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Abstract. This paper presents a numerical analysis for complex 3D simulations of the Stirred Tank Reactor
(STR) model by a modified discrete projection method (DPM) for rotating incompressible flow. For several proto-
typical configurations of the STR model, we examine the multigrid behaviour for the arising momentum and pressure
Poisson subproblems for different values of the time step, the angular velocity, etc., and we give examples for the
convergence behaviour of the (outer) DPM scheme. For a prototypical application, we visualize the complex flow
behaviour by injecting sources of particle tracers into theobtained flow field to observe their mixing distribution.

Key words Navier–Stokes equations, Coriolis force, discrete projection method, pressure Schur
complement

1. Introduction. The considered fluid motion is modelled by the nonstationaryincom-
pressible Navier-Stokes equations

∂v

∂t
+ (v · ∇)v − ν∆v + ∇p = f , ∇ · v = 0 in Ω × (0, T ] (1.1)

for given forcef and kinematic viscosityν > 0 with some prescribed boundary values and
an initial condition.

FIG. 1.1.(LEFT) STR geometry; (RIGHT) Numerical simulation (cutplane of velocity).

If one wants to tackle CFD problems of the numerical simulation for models with moving
boundary parts, one has to think about the proper treatment of the moving object. As an
example of such models we take the Stirred Tank Reactor shownin Fig. 1.1, which is a nice
candidate to examine the efficiency of the proposed discreteprojection method [10, 11] for
the simulation of the real-life 3D problems.
All approaches proposed in the literature for treating moving boundary parts have some draw-
backs, which one may wish to avoid during the numerical simulation. For example, the Ar-
bitrary Lagrangian Eulerian method [3] while ensures mesh alignment along the boundaries
may perform poorly when large deformations or substantial changes in body position in space
are required. The Fictitious Boundary method [15] allows tosimulate an arbitrarily moving
object such that snapshots can demonstrate the realistic movement of the time-dependent
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tread patterns. Nevertheless, a large amount of CPU time is required to simulate even 2D
benchmark models with acceptable accuracy due to the required large amount of grid points
for high quality. Moreover, its handling of geometry and meshes serves as a source of ad-
ditional errors in velocity and pressure fields, since the Fictitious Boundary approach often
uses a fixed mesh and therefore may capture boundaries of a moving object not sufficiently
accurate unless the mesh is very fine (see Fig. 1.2 (right)). Luckily, there is a large class of
“rotating” models, when the application of the above methods can be avoided by some mod-
ifications of the underlying PDEs and/or by special transformations of the model that allow
considering a static computational domain. This latter approach we approbate in this work
for the simulation of the fluid flow in the Stirred Tank Reactorconfigurations.

FIG. 1.2.(UPPER-LEFT) body-fitted mesh on a coarse level; (UPPER-RIGHT) mesh for the fictitious bound-
ary approach on a coarse level; (BOTTOM-LEFT) body-fitted mesh on a finer level; (BOTTOM-RIGHT) finer mesh
for the fictitious boundary approach.

Transformation of the system of coordinates from the inertial frame into the noninertial frame,
rotating with the blades, leads to a new velocityu = v + (ω × r), whereω is the angular
velocity vector andr is the radius vector from the center of coordinates. The velocity u

satisfies homogeneous Dirichlet boundary values on the blades of the propeller, while on the
outside wall of the tank one obtainsu = ω × r. Thus, in the new reference frame the system
(1.1) can be rewritten as

ut + (u · ∇)u − ν∆u + 2ω × u + ω × (ω × r) + ∇p = f

∇ · u = 0
in Ω×(0, T ] , (1.2)

where2ω×u andω× (ω×r) are the so-called Coriolis and centrifugal forces, respectively.
For a more detailed derivation of (1.2) see, e.g., [2] or [12]. Using the equality

ω × (ω × r) = −∇
1

2
(ω × r)2

and settingP = p− 1
2 (ω × r)2 in (1.2), we get the following system of equations which will

be treated in this paper:

ut + (u · ∇)u − ν∆u + 2ω × u + ∇P = f

∇ · u = 0
in Ω × (0, T ] . (1.3)
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The implicit discretization of (1.3) in time and in space leads to a saddle-point system to be
solved in every time step. The system has the form (∆t is the time step)

(
S ∆tB

BT 0

)(
u

p

)
=

(
g

0

)
, (1.4)

whereu = (u1, u2, u3)
T is the discrete velocity,p is the discrete pressure;B andBT are

discrete gradient and divergence operators andS is a block matrix which is due to the dis-
cretized velocity operators in the momentum equation. The matrix S has the following block
structure

S =




A −M 0
M A 0
0 0 A


 , (1.5)

whereA is the block diagonal part ofS, which is due to the convective and diffusive terms,
andM is the off-diagonal part ofS due to the discretized Coriolis force term2ω × u. More
details on the structure of the matricesA andM will be given in the next section.
The considered algorithm was implemented into thePp3d module of the open-source CFD
packageFeatflow (www.featflow.de).

2. Discrete projection method. The original discrete projection method for the time
integration of (1.3) can be written as follows (see [10, 13, 14]): In every time steptn → tn+1

do
1. For givenpn = p(tn) find an auxiliary velocitỹu from

Sũ = g − ∆tBpn (2.1)

2. Solve the discrete pressure Poisson problem

P q := BT M−1
L Bq =

1

∆t
BT ũ, (2.2)

whereML is the mass matrix of the finite element velocity approximation.
3. Update the pressure and project the velocity via

pn+1 = pn + q , (2.3)

un+1 = ũ − ∆tS−1Bq . (2.4)

The velocity matrixS is assumed to be obtained by linearization via a fixed point orNewton-
like method and invertible.

We modify the above method in such a way that it takes into account the possibly dominant
convective and Coriolis force terms. Some theoretical aspects and the detailed derivation can
be found in [10]. The final form of the modified DPM reads:

1. Solve forũ the equation

Sũ = g − ∆tBpn

with a special multigrid method. This multigrid method involves smoothing iterations with
the special preconditionerC:

C := Ccoriol =




diag(A) −2ω∆tML 0
2ω∆tML diag(A) 0

0 0 diag(A)


 , (2.5)
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whereML is a lumped mass matrix. A similar multigrid method was suggested in [7], in
which convergence estimates were proved for the 2D model case under certain assumptions
on the discretization. Taking into account the fact that allblocks ofCcoriol are diagonal ma-
trices, one can explicitly find its inverseC−1

coriol, which has again the same structure (see [9]).

2. Solve the discrete pressure problem

Pq =
1

∆t
BT ũ , (2.6)

whereP can be interpreted as a special preconditioner to the pressure Schur Complement
operatorBT S−1B. We assume that the matrixP takes the formBT M−1

(·) B, with M(·) as
an approximation of the velocity matrixS. This particular form ofP ensures that the update
of the velocity in (2.11) is actually a projection into the subspace of discretely divergence free
functions. To take into account convection and the Coriolisforce term we suggest to use:

M(·) := M(diag+coriol) =




diag(A) −2ω∆tML 0
2ω∆tML diag(A) 0

0 0 diag(A)


 . (2.7)

In our numerical experiments we also test other choices forM−1
(·) :

M(mass+coriol) =




ML −2ω∆tML 0
2ω∆tML ML 0

0 0 ML


 , (2.8)

M(diag) =




diag(A) 0 0
0 diag(A) 0
0 0 diag(A)


 , (2.9)

M(diagXY+coriol) =




diag(A) −2ω∆tML 0
2ω∆tML diag(A) 0

0 0 ML


 . (2.10)

3. Calculate the pressure and the velocity approximations as (Mp is the pressure mass
matrix)

p = pn + q + αM−1
p BT ũ

u = ũ − ∆tM−1
(·) Bq (2.11)

with α = 0 or α = ν. We setpn+1 = p, un+1 = u. One can also perform several loops of
steps 1.–3. to recover the fully coupled solution at timetn+1.

3. Numerical experiments. In this chapter we analyse the numerical properties of the
modified DPM for the system of the Stokes and Navier-Stokes equations with the Coriolis
force term. We constructed two configurations of the STR model (see Table 3.1) to test
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TABLE 3.1
Characteristics of STR meshes.

level NVT NAT NEL NEQ
One-propeller STR configuration
1st level 510 1,216 352 4,000
2d level 3,450 9,088 2,816 30,080
3d level 25,074 70,144 22,528 232,960
4th level 190,434 550,912 180,224 1,832,960
Three-propellers STR configuration
1st level 1,406 3,528 1,048 11,632
2d level 9,864 26,688 8,384 88,448
3d level 73,100 207,360 67,072 689,152
4th level 560,916 1,634,304 536,576 5,439,488

the multigrid behaviour for the momentum and Pressure Poisson equations and to examine
the overall convergence behaviour of this discrete projection method. In Table 3.1 we adopt
the following notation: NEL is the number of elements, NAT isthe number of faces, NVT
and NEQ are the number of vertices and the total number of unknowns (degrees of freedoms)
on different grid levels.

Out

In

In

Out

FIG. 3.1.(TOP-LEFT) Configuration 1 of the STR, 2d level (TOP-RIGHT) Velocity for the configuration 1
(BOTTOM-LEFT) Configuration 2 of the STR, 2d level (BOTTOM-RIGHT) Velocity for the configuration 2.
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3.1. Multigrid with smoother C for velocity problems. Discretizing in time and space
the system of Navier-Stokes equations with the Coriolis force term (1.3), we obtain the lin-
earized momentum equation of the following form with the structure as in (1.5)

Su = g(un, pn, fn+1, fn). (3.1)

We test three preconditioning approaches for solving (3.1). The first two include standard
pointwise SOR methods with the following preconditioners:

CSOR =




lower part(A) 0 0
0 lower part(A) 0
0 0 lower part(A)




CSORcoriol =




lower part(A) 0 0
2ω∆tML lower part(A) 0

0 0 lower part(A)




The third variant is the block-diagonal preconditionerCcoriol from (2.5). BothCSORcoriol

andCcoriol matrices take into account convective and Coriolis force terms. However, only
Ccoriol uses the full Coriolis force terms and, at the same time, we can explicitly construct
its inverse. In Table 3.2 we exemplarily present the typicalnumber of multigrid iterations for
the momentum equation for several problem parameters for the above preconditioners. The
STR configuration 1 was used.

TABLE 3.2
Number of multigrid iterations of the momentum equation.

Preconditioner ω∆t Meshing level

2 3 4
CSOR 0.6 2 2 2
CSORcoriol 0.6 2 2 2
Ccoriol 0.6 2 2 2
CSOR 6 2 2 2
CSORcoriol 6 2 2 2
Ccoriol 6 2 2 2
CSOR 60 div div div
CSORcoriol 60 3 4 4
Ccoriol 60 2 2 2
CSOR 600 div div div
CSORcoriol 600 >100 >100 >100
Ccoriol 600 2 2 2

For small values ofω∆t, the explicit construction ofCcoriol might not be so advantageous.
However, for larger values ofω∆t the approximation of the velocity matrix by the precon-
ditionerCcoriol with its upper and lower parts of the Coriolis force term on the off-diagonal
matrices becomes more reasonable. Moreover, the diagonal nature ofCcoriol makes it possi-
ble to find its inverse explicitly and thus, prevents us from further loss of efficiency.

3.2. Multigrid solver for the modified pressure equation(2.6). We solve both the ve-
locity problem in step 1 of the DPM and the modified pressure equation in step 2 by multigrid
methods. Numerical results of§ 3.1 show that the geometric multigrid method with special
smoothings is very effective for solving the velocity problem. However the overall efficiency
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of the DPM also depends on whether a fast solver is available for (2.6). In the paper [10] we
show that the matrixP = BT M−1

(·) B with M−1
(·) from (2.8) – (2.10) is sparse, symmetric,

positive definite and corresponds to a mixed discretizationof an elliptic problem with sym-
metric diffusion tensor. Thus one expects that standard multigrid techniques work well in
this case. Numerical tests however show that the standard geometric multigrid method with
SOR smoother does not provide a satisfactory solver for thisproblem in all practical cases.
Therefore, we also test ’stronger’ smoothers such as ILU(k)and BiCGStab(ILU(k)).

The procedure to measure the multigrid convergence rates was chosen as follows: for
givenω we calculate until some prescribed stopping criteria are satisfied. Then, the obtained
steady state solution(ũ, p̃) is used as an initial solution so thatdiag(A) = diag(A(ũ)), and
we solve only the Pressure Poisson equation for various preconditioners and the values of
ω∆t (see Table 3.3). Again, we used the STR configuration 1 to calculate values presented in
the table. The multigrid convergence for the STR configuration 2 shows the similar behaviour.

TABLE 3.3
Multigrid convergence rates for different preconditioners P = BT M

−1
(·)

B with 4 smoothing steps, resp., 2

smoothing steps for BiCGStab, 3d level.

Smoother 2ω∆t

0.05 0.5 5.0 50.0
M(mass)

SOR 0.50+00 0.50+00 0.50+00 0.50+00
ILU(1) 0.17-01 0.17-01 0.17-01 0.17-01
ILU(3) 0.75-03 0.75-03 0.75-03 0.75-03
BiCGStab(ILU(1)) 0.19-02 0.19-02 0.19-02 0.19-02
BiCGStab(ILU(3)) 0.47-03 0.47-03 0.47-03 0.47-03
M(mass+coriol)

SOR 0.50+00 0.51+00 0.81+00 div
ILU(1) 0.17-01 0.19-01 0.59-01 0.26-01
ILU(3) 0.75-03 0.75-03 0.48-02 0.28-02
BiCGStab(ILU(1)) 0.18-02 0.18-02 0.61-02 0.30-02
BiCGStab(ILU(3)) 0.47-03 0.36-03 0.21-02 0.18-02
M(diag)

SOR 0.46+00 0.31+00 0.41+00 0.49+00
ILU(1) 0.13-01 0.32-01 0.20+00 0.35+00
ILU(3) 0.23-02 0.76-02 0.81-01 0.19+00
BiCGStab(ILU(1)) 0.31-02 0.83-02 0.45-01 0.88-01
BiCGStab(ILU(3)) 0.96-03 0.18-02 0.20-02 0.43-02
M(diag+coriol)

SOR 0.46+00 0.34+00 0.56+00 0.68+00
ILU(1) 0.13-01 0.34-01 0.14+00 0.16+00
ILU(3) 0.23-02 0.79-02 0.38-01 0.40-01
BiCGStab(ILU(1)) 0.31-02 0.85-02 0.23-01 0.28-01
BiCGStab(ILU(3)) 0.96-03 0.17-02 0.13-02 0.19-02

3.3. Numerical analysis of the new DPM.For the numerical analysis of the computa-
tional performance of the new DPM we consider two different cases. First, we start testing
the algorithm by solving a quasi-stationary problem and calculate until the steady state is
achieved by pseudo-time-stepping with DPM. Then, in the next section, the DPM is used to
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TABLE 3.4
Multigrid convergence rates for the preconditionerP = BT M

−1
(diag+coriol)

B for different levels with 4

smoothing steps, resp., 2 smoothing steps for BiCGStab.

level 2ω∆t

0.05 0.5 5.0 50.0
SOR
level 2 0.35+00 0.35+00 0.57+00 0.65+00
level 3 0.46+00 0.34+00 0.56+00 0.68+00
level 4 0.40+00 0.40+00 0.60+00 0.65+00
BiCGStab(ILU(1))
level 2 0.85-03 0.91-03 0.45-02 0.76-02
level 3 0.31-02 0.85-02 0.23-01 0.28-01
level 4 0.53-02 0.98-01 0.23-01 0.38-01

compute the fully unsteady case for the STR problem. To monitor the convergence to the
steady solution we compute values of‖ut‖l2/‖u‖l2. Values of‖pt‖l2/‖p‖l2 behave in a
very similar way. In the ideal case (when the preconditioneris exact) we could expect that
the convergence of the solution to the steady case would be very fast. However, the inver-
sion of the exact pressure Schur Complement as preconditioner is prohibitively expensive and
therefore it cannot be used in practice. The constructed approximating preconditioners of the
form P = BT M−1

(·) B with M−1
(·) equalsM(mass+coriolis), M(diag) andM(diag+coriol) might lead

to a decrease in the convergence if compared with the exact one, but should definitely de-
liver better convergence behaviour if compared with the original nonmodified preconditioner
M(mass). Moreover, the speedup in the convergence rate should grow bigger, when larger val-
uesω∆t are used. In the following, we perform the tests for every of the discussed choices.
The following graphics are done for the unit cube geometry (see [10] for details). For the
STR configurations the convergence of the DPM has the same tendency, though due to the
higher mesh complexity of the STR the relevant upper bound oftheω∆t value is smaller than
in the case of the unit cube.

3.3.1. The Stokes case with Coriolis force.Let us consider the system of the Stokes
equation:

ut − ν∆u + 2ω × u + ∇P = f

∇ · u = 0
in Ω × (0, T ] (3.2)

The pressure operators of the formP = BT M−1
(·) B are examined with the following choices

of M(·):

M(mass) =




ML 0 0
0 ML 0
0 0 ML



 and M(mass+coriol) =




ML −2ω∆tML 0

2ω∆tML ML 0
0 0 ML





It is natural to expect that as soon as the parameterω∆t increases (either∆t gets larger,ω or
both), the off-diagonal block of the matrixM(mass+coriol), which is due to the Coriolis force,
plays a more important role and the solution converges to a steady state in a smaller number of
time steps. And vice versa, ifω∆t decreases, the iterative behaviour of DPM as a solver with
the matrixP = BT M−1

(mass+coriol)B in step 2 approaches that is similar to the performance

of the standard Chorin like scheme with the matrixP = BT M−1
(mass)B. We illustrate this in

Fig. 3.2.

8



time step units time step units

FIG. 3.2.Stokes equations (LEFT)2ω∆t = 0.5; (RIGHT)2ω∆t = 10.0.

3.3.2. Schur Complement preconditioners for the Navier-Stokes case.While con-
sidering the system of the Navier-Stokes equations (1.3) wecan expect to gain a substantial
improvement in the convergence rates by applying the pressure operatorP with the matrix
M(mass+coriol). But in this case we also have to care about the effect of convective terms on the
choice ofP . As it was proposed in the previous section, the convective term will be treated
by means of the preconditioning matrixP = BT M−1

(·) B with M(·) as follows:

M(diag) =




diag(A) 0 0

0 diag(A) 0
0 0 diag(A)





or M(diagXY) =




diag(A) 0 0

0 diag(A) 0
0 0 ML



 .

From the results in Fig. 3.3 we can conclude that, on the one hand, using the matrixM(diagXY)

time step units time step units

FIG. 3.3.Navier-Stokes equations (LEFT)2ω∆t = 1.5; (RIGHT)2ω∆t = 2.5.

improves the convergence rates compared with those forM(mass) and, on the other hand,
M(diagXY) makes the iterative process more robust compared toM(diag). Our numerical tests
show that the pressure Schur complement preconditionerBT M−1

(diagXY)B can be successfully
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used for the flow simulations with small velocity values in the Z-direction. In this case the
convergence history of‖ut‖l2/‖u‖l2 for simulations usingM(diag) andM(diagXY) are quite
close to each other. For the flow simulations with significantvelocity values in theZ-direction
the caseM(diagXY) is not applicable.

Finally, we perform the corresponding tests for the Navier-Stokes equation with the pressure
operatorP inside of the DPM, where both parts of convection and the Coriolis force terms
are included:

M(diag+coriol) =




diag(A) −2ω∆tML 0
2ω∆tML diag(A) 0

0 0 diag(A)





or M(diagXY+coriol) =




diag(A) −2ω∆tML 0
2ω∆tML diag(A) 0

0 0 ML



 .

For the last test case from these series, we perform computations with the convective term

FIG. 3.4.Navier-Stokes equations (LEFT)2ω∆t = 1.5; (RIGHT)2ω∆t = 2.5.

FIG. 3.5.Navier-Stokes equations withU · ∇u, 2ω∆t = 10.0.

being of the modified formU · ∇u. To choose an appropriateU , we first perform the
numerical simulation for the Navier-Stokes equations until steady state. Then we setU = u

and solve this linear problem with the DPM which allows now much higher values ofω∆t,
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since the convection part is linear. The purpose is to demonstrate that in this case the matrix
M(diag+coriol) in the operatorP delivers significantly better convergence rates thanM(diag).
As expected, the matrixM(diag+coriol) gives better convergence rates than any other choice.
Results are shown in Fig. 3.5.

3.4. Simulation for the full STR configurations. At the end of this paper we will
present more realistic examples for unsteady numerical simulations for two configurations
of the Stirred Tank Reactor, see Fig. 3.1 (left). The main characteristics are as follows (all
measures are given in non-dimensional form):

1. Configuration 1: Number of propellers = 1, height of the tank Htank = 4, radius of
the tankRtank = 10, length of each bladeLblade = 6, width of each bladeWblade =

1, ν = 0.1, uinflow = 45, ω = 2π, Ek ≈ 0.0004, whereEk :=
ν

ωL2
blade

is the

Ekman number. In the case of mixers the Ekman number is such that Ek =
1

Re
,

whereRe is the Reynolds number.
2. Configuration 2: Number of propellers = 3,Htank = 22, Rtank = 10, Lblade = 6,

Wblade = 2, ν = 0.1, uinflow = 45, ω = 2π, Ek ≈ 0.0004.

In every case fluid enters the tank through an inlet near the bottom, then it is ’mixed’ by the
rotating propeller and leaves the stirred tank through an outlet located on the top, see Fig. 3.1
(right). The coordinate transformation made it possible topreserve the mesh aligned with the
boundaries of the propeller such that even the small-scale flow features are resolved. At the
end of the simulation, in the postprocessing phase, the backward coordinate transformation
(from the noninertial to the inertial one) is performed and the velocity field is changed re-
spectively to provide the user with the ’standard’ motion ofthe propeller in the stirred tank
reactor (movies can be found at www.mathematik.uni-dortmund.de/lsiii/download/sokolow).
It is usually a difficult task to make concluding remarks about the flow field in the 3D geom-
etry. Moreover, very often the main interest of the simulation is not the flow field itself, but
a mixture of some sources/species inside of the reactor. Injection of the particle tracer into
the geometry of the STR helps to evaluate both the propagation of the velocity field and the
mixture of the particles. We used an explicit time-steppingparticle tracing toolGMVPT [1].
Near the inlet we prescribed three sources of particles, which can be distinguished by its
colour: green, yellow and red, respectively (see Fig. 4.1).Six snapshots at the succeeding
time steps give a realistic understanding of the flow motion and the good mixture of the par-
ticles. As a remark, we would like to point out that the simulated STR configurations can be
significantly more complex (curvature and number of blades,shape of the tank, etc.) without
any loss from the side of the numerical behaviour of the proposed DPM.

The discrete projection method, considered in this article, shows a very robust and accurate
behaviour for such complex unsteady problems. The developed code also exploits such ad-
vanced CFD techniques as stable non-conforming finite elements [8], robust high-resolution
stabilization of the convective term [5], multigrid solvers [14], etc. Furthermore, the approach
can be extended to population balance models or turbulent flows (k − ε turbulence model)
which is our current research, see [4, 6].

4. Conclusions. In the article we tested the numerical efficiency of a new Discrete Pro-
jection Method for the incompressible Navier-Stokes equations with Coriolis force due to a
rotating system. As a test model we took a complex 3D geometryof the Stirred Tank Reactor.
We examined the multigrid behaviour for the momentum and pressure Poisson equations. We
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FIG. 4.1.Distribution of particles at consecutive time steps.
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showed that the speedup in the convergence to the steady state solution for time-independent
problems depends on the choice of the matrixP in the “pressure Poisson” step of the method.
This matrix should account on convection and Coriolis forceterms. Finally, we performed
nonsteady simulations for the two configurations of the STR model. In the obtained flow field
we injected virtual particle sources and observed their distribution and mixture. All numerical
results show that the modified DPM is more efficient and robustwith respect to the variation
in problem parameters than standard projection schemes.
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