Accurate and robust finite element solvers for chemotaxis-dominated partial differential equations

3rd Meeting of Young Researchers Modelling Biological Processes 2013 19.–20. June, Granada

Robert Strehl Andriy Sokolov Stefan Turek

Technische Universität Dortmund Institut für Angewandte Mathematik/Numerik, LS III

June 20, 2013

Introduction

Numerical Treatment

Conclusion

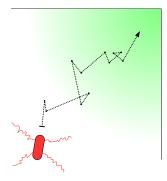
Introduction

Numerical Treatment

Conclusion

Concept

Chemotaxis describes an oriented movement towards or away from regions of higher concentrations of chemical agents and plays a vitally important role in the evolution of many living organisms.



(a) Slime mold, http://dictybase.org

(b) Bacterial chemotaxis

Where to find chemotaxis?

Certainly, applied mathematicians look for practical benefits of their work. Since chemotaxis plays a key-role for many organisms, plenty applications come into mind.

- proliferation of bacteria (not only in petri dishes)
- tumour growth/angiogenesis/haptotaxis
- breeding concerns (insemination of sea urchins)
- immunology/wound healing (production of chemokines at infection sites)

E. Ben-Jacob, http://star.tau.ac.il/∼eshel/ image-flow.html

M.A.J. Chaplain, Journal of Neuro-Oncology

C. Pietschmann, MPI

www.surgical-blog.com/ wound-healing-what-are-thephases-of-wound-healing/

It is common to use continuous models \rightarrow system of partial differential equations (PDE)

A general Keller-Segel model for chemotaxis:

equation for motile
$$\frac{\partial \mathbf{u}}{\partial t} = \nabla \cdot \left(\underbrace{D \nabla \mathbf{u}}_{\text{diffusion}} - \underbrace{\mathbf{u} \, \chi(v) \nabla v}_{\text{chemotaxis}} \right) + \underbrace{\mathbf{u} \, g(\mathbf{u})}_{\text{kinetics}}$$
 equation for the chemical agent v :
$$\frac{\partial v}{\partial t} = \underbrace{\Delta v}_{\text{diffusion}} - \underbrace{\beta \, v + u \, s(\mathbf{u})}_{\text{reaction}}$$

(nonlinear) coefficients modeling e.g. D, $\chi(v)$, $s(u) \stackrel{u \to \infty}{\to} 0$ saturation effects: introducing kinetics: e.g. $g(u) = \nu(1-u)$ (logistic)

It is common to use continuous models \rightarrow system of partial differential equations (PDE)

A general Keller-Segel model for chemotaxis:

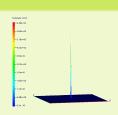
equation for motile
$$\frac{\partial \mathbf{u}}{\partial t} = \nabla \cdot \left(\underbrace{D \nabla \mathbf{u}}_{\text{diffusion}} - \underbrace{\mathbf{u} \, \chi(v) \nabla v}_{\text{chemotaxis}} \right) + \underbrace{\mathbf{u} \, g(\mathbf{u})}_{\text{kinetics}}$$
 equation for the chemical agent v :
$$\frac{\partial v}{\partial t} = \underbrace{\Delta v}_{\text{diffusion}} - \underbrace{\beta \, v + u \, s(\mathbf{u})}_{\text{reaction}}$$

(nonlinear) coefficients modeling e.g. D, $\chi(v)$, $s(u) \stackrel{u \to \infty}{\to} 0$ saturation effects: introducing kinetics: e.g. $g(u) = \nu(1-u)$ (logistic)

Blow-up

$$\partial_t u = \Delta u - \nabla \cdot (u\chi \nabla v)$$

$$\partial_t v = \Delta v - v + u$$



- solution might form singularities
- num. motivated by e.g. [Filbet '06, Chertock & Kurganov '08]
- theor. motivated by e.g.
 [Horstmann & Winkler '04, Tao & Winkler '11]
- ullet theoretical results \mathbb{R}^1 : all solutions are bounded

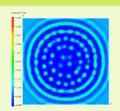
 \mathbb{R}^2 : blow-up iff $||u_0||_1 > 8\pi/\chi$

 $\mathbb{R}^{\geq 3}$: no explicit threshold is known

Pattern formation

$$\partial_t u = \Delta u - \nabla \cdot (u\chi\nabla v) + \nu u(1-u)$$

$$\partial_t v = \Delta v - \alpha v + \beta u$$



- well documented patterns arise (experimental and math.)
- existence of non-trivial steady states
- num. motivated by e.g.[Mimura et al. '93, Chertock & Kurganov '08]
- theor. motivated by e.g. [Myerscough et al. '98, Tyson et al. '99]
- lacksquare theoretical results $\mathbb{R}^{1,2}$: unique global weak solution (at least for $u\gg 1$)

 $\mathbb{R}^{\geq 3}$: far less is known

Numerical challenges

Highly localized solutions with steep gradients reveal particular numerical challenges

- CPU costs
- Memory concerns
- Convenient user interfaces
- Accuracy of discretization
- Robustness with respect to reasonable parameters (e.g. preservation of physical properties)

Numerical challenges

Highly localized solutions with steep gradients reveal particular numerical challenges

- CPU costs
- Memory concerns
- Convenient user interfaces
- Accuracy of discretization
- Robustness with respect to reasonable parameters (e.g. preservation of physical properties)

"The purpose of computing is insight, not numbers" Hamming, 1971

Introduction

Numerical Treatment

Conclusion

Recapitulate the governing model

$$\partial_t u = \nabla \cdot (D \nabla u - u \chi(v) \nabla v) + u g(u)$$

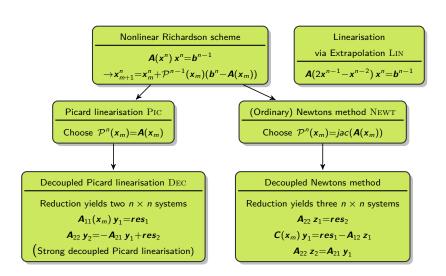
$$\partial_t v = \Delta v - \beta v + u s(u)$$
(1)

Discretisation techniques

We (currently) use

- a method of lines approach,
- a canonical, uniform refinement of the spatial grid,
- o conform quadrilateral bilinear finite elements (Ritz-Galerkin),
- the standard θ -scheme for temporal discretisation.

Survey of num. schemes



Model under consideration: 2D Pattern model on a square Plots show convergence to num. reference solution

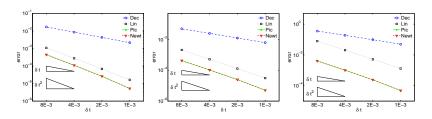


Figure: Convergence with varying chemosensitivities, $\chi=10,20,50.$

- ullet efficiency scales remarkably with χ
- DEC not comparable in terms of #IT
- DEC and LIN reveal inconsistencies
- PIC vs. NEWT strongly emphasized for higher nonlinearity

 Introduction
 Numerical Treatment
 Conclusion

 ○○○○○
 ○○●○○○○
 ○○

Model under consideration: 2D Pattern model on a square Plots show convergence to num. reference solution

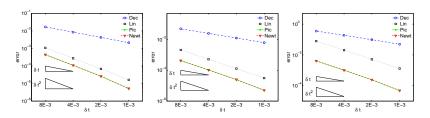


Figure: Convergence with varying chemosensitivities, $\chi = 10, 20, 50$.

- ullet efficiency scales remarkably with χ
- ullet DEC not comparable in terms of $\#\mathrm{IT}$
- DEC and LIN reveal inconsistencies
- PIC vs. NEWT strongly emphasized for higher nonlinearity

 Introduction
 Numerical Treatment
 Conclusion

 ○○○○○○
 ○○●○○○○
 ○○

Stabilisation via AFC

Motivation

- standard FEM fail for chemotaxis dominated PDEs
- upwinding aims at 'smoothing-out' instabilities and preserve physical entities ...
- ... at costs of (first order) accuracy

Motivation

- standard FEM fail for chemotaxis dominated PDEs
- upwinding aims at 'smoothing-out' instabilities and preserve physical entities ...
- ... at costs of (first order) accuracy

REMEDY: merging of the two approaches is the motivation of Algebraic Flux Correction (AFC), [Kuzmin '09]

Standard Galerkin

- + second order
- num. artifacts

convenient semi-discretized formulation

$$M\partial_t u = B(u)u$$

Discrete Upwinding

- + failsafe
- first order

AFC

- + mixed order
- + failsafe

Standard Galerkin

- + second order
- num. artifacts

convenient semi-discretized formulation

$$M\partial_t u = B(u)u$$

Discrete Upwinding

- + failsafe
- first order

modification with discrete upwinding

$$\mathbf{M}^{L}\partial_{t}\mathbf{u}=(\mathbf{B}+\mathbf{D})(\mathbf{u})\mathbf{u}=\widetilde{\mathbf{B}}(\mathbf{u})\mathbf{u}$$

AFC

- + mixed order
- + failsafe

Standard Galerkin

- + second order
- num. artifacts

convenient semi-discretized formulation

$$M\partial_t u = B(u)u$$

Discrete Upwinding

- + failsafe
- first order

modification with discrete upwinding

$$\mathbf{M}^{L}\partial_{t}\mathbf{u}=(\mathbf{B}+\mathbf{D})(\mathbf{u})\mathbf{u}=\widetilde{\mathbf{B}}(\mathbf{u})\mathbf{u}$$

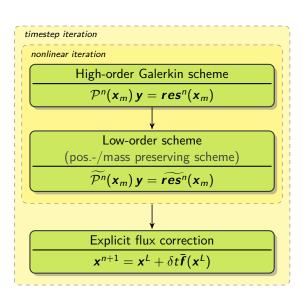
AFC

- + mixed order
- + failsafe

correction of over-diffusive fluxes

$$\underbrace{\boldsymbol{M}^L \partial_t \boldsymbol{u} \ = \ \widetilde{\boldsymbol{B}}(\boldsymbol{u}) \, \boldsymbol{u}}_{\text{low order scheme}} + \underbrace{\overline{\boldsymbol{f}}(\boldsymbol{u})}_{\text{antidiff.}} \ , \quad \overline{\boldsymbol{f}}_i = \sum_{j \neq i} \underbrace{\alpha_{ij}}_{\substack{\text{lim.} \\ \text{factors}}} \boldsymbol{f}_{ij}$$

Roadmap of explicit AFC



The need of AFC

In generic situations, classical Galerkin schemes provide unphysical results, e.g. severe oscillations, negative densities, loss of characteristic profiles \rightarrow possibly solver-breakdown

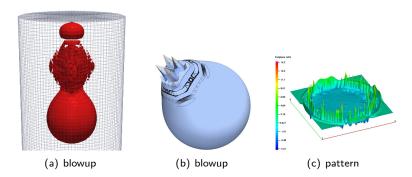
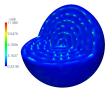


Figure: Challenges, blowup: Steep gradients, pattern: Maintenance of travelling waves/trailing spots

The need of AFC

AFC stabilised schemes resolve the problem at costs linear in #DOF (per IT_{NL})



(a) blowup

(b) blowup

(c) pattern

Figure: No oscillations, no negative values, patterns are recaptured.

Introduction

Numerical Treatment

Conclusion

Take home messages

- Numerical studies offer validation and reshaping of underlying models and provide quantitative insights into complex dynamics
- Identification of proper num. scheme is a challenging task (user customisation), focus: accuracy, number of iterations, complexity of iterations, stability
- ullet A first glimpse revealed the potential of elaborate solver strategies, particularly in case of large chemotaxis factors χ or poor (temporal) discretisations
- An AFC-like stabilisation counters chemotaxis-dominated num.
 artifacts and is highly flexible and inexpensive

Numerical improvements

- jacobian-free Newton methods
- "global" AFC techniques
- adaptive schemes

Model considerations

- modeling aspects (variety and comparison of derivations, model assumptions, combination of models)
- ullet possible patterns and steady states (o Winkler)
- multi species interactions (→ Horstmann)
- follow signal transduction pathways up to the cell membranes
 - → chemotaxis on surfaces (preliminary work by Sokolov exists)

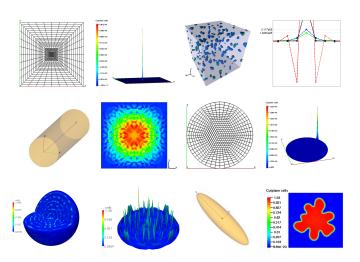


Figure: Some impressions.

- E.E.E. ARENAS, A. STEVENS, J.J.L. VEL'AZQUEZ, Simultaneous finite time blow-up in a two-species model for chemotaxis, Analysis **29**, no.3, pp. 317–338 (2009).
- R.E. BANK, M. BENBOURENANE, The Hierarchical Basis Multigrid Method For Convection-Diffusion Equations, Method For Convection-Diffusion Equations (1992).
- M. Benzi, G.H. Golub, J. Liesen, *Numerical solution of saddle point problems*, Acta Numerica **14**, No. 1, pp. 1–137 (2005).
- A. CHERTOCK, A. KURGANOV, A second-order positivity preserving central-upwind scheme for chemotaxis and haptotaxis models, Numer. Math. 111 (2008), pp. 169–205.
- R. Erban, H.G. Othmer, From individual to collective behavior in bacterial chemotaxis, SIAM J Appl Math **65**, no.2, pp. 361–391 (2004).

F. Filbet, A finite volume scheme for the Patlak-Keller-Segel chemotaxis model, Numer. Math. 104 (2006), no. 4, 457-488.

S.K. GODUNOV. Finite difference method for numerical computation of discontinuous solutions of the equations of fluid dynamics, Mat. Sb. 47, pp. 271–306 (1959).

D. HORSTMANN, M. WINKLER, Boundedness vs. blow-up in a chemotaxis system, Journal of Differential Equations 215 (2004), pp. 52-107.

D. HORSTMANN, Generalizing the Keller-Segel Model: Lyapunov Functionals, Steady State Analysis, and Blow-Up Results for Multi-species Chemotaxis Models in the Presence of Attraction and Repulsion Between Competitive Interacting Species, J. Nonlinear Sci. **21**, pp. 231–270 (2011).

E. F. Keller, L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol. 26 (1970), pp. 399-415.

- D. KUZMIN, M. MÖLLER, S. TUREK, *High-resolution FEM-FCT schemes for multidimensional conservation laws*, Computer Meth. Appl. Mech. Engrg., **193**, pp. 4915–4946, (2004).
- D. Kuzmin, Explicit and implicit FEM-FCT algorithms with flux linearization, Journal of Computational Physics **228**, no.7, pp. 2517–2534 (2009).
- M. MIMURA, T. TSUJIKAWA, R. KOBAYASHI, D. UEYAMA, Dynamics of Aggregating Patterns in a Chemotaxis-Diffusion-Growth Model, Forma, 8 (1993), no. 2, pp. 179–195.
- M. R. Myerscough, P. K. Maini, K. J. Painter, *Pattern formation in a generalized chemotaxis model*, Bull. of Math. Biol. **60** (1998), pp. 1–26.
- H.G. Othmer, S. Dunbar, W. Alt, *Models of dispersal in biological systems*, J. Math. Biol. **26**, pp. 263–298 (1988).

- H.G. OTHMER, A. STEVENS, Aggregation, blowup, and collapse: the ABC of taxis in reinforced random walks, SIAM J Appl Math 57, pp. 1044–1081 (1997).
- R. Strehl, A. Sokolov, S. Turek, Efficient, accurate and flexible Finite Element solvers for Chemotaxis problems, Comput Math Appl 64, no.3, pp. 161–390 (2012).
- Y. TAO, M. WINKLER, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity, ArXiv e-prints (2011).
- R. Tyson, S. R. Lubkin, J. D. Murray, *A minimal mechanism for bacterial pattern formation*, Proc. R. Soc. Lond. B **266** (1999), pp. 299–304.
- S. T. ZALESAK, Fully multidimensional Flux-Corrected Transport algorithm for fluids, Journal of Computational Physics **31** (1979), pp. 335–362.

- Macroscopic derivation (e.g. [Keller & Segel '70]) require $\delta t/\delta h^2 = const.$ Does it make sense to study chemotaxis-dominating scenarios (from the modeling pov)?
- Understand the motiviations for different microscopic approaches, space vs. velocity jump processes,
 [Othmer et al. '88, Othmer & Stevens '97]. What are their differences numerically, [Erban & Othmer, '04]? Is it perhaps numerically favorable to consider microscopic models?

▶ return

Appendix: Multi-Species

- higher coupling requires even more carefully chosen discretisations.
 Does a segregated approach still provide reasonable/reliable results?
- stabilisation techniques may also be required for Diffusion-like terms (in the presence of conflicts)
- consider (free-boundaries) multiphase-like scenarios. What about single species space posession, e.g. at most one species lives in designated areas?
- conditions for a blow-up are even less analysed, [Horstmann '11, Arenas et al., '09]. The results in [Arenas et al., '09] show that in the radial symmetric setting the blow-up for multispecies has to be simultaneous, but what happens for other initial symmetries?
- What effect does a new approach have to the receptor-based chemotactic sensitivity on the time asymptotic behavior and pattern forming mechanism?

- consider chemotaxis on the individual cell level: the chemo-gradient induces a polarisation of the cell in terms of localisation of membrane receptors → chemotaxis on surfaces
- coupling with surface PDEs promote a level-set ansatz (different scaling of grids)
- numerical and mathematical analysis for gradient-based slope limiters for PDEs on surfaces is desired (in context of AFC)

return