, which gives

lim inf
n→∞

distV∗{−DzI(tn(s), zn(s)), ∂Rn(0)}

≥ distV∗{−DzI(t̂(s), ẑ(s)), ∂R(0)}.
(3.51)

To show (2.11b), let us abbreviate

ξn(s) := distV∗{−DzI(tn(s), zn(s)), ∂Rn(0)},
ξ(s) := distV∗{−DzI(t̂(s), ẑ(s)), ∂R(0)},

so that (3.51) reads
lim inf
n→∞

ξn(s) ≥ ξ(s) ≥ 0 ∀ s ∈ [0, S]. (3.52)

Concerning themeasurability of ξwe note that by the embeddingH1(0, S;Z) ↪→ C(0, T ;Z)
and the continuity of DzI the mapping s 7→ −DzI(t̂(s), ẑ(s)) is continuous. Exploiting
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Lemma 3.12, we can conclude that ξ is lower semicontinuous and therefore, indeed, measur-
able.
Now, consider an arbitrary ω ≥ 0 and define ξn,ω(s) := min{ξn(s), ξ(s), ω} such that,
thanks to (3.52), ξn,ω(s) converges to ξω(s) := min{ξ(s), ω} almost everywhere in (0, S).
Since ξω is measurable (as ξ is so) and ω ≥ ξn,ω(s), Lebesgue’s dominated convergence
theorem gives ξn,ω → ξω in L1(0, S). Thus, thanks to ξn(s) ≥ ξn,ω(s) and the weak∗
convergence of t̂′, we obtain from (3.39) that

0 = lim inf
n→∞

∫ S

0

t̂′n(s) ξn(s) ds ≥ lim inf
n→∞

∫ S

0

t̂′n(s) ξn,ω(s) ds =

∫ S

0

t̂′(s) ξω(s) ds.

Since ω ≥ 0 was arbitrary, this inequality holds for every ω so that Fatou’s lemma yields

0 ≥ lim inf
ω→∞

∫ S

0

t̂′(s) ξω(s) ds ≥
∫ S

0

t̂′(s) ξ(s) ds ≥ 0.

Because of ξ ≥ 0 and t̂′ ≥ 0 a.e. in (0, S), cf. (2.11a), this gives (2.11b).
Energy identity. The energy identity is a direct consequence of its discrete version in

Lemma 3.10. Indeed, we find

I(t̂(s), ẑ(s)) +

∫ s

0

R(ẑ′(σ)) + ‖ẑ′(σ)‖V distV∗{−DzI(t̂(σ), ẑ(σ)), ∂R(0)} dσ

≤ lim inf
n→∞

(
I(t̂n(s), ẑn(s))

+

∫ s

0

Rn(ẑ′n(σ)) + distV∗{−DzI(t̂n(σ), ẑn(σ)), ∂Rn(0)} dσ
)

= lim inf
n→∞

(
I(t̂n(0), ẑn(0)) +

∫ s

0

∂tI(t̂n(σ), ẑn(σ)) t̂′n(σ) dσ +

∫ s

0

rn(σ) dσ
)
.

by the weak lower semicontinuity of I(t, ·) from (2.1) and [Ste08, Cor. 4.5] which gives∫ s

0

R(ẑ′(σ)) dσ ≤ lim inf
δ→0

∫ s

0

Rδ(ẑ′(σ)) dσ

due to the assumptions on the space V and condition (2.8) on Rδ . Moreover, we used
‖ẑ′(s)‖V ≤ 1 as well as Fatou’s lemma together with (3.51) for the distance term. Now,
exploiting the estimate in (3.40), assumption (E4) for ∂tI and the strong convergence of
ẑn(0) to z0 in Z we finally end up with

I(t̂(s), ẑ(s)) +

∫ s

0

R(ẑ′(σ)) + ‖ẑ′(σ)‖V distV∗{−DzI(t̂(σ), ẑ(σ)), ∂R(0)} dσ

≤ I(0, z0) +

∫ s

0

∂tI(t̂(σ), ẑ(σ)) t̂′(σ) dσ, (3.53)

which is the desired energy inequality. Taking into account that ẑ ∈ H1(0, S;Z), it is well-
known that the sole inequality (3.53) is already equivalent to the energy identity (2.12), see
[KRZ13, Lem. 6.6] or [Sie20, Lem. 2.4.6], which completes the proof. ut
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Unfortunately, we do not obtain the nondegeneracy let alone normalization of the limit
(t̂, ẑ) here. Themain problem is the fact that the weak convergence of ẑn inH1(0, S;Z) from
(3.48) is not sufficient in order to pass to the limit in (3.35), that is, t̂′n(s) + ‖ẑ′n(s)‖V = 1,
and still obtain equality in the end. In [MZ14, EM06], the authors therefore provide sufficient
conditions, which guarantee the nondegeneracy of the limit function. Moreover, in [EM06], a
condition is given,which also preserve the normalization.Nevertheless it is always possible to
reparameterize a parametrized solution and in order to normalize it, see [Sie20, Lerm. A.4.3].
Regardless of this fact, we note that the above Theorem, while dedicated to the convergence
analysis of the fully discrete local stationarity scheme, also provides an existence result for
parametrized solutions in case of an unbounded dissipation R (choose Rδ = R).

4 Application to a Damage Model

We now aim at applying the local stationarity scheme to model the evolution of damage
within a workpiece during a time interval [0, T ]. For this, we let Ω ⊂ R2 be a bounded
domain that corresponds to an elastic body and satisfies

Ω ⊂ R2 has a Lipschitz boundary ∂Ω = ΓD ∪ ΓN with Dirichlet boundary ΓD
such that H1(ΓD) > 0 and Neumann boundary ΓN . Moreover, ΓD and ΓN are

supposed to be regular in the sense of Gröger, see [Grö89].
Note that, although we focus on the twodimensional case here, it is also possible to consider
the threedimensional case aswell provided the spaces and the energy are adapted appropri-
ately; compare with the elaborations in [MS19b, KRZ13] which we also follow with regard
to notation. During the time [0, T ], time dependent boundary conditions uD as well as ex-
ternal boundary and volume forces ` may be applied, which lead to a certain displacement
u and possibly even to a damage, represented by the variable z, of the body. Usually, z is
supposed to take values in [0, 1] whereby z(t, x) = 0 means the body is completely sound
and, correspondingly, z(t, x) = 1 means the body is comletely damaged. With a view to the
energy functional, we define

U = {v ∈ H1(Ω,R2) : v|ΓD = 0}, Z = H1(Ω), V = L2(Ω)

and let
` ∈ C1,1(0, T ;W−1,p

ΓD
(Ω)), uD ∈ C1,1(0, T ;W 1,p(Ω))

where p > 2 is chosen as in Lemma 4.1 below. Note that we will use a scaled version of
the L2-norm, that is ‖·‖V := 1

|Ω|‖·‖L2 . This choice has been shown to be advantageous
in the numerical experiments particularly with a view to iteration numbers. Now, we set
E : [0, T ]× U × Z → R as

E(t, u, z) =
1

2

∫
Ω

|∇z|2 dx+

∫
Ω

f(z) dx

+
1

2

∫
Ω

g(z)Cε(u+ uD(t)) : ε(u+ uD(t)) dx− 〈`(t), u〉U

= I1(z) + E2(t, u, z).

where C is the usual elasticity tensor with

C ∈ L∞(Ω;L(Rd×dsym,Rd×dsym) (4.1a)

∃γ0 > 0 such that for all ξ ∈ Rd×dsym and for almost all x ∈ Ω : C(x)ξ : ξ ≥ γ0‖ξ‖2

(4.1b)
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and ε(u) = 1
2 (∇u+∇u>) is the linearized strain tensor. The nonlinearity f in the energy

is chosen such that the term is continuously differentiable in Z . Since we will neglect
this term in our numerical examples, we do not particularize the exact assumptions and
refer to [KRZ13]. However, a typical choice for f in the context of Ambrosio-Tortorelli
approximation of brittle fracture is f(z) = (1 − z)2, see [Gia05, AB19], which is clearly
sufficiently smooth. Furthermore, the function g, which somehow represents the preservation
of the elasticity of the material depending on the state of damage, is supposed to fulfill:

g ∈ C2(R), with g′, g′′ ∈ L∞(R), and ∃γ1, γ2 > 0 : ∀z ∈ R : γ1 ≤ g(z) ≤ γ2. (4.2)

In particular, the lower bound g ≥ γ1 > 0 is to be noted here. It implies that even if the
material is completely damaged, it does not lose all its rigidity. This is often referred to as
partial damage model. Finally, the dissipation R : L1(Ω)→ [0,∞] is given by

R(v) =

{
κ
∫
Ω
v(x) dx, if v ≥ 0 a.e. in Ω,

+∞, else,
(4.3)

with the so-called fracture toughness κ > 0. Now, in order to bring this model into the setting
of Section 2, it is convenient to reduce the system to the damage variable z. This means that
we require the displacement u(t) to minimize the energy E(t, ·, z(t)) at every time point
t ∈ [0, T ], i.e.,

u(t) ∈ arg min{E(t, v, z) : v ∈ U}. (4.4)

It is, in fact, easy to see that this problem has a unique minimizer for every t ∈ [0, T ] and
z ∈ Z . Hence, we define I2 : [0, T ]×Z → R by I2(t, z) = infv∈U E2(t, v, z) and let

I(t, z) = I1(z) + I2(t, z). (4.5)

4.1 Properties of the energy functional

We now want to verify that the model from above fits into the setting of Section 2. Thereby,
we rely on the results from [MS19b, KRZ13]. We start with the following observation,
which was first proven in [HMW11] and states that the minimization with respect to u is
well-defined and provides a unique solution.

Lemma 4.1. Under the assumptions (4.1) and (4.2) there exists p > 2 such that for any
p̃ ∈ [0, p] and for every z ∈ Z the linear elliptic operator

〈Lz(v), w〉 =
1

2

∫
Ω

g(z)Cε(v) : ε(w) dx ∀v, w ∈ U

is an isomorphism Lz : W 1,p̃
ΓD

(Ω;Rd)→W−1,p̃
ΓD

(Ω;Rd).

Therefore, the reduced energy I2(t, z) = infv∈U E2(t, v, z) is also well-defined and we
can focus on the properties of this part in the overall energy I.

Lemma 4.2. Let d = 2, p > 2 and the assumptions (4.1), (4.2) hold. Then there exist
constants C1, C2, c3 > 0 such that

I2(t, z) ≥ −C1 and |∂tI2(t, z)| ≤ C2 (4.6)
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as well as

〈DzI2(t1, z1)−DzI2(t2, z2), v〉Z∗,Z ≤ c3(|t2 − t1|+ ‖z1 − z2‖Lr(Ω))‖v‖Z . (4.7)

for every r ∈ [ 6p
p−4 ,∞), where p > 2 is as in Lemma 4.1. Moreover, for any sequences

tk → t and zk ⇀ z in Z , it holds

DzI2(tk, zk) ⇀ DzI2(t, z) in Z∗, (4.8)
I2(tk, zk)→ I2(t, z) and ∂tI2(tk, zk)→ ∂tI2(t, z). (4.9)

Proof. This is a combination of Lemma 2.4, 2.6 and 2.8 as well as Corollary 2.9 from
[KRZ13]. ut

With a view to Section 4, we set I1(z) = 1
2 〈Az, z〉Z∗,Z with A = −∆. The above

Lemma thus guarantees that I(t, z) = I1(z) + I2(t, z) complies with the assumptions (E1)
- (E4) and (2.3) - (2.4) as well as the Gårding-like inequality (2.2), i.e.

〈DzI(t, z1)−DzI(t, z2), z1 − z2〉Z∗,Z ≥ α‖z1 − z2‖2Z − λ‖z1 − z2‖
2
V .

Indeed, we have the following:

Theorem 4.3 Let I(t, z) = I1(z)+I2(t, z) be given as in (4.5)with I1(z) = 1
2 〈Az, z〉Z∗,Z

where A = −∆. Moreover, let d = 2, p > 2 and the assumptions (4.1), (4.2) hold. Then I
fulfills (E1) - (E4) and (2.3) - (2.4) as well as the Gårding-like inequality (2.2). In particular,
there exists at least one parametrized solution to the rate-independent system defined by I
and R as given (4.5) and (4.3), respectively.

Proof. The conditions (E1) - (E4) and (2.3) - (2.4) follow immediately from the above
Lemma 4.2. In addition, the Gårding-like inequality (2.2) is an easy consequence of the
properties of A and the inequality in (4.7). Thus, we see that I fulfills all assumptions from
Section 2 so that applying Theorem 3.14 proofs the existence of a parametrized solution. ut

As seen above Theorem 3.14 guarantees the existence of at least one parametrized
solution for (RIS) in the setting of (partial) damage here. What is more, we may approximate
such a solution by the local incremental stationarity scheme (LISS), which is purpose of the
following subsections.

4.2 Finite Element discretization

As the convergence analysis from Theorem 3.14 allows us to use an approximationRδ of the
dissipationR, we may use some finite element discretization to approximate a parametrized
solution. Hence, we assume that a family {Th}h>0 of shape-regular triangulations of the
domainΩ be given. Herein, h denotes the mesh size defined by h := maxT∈Th diam(T ). To
keep the discussion concise, we also assume thatΩ is a polygon and polyhedron, respectively,
and that the triangulations exactly fit the boundary. For the discrete space, we choose the
space of piecewise linear and continuous test functions, i.e.,

Uh := {u ∈ C(Ω̄;R2) : u|T ∈ P1 ∀T ∈ Th, u|ΓD = 0}.
and Zh := {v ∈ C(Ω̄) : v|T ∈ P1 ∀T ∈ Th}.
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In addition, we set

Rh(v) =

{
R(v), v ∈ Zh
+∞, else

.

By standard arguments, the lower inequality in (2.8) is satisfied for δ = h→ 0. For the upper
inequality assume thatR(z) <∞, i.e., z ≥ 0 a.e. in Ω (otherwise there is nothing to show).
Since Ω has a Lipschitz-boundary we can extend z beyond Ω (cf. [Alt16, A8.12]) and use
standard convolution in order to obtain an approximation zk ∈ C∞(Ω). By the construction
of the extension and the non-negativity of the convolution kernel, zk is also non-negative.
Moreover, we have ‖zk − z‖Z → 0 for k → ∞. For zk ∈ C∞(Ω) the classical, pointwise
Lagrange-interpolation Ih is well-defined so that ‖zk−Ih(zk)‖Z → 0 for h→ 0. Hence, for
any k ∈ N, there exists hk > 0 with ‖zk − Ih(zk)‖Z ≤ 1/k for all h ≤ hk. W.l.o.g. we may
assume that {hk}k∈N is strictly monotonic decreasing. Therewith, we define zh := Ih(zk)
for hk ≥ h > hk+1. Combining the above properties, we find that zh ≥ 0 a.e. in Ω with
zh → z in Z for h→ 0 and

lim sup
h→0

Rh(zh) = lim
h→0
R(zh) = R(z)

by the continuity of R on the set of non-negative functions in Z .
Before we proceed, let us set some notation. Given the triangulation Th the associated

nodes and nodal basis are denoted by xi and ϕi, i = 1, ..., Nh, respectively. Moreover,
given a function zh ∈ Zh, we denote the coefficient vector of zh w.r.t. the nodal basis by
z = (z1, ..., zNh) ∈ RNh , i.e., zh(x) =

∑Nh
i=1 zi ϕi(x). Therewith, we may write∫

Ω

zh(x) dx = m>z with m = (m1, ...,mNh) := M1,

whereMij =
∫
Ω
ϕi ϕj dx ∈ RNh×Nh is the mass matrix and 1 = (1, ..., 1) ∈ RNh . Thus,

by the nonnegativity of ϕi, the discrete dissipation potential Rh : Zh → R ∪ {∞} can be
written as

Rh(zh) :=

{
κm>z, zi ≥ 0 ∀i = 1, ..., Nh

+∞, else

}
= κm>z + IK(z), (4.10)

with the indicator functional IK corresponding to the cone K := RNh≥0 .

4.3 Discrete energy functional

In analogy to z we denote by u = (u1,1, u1,2, u2,1, u2,2..., uNh,2) ∈ R2Nh the coefficient
vector corresponding to uh ∈ Uh. For the discrete version of the energy E we use some
slightly altered ansatz, namely

Ẽ(t, zh, uh) =
1

2

∫
Ω

|∇zh|2 dx

+
1

2

∑
T∈T

∫
T

g(zh(xT ))Cε(uh + uD(t)) : ε(uh + uD(t)) dx− 〈`(t), uh〉U (4.11)
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where xT denotes the center of T . It is clear that the minimization of Ẽ with respect to uh
also provides a unique solution ūh for every t ∈ [0, T ] and zh ∈ Zh. Let Sh : Zh → Uh
denote the corresponding solution operator, i.e. it holds for all zh ∈ Zh that

ūh = Sh(zh) ⇔ DuẼ(t, zh, ūh) = 0. (4.12)

With this operator at hand, we can also reduce the discrete energy Ẽ to the discrete damage
variable zh. Hence, we define Ĩ : Zh → R as Ĩ(t, zh) = Ẽ(t, zh, Sh(zh)). Altogether, with
a little abuse of notation, we denote the reduced energy functional considered as mapping
acting on the coefficient vector by I : RNh → R.

4.4 Numerical solution of the local minimization problems

With all the notations above, particularly the description of Rh in (4.10), the stationary
equation (alg1) is equivalent to the following problem for the coefficient vector zk:

∃q ∈ ∂IK(zk−zk−1), p ∈ ∂Iτ (zk−zk−1) : DzI(tk−1,z
k)+m+q+p = 0. (4.13)

Here and for the rest of this section, we abbreviate tτ,δk−1 simply by tk−1 as well as ω = 1
|Ω| .

Inserting the characterizations of ∂IK and ∂Iτ and takingG(z) = 1
2 ((z−zk−1)>ωM(z−

zk−1)− τ2), we therefore find that

(4.13) ⇔


DzI(tk−1,z

k) + κm + q + λk ωM (zk − zk−1) = 0,

λ ≥ 0, λG(zk) = 0, G(zk) ≤ 0

q ≤ 0, q>(zk − zk−1) = 0, zk − zk−1 ≥ 0

 (4.14)

which can be equivalently formulated as
DzI(tk−1,z

k) + κm + q + λk ωM (zk − zk−1) = 0,

max{−λ,G(zk)} = 0,

max{qi,−(zki − z
k−1
i )} = 0.

 (4.15)

4.5 Numerical results

For our numerical tests, we use two benchmark tests from [DH08]. In any of these cases we
set the external volume and surface forces to zero, so that ` ≡ 0, and the softening function
g to g(z) = exp(−z) + ε with ε = 0.01. The numerical computations are performed
with Matlab© and the linear systems of equations arising in each semi-smooth Newton
step (cf. Section B) are solved by Matlab’s inbuilt direct solver based on UMFPACK.
The implementation for the elasticity part of the energy relies on the Matlab code from
[ACFK02].
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Ω
Γ1

ΓD
ΓN ΓN

Γ2

c

a

b

parameters
κ [MPa] 0.1
E [GPa] (Young’s modulus) 18.0
ν (Poisson’s ratio) 0.2
α [MPa·mm2] 1.0
a [mm] 100
b [mm] 40
c [mm] 16

Fig. 4.1: Geometry of the domain (left); Table of parameters (right).

(a) t ≈ 4.9 (b) t ≈ 7.88

(c) t ≈ 8.74 (d) t = 16

Fig. 4.2: State of the dimensionless damage variable zh at different points in time. Note that
the distribution of the colormap varies with the time.

Example I: Pre-cracked brick

The geometry for this example is shown in Figure 4.1. Due to its symmetry the computation is
performed using only one quarter of the whole system. Therefore, the symmetry axes become
parts of the boundary of Ω and we impose the following symmetry boundary conditions

u1 = 0 on Γ1 = {0} × [16, 40] and u2 = 0 on Γ2 = [0, 100]× {40}.

During the time interval [0, 16] the workpiece is strechted at its ends, which we realize by
Dirichlet conditions on ΓD , i.e.

u1 = t, u2 = 0 on ΓD = {100} × [0, 40].

Furthermore, we use the parameters given in the table of Figure 4.1 (right). We initiate the
evolution with z0 ≡ 0 and choose τ = 0.1 for the time step size. The state of damage at
several points during the time interval [0, 16] are shown in Figure 4.2. Obviously, damage
occurs at first at the tip of the crack and evolves along the symmetry axis Γ1 afterwards.
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Fig. 4.3: Refined and deformed mesh combined with the state of the dimensionless damage
variable at the final time t = 16. Note that the displacement is magnified by a factor of 20.

Fig. 4.4: Reaction Force on the boundary ΓD
depending on the displacement uD for three
different mesh sizes.

Fig. 4.5: Function t̂ in dependence of the
artificial time s.

As expected, it also concentrates on regions with large stresses. However, the sharpness
of interfaces between damaged and undamaged areas highly depends on the choice of the
functional I1, see [BMT18]. In our case, this interface is rather diffuse and cannot be
sharpened by a refinement of the mesh, see Figure 4.3. Clearly, one may reduce the factor
α included in the operator A. However, this leads to instabilities in the semismooth Newton
method and globalization strategies might be necessary, which is subject of future research.
Nevertheless, the results are stable with respect to mesh refinement, which can be observed
in Figure 4.4 that shows the force-displacement-diagram for three different mesh sizes. The
reaction force is calculated by integrating the stress σ in normal direction along the boundary
ΓD . In comparison with the results from [DH08], there is a high degree of conformity, except
for the larger values of the reaction force here after reaching its maximum at approximately
0.08mm of displacement, cf. also with Example II. With regard to the time function t̂ that
is depicted in Figure 4.5 we see that the spreading of the damage area starting at t ≈ 8 is
slightly faster than the rest of the evolution but does not cause a jump.

Let us finally compare the results obtained with an alternative approach. Instead of
incorporating the constraint ‖zk − zk−1‖V ≤ τ which corresponds to an L2-ball of size τ it
is convenient to take ‖zk−zk−1‖L∞ ≤ τ . Indeed, as we have already imposed lower bounds
for zk, namely zki ≥ zk−1

i , it seems appropriate from a numerical point of view to also
include zki ≤ zk−1

i + τ as a constraint since this leads to pointwise box constraints that are
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Fig. 4.6: Difference (zh,2−zh,∞) of the two
solutions obtained by using the L2- and box-
constraints at the endtime.

Fig. 4.7: Function t̂ in dependence of the
artificial time s for the solution obtained by
using box-constraints.

particularly well suited to semismooth Newton-methods, see e.g. [HIK02]. Unfortunately,
this choice is not covered by our convergence analysis for the local stationarity scheme
(LISS). Nevertheless, we provide the numerical results that can be obtained by using this
version. Thus, while we change (4.15) to

DzI(tk−1,z
k) + κm + q = 0,

max{qi, (zki − z
k−1
i )− τ} = 0

max{qi,−(zki − z
k−1
i )} = 0

 (4.16)

we keep all parameters unaltered. Clearly, the Newton-matrixHn also changes in the obvious
way. The difference between both solutions using LISS is shown in Figure 4.6. The time-
function t̂ for the solution using box-constraints is given in Figure 4.7. It is easy to see
that both solutions, using L2- and L∞-constraints, are very similar. Indeed, the L2 and L∞
distance at the end time T = 16 calculates to ‖zh,2 − zh,∞‖L2(Ω) = 2.5 · 10−2. Since
the incorporation of box constraints is natural in this context and its implementation is also
easier to realize it provides an interesting topic for further research.

A possible approach for this is to consider the p-Laplacian with p > d for the regulariza-
tion instead of A = −∆ as proposed in [KRZ15]. In this case, we have Z = W 1,p(Ω) ↪→c,d

C(Ω) which may open up the opportunity to use the L∞-norm as constraint in (3.1).

Example II: Brick with a circular hole

As proof-of-concept we consider the situation depicted in Figure 4.8. Again, due to its
symmetry the computation is performed using only one quarter of the whole system. This
also implies certain symmetry conditions for the boundary of the domainΩ. For the situation
at hand, we impose

u1 = 0 on Γ1 = {0} × [50, 100] and u2 = 0 on Γ2 = [50, 100]× {0}.

Moreover, the workpiece is pulled apart at two opposite sides, which we realize by the
Dirichlet conditions

u1 = 0, u2 = t on ΓD = [0, 100]× {100}.
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r

a

a

ΓN

ΓD
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ΓN

Γ2

Ω

parameters

κ [MPa] 0.1

E [GPa] (Young’s modulus) 18.0

ν (Poisson’s ratio) 0.2

α [MPa·mm2] 1.0

a [mm] 100.0

r [mm] 50.0

Fig. 4.8: Geometry of the domain (left); Table of parameters (right).

Fig. 4.9: State of the dimensionless damage
function zh at time point t ≈ 7.8
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Fig. 4.10: Reaction force on the boundary
ΓD depending on the displacement uD .

The parameters used are given in the table of Figure 4.8 (right). Finally, we initiate the
evolution with z0 ≡ 0 and choose τ = 0.1 for the time step size. The numerical solution
of the damage variable for an intermediate time point t ≈ 7.8 is shown in Figure 4.9 and
the corresponding force-displacement-diagram is depicted in Figure 4.10. We observe a
strong similarity with the results in [DH08]. However, the reaction force in the end phase
of the evolution is significantly higher in our case. This may be a result of the additional
regularization by the introduction of a "local field" d in [DH08]. Certainly, this requires
further investigation.

5 Conclusions

We presented a numerical scheme for the approximation of parametrized solutions for rate-
independent systems including a fairly general setting for the energy and dissipation function-
als. The scheme itself is based on the local minimization scheme introduced in [EM06], but
relies on stationary points rather than local minima, making it very accessible for numerical
optimization algorithms (limit points are, in general, stationary). Moreover, by adapting the
convergence analysis of the recent contributions in [Kne19, MS19a] and using arguments
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from [KRZ13], we proved that the scheme provides parametrized solutions of the original
rate-independent system under Mosco-convergence of approximations for the dissipationR.
While this is at first glance a result that verifies the consistency of the local incremental
stationarity scheme, we, moreover, gain an existence result for parametrized solutions in the
case of a nonconvex energy and unbounded dissipation. We then focused on the realization
of our scheme for a model of the evolution of damage within a workpiece. We employed a
finite element discretization in space and used a semi-smooth Newton method for solving
the discrete stationary system arising in each step of the scheme. The resulting algorithm
behaves efficient and robust in our numerical tests. Afterall there are several topics for future
research. This concerns for example the usage of an L∞-norm in the indicator functional
in (alg1) which leads to an easy to implement algorithm for the damage model considered
in this paper. In the same context, it might be interesting to relax the assumptions for the
energy in order to incorporate functionals that allow for a sharper resolution of the interface
between damaged and undamaged regions. Moreover, considering dissipation functionals
which are also depending on the state z, i.e., R = R(z, z′) should be noted here. As there
are only few results in this direction for rate-independent systems this does not only concern
parametrized solutions.

Acknowledgements I would like to thank Christian Meyer (TU Dortmund) for various discussions on the
topic and suggestions for improvement.

A Auxiliary results from convex analysis

In this section, we collect some useful properties of Rδ and Iτ , respectively. Since most of the results are
quite standard, we keep the arguments brief.

Lemma A.1. Let W be a normed vector space and J : W → R a convex and positive 1-homogeneous
functional. Then it holds

∂J (v) ⊂ ∂J (0) ∀v ∈ W (A.1a)
ξ ∈ ∂J (0) ⇐⇒ J (w) ≥ 〈ξ, w〉 ∀w ∈ W (A.1b)
∂J (v) = {ξ ∈ ∂J (0) : J (v) = 〈ξ, v〉} (A.1c)
J ∗(ξ) = I∂J (0)(ξ) ∀ξ ∈ W∗ (A.1d)

where I∂J (0) denotes the indicator functional of ∂J (0).

Let us define the indicator functional Iτ : V → R ∪ {∞} as

Iτ (v) :=

{
0, if ‖v‖2V ≤ τ

2

+∞, else.
(A.2)

As in the proof of Lemma 3.1, we abbreviateRτ,δ = Rδ + Iτ .

Lemma A.2. For every η ∈ Z∗, there holds

(Rτ,δ)∗(η) = τ distV∗{η, ∂Rδ(0)}, (A.3)

where distV∗{η, ∂Rδ(0)} = inf{‖η − w‖V∗ : w ∈ ∂Rδ(0)}. Particularly, distV∗{η, ∂Rδ(0)} =∞
if there exists no w ∈ ∂Rδ(0) such that η − w ∈ V∗. Moreover, if distV∗{η, ∂Rδ(0)} < ∞ then there
exists w ∈ ∂Rδ(0) such that distV∗{η, ∂Rδ(0)} = ‖η − w‖V∗ .

Proof. We use the inf-convolution formula (see [Att84, Prop. 3.4]), which is applicable, since both functions
are proper, convex and closed and we have dom(Iτ ) = BV (0, τ). This gives

(Rδ + Iτ )
∗ (η) = inf

w∈V∗
(R∗δ(w) + I∗τ (η − w)) . (A.4)
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For I∗τ , direct calculation leads to

I∗τ (η) =

{
τ‖η‖V∗ , if η ∈ V∗

+∞, if η ∈ Z∗ \ V∗.
(A.5)

Moreover, Lemma A.1 givesR∗δ(η) = I∂Rδ(0)(η). Inserting this together with (A.5) in (A.4) finally yields

(Rδ + Iτ )
∗(η) = inf

w∈∂Rδ(0)
{τ‖η − w‖V∗} = τ distV∗ (η, ∂Rδ(0)),

which is (A.3). Now, let distV∗ (η, ∂Rδ(0)) < ∞ and take wk ∈ ∂Rδ ⊂ Z∗ such that limk→∞‖η −
wk‖∗V = distV∗ (η, ∂Rδ(0)). Obviously, this implies thatµk := η−wk is uniformly bounded inV∗. Hence,
we can extract a weakly convergent subsequence (w.l.o.g. denoted by the same symbol) such that µk ⇀ µ in
V∗ for some µ ∈ V∗. Therefore, by the embedding V∗ ↪→ Z∗, we have wk = η − µk ⇀ η − µ =: w in
Z∗ which implies that µ = η − w. To proceed, we note that ∂Rδ(0) ⊂ Z∗ is again convex and closed and
thus weakly closed in Z∗. Since wk ∈ ∂Rδ(0) for all k we also have w ∈ ∂Rδ(0). Finally, the weak lower
semicontinuity of the norm gives

distV∗ (η, ∂Rδ(0)) ≤ ‖η − w‖V∗ = ‖µ‖V∗ ≤ lim inf
k→∞

‖µk‖V∗ = distV∗ (η, ∂Rδ(0))

which finishes the proof. ut

In view of (alg1) we note that ∂ZIτ (z) = ∂VIτ (z) for any z ∈ Z which can be easily obtained by
considering the projection operatorΠV : Z → V and applying the chain-rule for subdifferentials to Iτ ◦ΠV .
As in Remark 2.3 we nevertheless simply write ∂Iτ (z). Moreover, we have the following characterization.

Lemma A.3. Let V be a reflexive Banach space and v ∈ V be arbitrary. Then, ξ ∈ V∗ is an element of
∂Iτ (v), iff

‖v‖V ≤ τ, ‖ξ‖V∗ (‖v‖V − τ) = 0, 〈ξ, v〉 ≥ ‖ξ‖V∗τ. (A.6)

If V is even a Hilbert space, then ξ ∈ ∂Iτ (v) iff there exists a multiplier λ ∈ R such that ξ = λJVv and

‖v‖V ≤ τ, λ(‖v‖V − τ) = 0, λ ≥ 0. (A.7)

Proof. According to a classical result of convex analysis in combination with (A.5), it holds

ξ ∈ ∂Iτ (v) ⇐⇒ Iτ (v) + I∗τ (ξ) = 〈ξ, v〉 ⇐⇒
{
‖v‖V ≤ τ
τ‖ξ‖V∗ = 〈ξ, v〉

(A.8)

Hence, (A.6) follows easily from τ‖ξ‖V∗ = 〈ξ, v〉 ≤ ‖v‖V‖ξ‖V∗ . Now, assume that V is a Hilbert space.
Then, the equality in (A.8) can only hold if ξ = λJVv for some λ ∈ R. Inserting this into (A.8), we conclude
that λ ≥ 0 and so, if ‖v‖V < τ , then ξ = 0 which gives (A.7). ut

B Numerical aspects for the discrete energy functional

In this section we formally derive the necessary derivatives of I used for the implementation of the lo-
cal stationarity scheme in case of the damage model. We start with DzI for which we note that by
DuẼ(t, zh, Sh(zh)) = 0 from (4.12), one obtains

Dz Ĩ(t, zh)vh = Dz Ẽ(t, zh, Sh(zh))vh +DuẼ(t, zh, Sh(zh))[S′h(zh)vh]

= Dz Ẽ(t, zh, Sh(zh))vh ∀vh ∈ Zh. (B.1)

Hence, with a little abuse of notation (particularly identifying z and zh) we have(
DzI(t,z)

)Nh
i=1

=
(
〈Dz Ẽ(t, zh, Sh(zh)), ϕi〉Z∗,Z

)Nh
i=1

.
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The fact thatDuẼ(t, zh, Sh(zh)) = 0 moreover implies that

0 = Dz{DuẼ(t, zh, Sh(zh)) vh}wh
= D2

zuẼ(t, zh, Sh(zh))[vh, wh] +D2
uuẼ(t, zh, Sh(zh))[vh, S′h(zh)wh]

Therefore, for arbitrary wh, we can characterize ηh := S′h(zh)wh as the solution of

0 = D2
zuẼ(t, zh, Sh(zh))[vh, wh] +D2

uuẼ(t, zh, Sh(zh))[vh, S′h(zh)wh] ∀wh ∈ Uh. (B.2)

Consequently, exploiting (B.1) it holds

D2
z Ĩ(t, zh)[vh, wh] = DuDz Ẽ(t, zh, Sh(zh))[vh, S′h(zh)wh] +DzDz Ẽ(t, zh, Sh(zh))[vh, wh]

= D2
uz Ẽ(t, zh, Sh(zh))[vh, ηh] +D2

zz Ẽ(t, zh, Sh(zh))[vh, wh]

with ηh = S′h(zh)wh solving (B.2). Again, with a little abuse of notation we thus have

(
D2
zI(t,z)

)Nh
i,j=1

=
(
〈D2

uz Ẽ(t, zh, Sh(zh))ϕi, S′h(zh)ϕj〉Z∗,Z

+ 〈D2
zz Ẽ(t, zh, Sh(zh))ϕi, ϕj〉Z∗,Z

)Nh
i,j=1

. (B.3)

Now, let us turn to the semismooth Newton-method that is used in order to solve the stationary system in
(4.15). In general, if we denote the left hand side of (4.15) by F : R2Nh+1 → R2Nh+1, equation (4.15)
becomes F (z, q, λ) = 0 and we need to solve the following semi-smooth Newton equation

Hn (xn+1 − xn) = −F (xn) with Hn ∈ ∂NF (xn),

with the iteratexn = (zn, qn, λn) and a Newton-derivative ∂NF . However, the matrixHn contains second
order information of I which, by (B.3) necessitates the determination of S′h(zh). In order to keep track of
this, we blow up the whole system so that in every semismooth Newton-step we actually solve

H̃n

∆z
n

ηn

∆qn

∆λn

 = −


DzI(tk−1,z

n) + κm+ qn + λn ωM (zn − zk−1)
0

max{qni ,−(zni − z
k−1
i )}

max{−λ,G(zn)}


with

H̃n :=


D2
zz Ẽ(·) + λnωM D2

zuẼ(·) IdNh×Nh ωM(zn − zk−1)

D2
zuẼ(·) D2

uuẼ(·) 0 0

diag(αn) 0 diag(1 +αn) 0

χn(zn − zk−1)>ωM −1 + χn

 (B.4)

Note that to shorten the notation we let (·) =̂ (tk−1,z
n, Sh(z

n)). Moreover, we have

αni :=

{
−1, −qni − (zni − z

k−1
i ) > 0,

0, −qni − (zni − z
k−1
i ) ≤ 0,

and χn :=

{
1, G(zn) > −λn,
0, G(zn) ≤ −λn.

Eventually, we update zn+1 = zn+∆zn, qn+1 = qn+∆qn and λn+1 = λn+∆λn. With this choice,
all matrices H̃n appearing in our numerical test have shown to be invertible and the semi-smooth Newton
method performed well with respect to both, robustness and efficiency. In particular, no globalization efforts
are needed to ensure convergence of the method and, moreover, no line search was necessary in order to
guarantee condition (alg2) in LISS. A rigorous convergence analysis of the method however would go beyond
the scope of this paper and is subject to future research.
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