NUMERICAL STUDY OF A DISCRETE PROJECTION METHOD FOR
ROTATING INCOMPRESSIBLE FLOWS. *
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Abstract. This paper presents a numerical analysis for complex 3D lalions of the Stirred Tank Reactor
(STR) model by a modified discrete projection method (DPM)rétating incompressible flow. For several proto-
typical configurations of the STR model, we examine the muttibehaviour for the arising momentum and pressure
Poisson subproblems for different values of the time stepangular velocity, etc., and we give examples for the
convergence behaviour of the (outer) DPM scheme. For atypital application, we visualize the complex flow
behaviour by injecting sources of particle tracers intodhtined flow field to observe their mixing distribution.
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complement

1. Introduction. The considered fluid motion is modelled by the nonstatiofzsgm-
pressible Navier-Stokes equations

%—I—(’U-V)’U—VA’U—I—VPZ]L', V-v=0 inQ x (0,7 (1.1)

for given forcef and kinematic viscosity > 0 with some prescribed boundary values and
an initial condition.

FIG. 1.1.(LEFT) STR geometry; (RIGHT) Numerical simulation (cutglaf velocity).

If one wants to tackle CFD problems of the numerical simafafior models with moving
boundary parts, one has to think about the proper treatnfetheamoving object. As an
example of such models we take the Stirred Tank Reactor shofig. 1.1, which is a nice
candidate to examine the efficiency of the proposed dispreiection method [10, 11] for
the simulation of the real-life 3D problems.

All approaches proposed in the literature for treating mgyioundary parts have some draw-
backs, which one may wish to avoid during the numerical satioth. For example, the Ar-
bitrary Lagrangian Eulerian method [3] while ensures mégjmment along the boundaries
may perform poorly when large deformations or substantiahges in body position in space
are required. The Fictitious Boundary method [15] allowsitaulate an arbitrarily moving
object such that snapshots can demonstrate the realistierment of the time-dependent

*Institut fur Angewandte Mathematik, Universitat Dortnay Email addresses:
asokol ow@rat h. uni - dor t nund. de,t ure@ eat f | ow. de.

TDepartment of Mechanics and Mathematics, Moscow State edsity, 119899 Moscow, Email address:
maxi m ol shanskii (at) ntu-net.ru.

*This research was supported by the German Research Famdaiil the Russian Foundation for Basic Re-
search through the grant DFG-RFBR 06-01-04000 and TU 162/21

1



tread patterns. Nevertheless, a large amount of CPU timegisined to simulate even 2D
benchmark models with acceptable accuracy due to the estjlsirge amount of grid points
for high quality. Moreover, its handling of geometry and imes serves as a source of ad-
ditional errors in velocity and pressure fields, since theifious Boundary approach often
uses a fixed mesh and therefore may capture boundaries of iagraject not sufficiently
accurate unless the mesh is very fine (see Fig. 1.2 (rightidkily, there is a large class of
“rotating” models, when the application of the above methcan be avoided by some mod-
ifications of the underlying PDEs and/or by special transi@tions of the model that allow
considering a static computational domain. This latteraagh we approbate in this work
for the simulation of the fluid flow in the Stirred Tank Reaatonfigurations.

FiG. 1.2.(UPPER-LEFT) body-fitted mesh on a coarse level; (UPPERHRIGNesh for the fictitious bound-

ary approach on a coarse level; (BOTTOM-LEFT) body-fittedsimen a finer level; (BOTTOM-RIGHT) finer mesh
for the fictitious boundary approach.

Transformation of the system of coordinates from the iaéftame into the noninertial frame,
rotating with the blades, leads to a new veloaity= v + (w x r), wherew is the angular
velocity vector andr is the radius vector from the center of coordinates. Theoigia:
satisfies homogeneous Dirichlet boundary values on theeblatithe propeller, while on the
outside wall of the tank one obtaims= w x r. Thus, in the new reference frame the system
(1.1) can be rewritten as

u+ (u-Vu—rvAu+2wxu+wx (wxr)+Vp = f

ol inaxo1], a2

where2w x u andw x (w x r) are the so-called Coriolis and centrifugal forces, respelgt
For a more detailed derivation of (1.2) see, e.g., [2] or [1ing the equality

1
wx (wxr)= —Vi(w x r)?
and settingP? = p — %(w x r)% in (1.2), we get the following system of equations which will
be treated in this paper:

ur+ (u-Vu—vAu+2wxu+VP = f
V-u = 0
2

in Qx(0,7].  (1.3)



The implicit discretization of (1.3) in time and in spacedsdo a saddle-point system to be
solved in every time step. The system has the falynié the time step)

(o 7)) () @s

whereu = (uy,us,u3)7 is the discrete velocityy is the discrete pressurd and BT are
discrete gradient and divergence operators 8rig a block matrix which is due to the dis-
cretized velocity operators in the momentum equation. ThagimS has the following block

structure
A -M 0
S=| M 4 o |, (1.5)

0 0o A

where A is the block diagonal part &, which is due to the convective and diffusive terms,
andM is the off-diagonal part o due to the discretized Coriolis force teBw x u. More
details on the structure of the matricéand M will be given in the next section.

The considered algorithm was implemented into BpSd module of the open-source CFD
packagd-eatflow (www.featflow.de).

2. Discrete projection method. The original discrete projection method for the time
integration of (1.3) can be written as follows (see [10, 1§)1In every time step,, — t,,+1
do
1. For givenp™ = p(t,) find an auxiliary velocityu from

Su =g — AtBp" (2.1)

2. Solve the discrete pressure Poisson problem
1 -
Pq:=B"M;'Bq= EBTu, (2.2)

where)M, is the mass matrix of the finite element velocity approximati
3. Update the pressure and project the velocity via

Pt =p"+q, (2.3)
u"t =u— AtS'Bq. (2.4)

The velocity matrixS' is assumed to be obtained by linearization via a fixed poihtewton-
like method and invertible.

We modify the above method in such a way that it takes into @atcthe possibly dominant
convective and Coriolis force terms. Some theoretical espnd the detailed derivation can
be found in [10]. The final form of the modified DPM reads:

1. Solve foru the equation
Su =g — AtBp"

with a special multigrid method. This multigrid method ihves smoothing iterations with
the special precondition€r”.

diag(A) —2wAtM, 0
C :=Ciorio = | 2WAtM;  diag(A) 0 , (2.5)
0 0 diag(A)



where M, is a lumped mass matrix. A similar multigrid method was swsgee in [7], in
which convergence estimates were proved for the 2D model wader certain assumptions
on the discretization. Taking into account the fact thablitks ofC.,,...; are diagonal ma-
trices, one can explicitly find its invergg ! . which has again the same structure (see [9]).

coriol’

2. Solve the discrete pressure problem

Pg= AitBTa , (2.6)

where P can be interpreted as a special preconditioner to the pee&ahur Complement
operatorBT S~ B. We assume that the matrix takes the formBTM(f)lB, with M., as
an approximation of the velocity matri&. This particular form ofP ensures that the update
of the velocity in (2.11) is actually a projection into thebspace of discretely divergence free
functions. To take into account convection and the Coriolise term we suggest to use:

diag(A) —2wAtMp, 0
M(,) = M(diag+coriob = QWAtML dzag(A) 0 . (27)
0 0 diag(A)

In our numerical experiments we also test other choiceMggl:

ML —QwAtML 0
M(mass+corio)| = 2wAtMy, My, 0 ) (2.8)
0 0 My,
diag(A) 0 0
M (diag = 0 diag(A) 0 : (2.9)
0 0 diag(A)
diag(4) —2wAtM; 0
M(diagXY+coriol) = 2wAtMy, diag(A) 0 . (2.10)
0 0 My,

3. Calculate the pressure and the velocity approximatisrfs/g is the pressure mass
matrix)

p=p"+q+aM,'B'u
u=u-— AtM(f)qu (2.11)

with o = 0 ora = v. We setp”t! = p, u™*! = u. One can also perform several loops of
steps 1.—3. to recover the fully coupled solution at time, .

3. Numerical experiments. In this chapter we analyse the numerical properties of the
modified DPM for the system of the Stokes and Navier-Stokesigans with the Coriolis
force term. We constructed two configurations of the STR rh¢gke Table 3.1) to test



TABLE 3.1

Characteristics of STR meshes.

level | NvT | NaT | NEL | NEQ
One-propeller STR configuration

1st level 510 1,216 352 4,000
2d level | 3,450 9,088 2,816 30,080
3dlevel | 25,074 | 70,144 | 22,528 | 232,960
4th level | 190,434| 550,912 | 180,224 1,832,960
Three-propellers STR configuration

1stlevel | 1,406 3,528 1,048 11,632
2d level | 9,864 26,688 8,384 88,448
3dlevel | 73,100 | 207,360 | 67,072 | 689,152
4th level | 560,916| 1,634,304| 536,576| 5,439,488

the multigrid behaviour for the momentum and Pressure Boisgjuations and to examine
the overall convergence behaviour of this discrete praaanethod. In Table 3.1 we adopt
the following notation: NEL is the number of elements, NATth& number of faces, NVT

and NEQ are the number of vertices and the total number ofawika (degrees of freedoms)

on different grid levels.
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FiG. 3.1.(TOP-LEFT) Configuration 1 of the STR, 2d level (TOP-RIGHaIp¥ity for the configuration 1
(BOTTOM-LEFT) Configuration 2 of the STR, 2d level (BOTTOIBHRT) Velocity for the configuration 2.
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3.1. Multigrid with smoother C for velocity problems. Discretizing in time and space
the system of Navier-Stokes equations with the Corioliséderm (1.3), we obtain the lin-
earized momentum equation of the following form with theistare as in (1.5)

Su=g(u",p", f*, ). (3.1)

We test three preconditioning approaches for solving (3The first two include standard
pointwise SOR methods with the following preconditioners:

lower_part A) 0 0

Csor = 0 lower_part A) 0
0 0 lower_part A)

lower_part A) 0 0

CSORcoriol = 2WAtML |OWer_part(A) 0
0 0 lower_part A)

The third variant is the block-diagonal preconditiodgr,,.;,; from (2.5). BothCso reoriol
andC..;,; Matrices take into account convective and Coriolis foreemge However, only
C..rio1 Uses the full Coriolis force terms and, at the same time, weesalicitly construct
its inverse. In Table 3.2 we exemplarily present the typicathber of multigrid iterations for
the momentum equation for several problem parameters éoaltlove preconditioners. The
STR configuration 1 was used.

TABLE 3.2
Number of multigrid iterations of the momentum equation.

Preconditionern] wAt Meshing level

2 3 4
Csor 0.6 2 2 2
CSORcoriol 0.6 2 2 2
C(:m’iol 0.6 2 2 2
Csor 6 2 2 2
CSORcoriol 6 2 2 2
C(:m’iol 6 2 2 2
Csor 60 div div div
CSORcoriol 60 3 4 4
C(:m’iol 60 2 2 2
Csor 600 div div div
Cs0Rcoriol 600 | >100| >100 | >100
C(:m’iol 600 2 2 2

For small values ofv At, the explicit construction of®..,-;,; might not be so advantageous.
However, for larger values @af At the approximation of the velocity matrix by the precon-
ditioner C,.;o; With its upper and lower parts of the Coriolis force term oe ttff-diagonal
matrices becomes more reasonable. Moreover, the diagatuakrofC..,,;,; makes it possi-
ble to find its inverse explicitly and thus, prevents us framiter loss of efficiency.

3.2. Multigrid solver for the modified pressure equation(2.6). We solve both the ve-
locity problem in step 1 of the DPM and the modified pressuteaéign in step 2 by multigrid
methods. Numerical results §f3.1 show that the geometric multigrid method with special
smoothings is very effective for solving the velocity prel. However the overall efficiency
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of the DPM also depends on whether a fast solver is availablEf6). In the paper [10] we
show that the matri¥®> = BT M ! B with M(f)l from (2.8) — (2.10) is sparse, symmetric,
positive definite and corresponds to a mixed discretizatifosn elliptic problem with sym-
metric diffusion tensor. Thus one expects that standardignid techniques work well in
this case. Numerical tests however show that the standardeteic multigrid method with
SOR smoother does not provide a satisfactory solver forpiablem in all practical cases.
Therefore, we also test 'stronger’ smoothers such as ILbifk) BICGStab(ILU(k)).

The procedure to measure the multigrid convergence ratexhasen as follows: for
givenw we calculate until some prescribed stopping criteria atisfgad. Then, the obtained
steady state solutiofu, p) is used as an initial solution so thétug(A) = diag(A(u)), and
we solve only the Pressure Poisson equation for variousopditioners and the values of
wAt (see Table 3.3). Again, we used the STR configuration 1 tatsk values presented in
the table. The multigrid convergence for the STR configare shows the similar behaviour.

TABLE 3.3
Multigrid convergence rates for different preconditioad? = BT M’)lB with 4 smoothing steps, resp., 2

(4
smoothing steps for BICGStab, 3d level.

Smoother 2wAt

005 | 05 | 50 | 500
M(mass)
SOR 0.50+00] 0.50+00] 0.50+00] 0.50+00
ILU(1) 0.17-01| 0.17-01| 0.17-01 | 0.17-01
ILU(3) 0.75-03 | 0.75-03| 0.75-03 | 0.75-03

BICGStab(ILU(1))| 0.19-02 | 0.19-02| 0.19-02| 0.19-02
BICGStab(ILU(3))| 0.47-03 | 0.47-03 | 0.47-03| 0.47-03

M(mass+corio)|

SOR 0.50+00| 0.51+00| 0.81+00 div
ILU(2) 0.17-01| 0.19-01| 0.59-01| 0.26-01
ILU(3) 0.75-03 | 0.75-03 | 0.48-02| 0.28-02

BICGStab(ILU(1))| 0.18-02 | 0.18-02 | 0.61-02 | 0.30-02
BICGStab(ILU(3))| 0.47-03| 0.36-03 | 0.21-02| 0.18-02

M(diag)

SOR 0.46+00| 0.31+00| 0.41+00| 0.49+00
ILU(L) 0.13-01 | 0.32-01| 0.20+00| 0.35+00
ILU(3) 0.23-02 | 0.76-02| 0.81-01| 0.19+00

BiCGStab(ILU(1))| 0.31-02 | 0.83-02 | 0.45-01| 0.88-01
BICGStab(ILU(3))| 0.96-03 | 0.18-02 | 0.20-02 | 0.43-02

M (diag+corio)

SOR 0.46+00| 0.34+00| 0.56+00| 0.68+00
ILU(2) 0.13-01| 0.34-01| 0.14+00| 0.16+00
ILU(3) 0.23-02| 0.79-02| 0.38-01| 0.40-01

BICGStab(ILU(1))| 0.31-02 | 0.85-02 | 0.23-01 | 0.28-01
BICGStab(ILU(3))| 0.96-03 | 0.17-02 | 0.13-02 | 0.19-02

3.3. Numerical analysis of the new DPM.For the numerical analysis of the computa-
tional performance of the new DPM we consider two differeages. First, we start testing
the algorithm by solving a quasi-stationary problem andwdate until the steady state is
achieved by pseudo-time-stepping with DPM. Then, in the segtion, the DPM is used to
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TABLE 3.4
Multigrid convergence rates for the preconditiongy = BTM ! B for different levels with 4

(diag+-coriol)
smoothing steps, resp., 2 smoothing steps for BiCGStab.

level 2wAL
005 | 05 | 50 | 500

SOR
level 2 | 0.35+00| 0.35+00| 0.57+00| 0.65+00
level 3 | 0.46+00| 0.34+00| 0.56+00| 0.68+00
level 4 | 0.40+00| 0.40+00| 0.60+00| 0.65+00
BiCGStab(ILU(1))
level 2 | 0.85-03| 0.91-03| 0.45-02| 0.76-02
level 3| 0.31-02| 0.85-02 | 0.23-01| 0.28-01
level4 | 0.53-02| 0.98-01| 0.23-01| 0.38-01

compute the fully unsteady case for the STR problem. To motiite convergence to the
steady solution we compute values |ai;||;, /||u|l,. Values of||p:li,/|lplli, behave in a
very similar way. In the ideal case (when the preconditiogexact) we could expect that
the convergence of the solution to the steady case would tyefast. However, the inver-
sion of the exact pressure Schur Complement as precongliiprohibitively expensive and
therefore it cannot be used in practice. The constructerbappating preconditioners of the
form P = BTMilB with M(7)1 equaIsM(maSS+corio|i$, M(diag) andM(diag+Coriob mlght lead
to a decrease in the convergence if compared with the exagstht should definitely de-
liver better convergence behaviour if compared with thgingl nonmodified preconditioner
M mass- Moreover, the speedup in the convergence rate should gggeih when larger val-
ueswAt are used. In the following, we perform the tests for everyhefdiscussed choices.
The following graphics are done for the unit cube geometeg (4.0] for details). For the
STR configurations the convergence of the DPM has the samertey, though due to the
higher mesh complexity of the STR the relevant upper bourldeaf At value is smaller than
in the case of the unit cube.

3.3.1. The Stokes case with Coriolis forceLet us consider the system of the Stokes
equation:

u —vAu+ 2w xu+ VP =f

o in Q x (0,7 (3.2)

The pressure operators of the form= BTM(f)lB are examined with the following choices
of M(.)Z

ML 0 0 ML —QMAtML 0
M(mass) = 0 M, 0 and M(mass+corio)| = | 2wAtM], M, 0
0 0 Mg 0 0 My,

Itis natural to expect that as soon as the parametdrincreases (eitheht gets largerw or
both), the off-diagonal block of the matriX mass+corigr, Which is due to the Coriolis force,
plays a more important role and the solution converges teaalgtstate in a smaller number of
time steps. And vice versa,dfAt decreases, the iterative behaviour of DPM as a solver with

the matrixP = BTM(?nlassmono)B in step 2 approaches that is similar to the performance
of the standard Chorin like scheme with the matfix= BT ML . B. We illustrate this in

Fig. 3.2. (mess
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FIG. 3.2.Stokes equations (LEF2wAt = 0.5; (RIGHT)2wA¢ = 10.0.

3.3.2. Schur Complement preconditioners for the Navier-Stkes case.While con-
sidering the system of the Navier-Stokes equations (1.3jameexpect to gain a substantial
improvement in the convergence rates by applying the pressueratorP with the matrix
M (mass+corigi- But in this case we also have to care about the effect of ativederms on the
choice of P. As it was proposed in the previous section, the convectika ill be treated
by means of the preconditioning matik = BTM(f)lB with M.y as follows:

diag(A) 0 0
M(diag) = 0 diag(A) 0
0 0 diag(A)
diag(A) 0 0
or M(diagXY) = 0 diag(A) 0
0 0 My,

From the results in Fig. 3.3 we can conclude that, on the ond,heing the matriXd/(giagxy)

[IENTTLITNS
[IENTTLITNS
3

4] 5 10 15 20 25 30 o 5 10 15 20 25 30
time step units time step units

FiG. 3.3.Navier-Stokes equations (LEFIp At = 1.5; (RIGHT) 2wAt = 2.5.

improves the convergence rates compared with thosé/fgr.ss and, on the other hand,
M giagxy)y makes the iterative process more robust compared tpg . Our numerical tests
show that the pressure Schur complement preconditiBﬁé\d(*diggmB can be successfully
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used for the flow simulations with small velocity values ie th-direction. In this case the
convergence history dfu||;,/|u||;, for simulations usingV giag and M giagxy) are quite
close to each other. For the flow simulations with significeahbcity values in theZ-direction
the caséV/(giagxy) is not applicable.

Finally, we perform the corresponding tests for the Na@trkes equation with the pressure
operatorP inside of the DPM, where both parts of convection and the d@lisrforce terms
are included:

diag(A) —2wAtMp, 0

M(diag+coriop = | 2wAtM], diag(A) 0
0 0 diag(A)
diag(A) —2wAtM; 0
O M giagxv+corioh) = | 2wAtMy,  diag(A) 0
0 0 My,

For the last test case from these series, we perform conmmsatith the convective term

10 10

ey Wy,
5

ey Wy,
5

o 10 20 0 40 50 0 70 80 o 10 20 0 40 50 0 70 80
time step units time step units

FIG. 3.4.Navier-Stokes equations (LEFZQ At = 1.5; (RIGHT) 2wAt = 2.5.

1P1/1IPIl,

2 2 4 (] 8 10 12 14 18 18 20
time step units

FiIG. 3.5.Navier-Stokes equations with - Vu, 2wAt = 10.0.

being of the modified fornU - Vu. To choose an approprialé, we first perform the
numerical simulation for the Navier-Stokes equations |stéady state. Then we 6t = u
and solve this linear problem with the DPM which allows nowamtnigher values of At,
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since the convection part is linear. The purpose is to detrateghat in this case the matrix

M (giag+corioy In the operator” delivers significantly better convergence rates thdpyiag)-

As expected, the matrid] giag+corio) gives better convergence rates than any other choice.
Results are shown in Fig. 3.5.

3.4. Simulation for the full STR configurations. At the end of this paper we will
present more realistic examples for unsteady numericallations for two configurations
of the Stirred Tank Reactor, see Fig. 3.1 (left). The mairrattaristics are as follows (all
measures are given in non-dimensional form):

1. Configuration 1: Number of propellers = 1, height of thektah,, ., = 4, radius of
the tankR;,..x, = 10, length of each bladg;;.q. = 6, width of each blad&l;;q. =

1, v = 0.1, Winfion = 45, w = 27, Ek ~ 0.0004, whereEk := —»— is the
Whilade

Ekman number. In the case of mixers the Ekman number is sattEth =

whereRe is the Reynolds number.
2. Configuration 2: Number of propellers = B;qnx = 22, Riank = 10, Lpjage = 6,

Wblade = 2, vV = 0.1, Winflow = 45, w = 271’, Ek =~ 0.0004.
In every case fluid enters the tank through an inlet near tftermnothen it is 'mixed’ by the
rotating propeller and leaves the stirred tank through dleblocated on the top, see Fig. 3.1
(right). The coordinate transformation made it possiblpreserve the mesh aligned with the
boundaries of the propeller such that even the small-scalefflatures are resolved. At the
end of the simulation, in the postprocessing phase, thewsrckcoordinate transformation
(from the noninertial to the inertial one) is performed ahd velocity field is changed re-
spectively to provide the user with the 'standard’ motiortte propeller in the stirred tank
reactor (movies can be found at www.mathematik.uni-donttndee/Isiii/download/sokolow).
It is usually a difficult task to make concluding remarks atibe flow field in the 3D geom-
etry. Moreover, very often the main interest of the simulatis not the flow field itself, but
a mixture of some sources/species inside of the reactagctiop of the particle tracer into
the geometry of the STR helps to evaluate both the propagafithe velocity field and the
mixture of the particles. We used an explicit time-stepgiadicle tracing tooGMVPT [1].
Near the inlet we prescribed three sources of particleschvban be distinguished by its
colour: green, yellow and red, respectively (see Fig. 43k snapshots at the succeeding
time steps give a realistic understanding of the flow motiod the good mixture of the par-
ticles. As a remark, we would like to point out that the sinbetbSTR configurations can be
significantly more complex (curvature and number of bladieape of the tank, etc.) without
any loss from the side of the numerical behaviour of the pseddPM.

Ea

The discrete projection method, considered in this art&@ws a very robust and accurate
behaviour for such complex unsteady problems. The devdlopde also exploits such ad-
vanced CFD techniques as stable non-conforming finite eles18], robust high-resolution
stabilization of the convective term [5], multigrid soledi 4], etc. Furthermore, the approach
can be extended to population balance models or turbulems fib — ¢ turbulence model)
which is our current research, see [4, 6].

4. Conclusions.In the article we tested the numerical efficiency of a new EitcPro-
jection Method for the incompressible Navier-Stokes eignatwith Coriolis force due to a
rotating system. As a test model we took a complex 3D geonoéthe Stirred Tank Reactor.
We examined the multigrid behaviour for the momentum andqures Poisson equations. We
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FIG. 4.1.Distribution of particles at consecutive time steps.

12



showed that the speedup in the convergence to the steadysstation for time-independent
problems depends on the choice of the mattix the “pressure Poisson” step of the method.
This matrix should account on convection and Coriolis faerens. Finally, we performed
nonsteady simulations for the two configurations of the STdRleh In the obtained flow field
we injected virtual particle sources and observed theiridigion and mixture. All numerical
results show that the modified DPM is more efficient and rotuitst respect to the variation
in problem parameters than standard projection schemes.
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