

Efficient, accurate and flexible Finite Element solvers for Chemotaxis Konrad Zuse Institut Berlin

Robert Strehl Andriy Sokolov Stefan Turek

Technische Universität Dortmund Institut für Angewandte Mathematik/Numerik, LS III

June 21, 2011

underlying models

numerical challenges

applications 000

underlying models

Onumerical challenges

underlying models

2 numerical challenges

3 applications

underlying	models
000000	0

concept(1)

U technische universität dortmund

Chemotaxis describes an oriented movement towards or away from regions of higher concentrations of chemical agents and plays a vitally important role in the evolution of many living organisms.

http://dictybase.org/Multimedia/motility/motility.htm

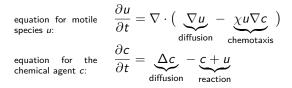
underlying	models
•00000	0

numerical challenges

applications 000

It is common to use continuous models \rightarrow system of partial differential equations (PDE)

Minimal Keller-Segel model (1970) for chemotaxis:



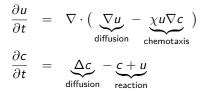
technische universität

dortmund

models(1)

U technische universität dortmund

Since 1970 various models have been proposed (especially in the recent decades).



models(1)

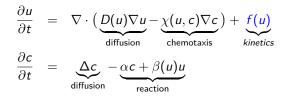
U technische universität dortmund

Since 1970 various models have been proposed (especially in the recent decades).

$$\frac{\partial u}{\partial t} = \nabla \cdot \left(\underbrace{D(u) \nabla u}_{\text{diffusion}} - \underbrace{\chi(u, c) \nabla c}_{\text{chemotaxis}} \right)$$
$$\frac{\partial c}{\partial t} = \underbrace{\Delta c}_{\text{diffusion}} - \underbrace{\alpha c + \beta(u) u}_{\text{reaction}}$$

(nonlinear) coefficients modeling e.g. $D(u), \chi(u, c), \beta(u) \xrightarrow{u \to \infty} 0$ saturation effects:

Since 1970 various models have been proposed (especially in the recent decades).



(nonlinear) coefficients modeling e.g. $D(u), \chi(u, c), \beta(u) \xrightarrow{u \to \infty} 0$ saturation effects:

introducing kinetics:

e.g.
$$f(u) = \nu u(1-u)$$
 (logistic)

Since 1970 various models have been proposed (especially in the recent decades).

$$\begin{aligned} \frac{\partial u_i}{\partial t} &= \nabla \cdot \left[\left(\sum_{l=1}^N D_{i,l}^u(u_i) \nabla u_l \right) - \left(\sum_{k=1}^M S_{i,k}(u_i) \nabla c_k \right) \right] + f_i(u_i) \\ \frac{\partial c_j}{\partial t} &= D_j^c \Delta c_j - \sum_{k=1}^M \alpha_{k,j} c_k + \sum_{l=1}^N \beta_{l,j} u_l \end{aligned}$$

(nonlinear) coefficients modeling e.g. $D(u), \chi(u, c), \beta(u) \xrightarrow{u \to \infty} 0$ saturation effects:

introducing kinetics:

multispecies:

e.g.
$$f(u) = \nu u(1-u)$$
 (logistic)

e.g. species u_1, \ldots, u_N , chemical agents c_1, \ldots, c_M

models(2)

Biology

- models are well motivated
- all ingredients for their own are well understood

models(2)

Biology

- models are well motivated
- all ingredients for their own are well understood

Mathematics

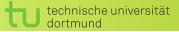
- existence and uniqueness are nontrivial
- analysis revealed mathematical artifacts

underlying	models
000000	0

numerical challenges

applications

models(2)



Biology

- models are well motivated
- all ingredients for their own are well understood

 \rightarrow numerical ansatz is highly desired to validate models and obtain more insights from mathematical point of view

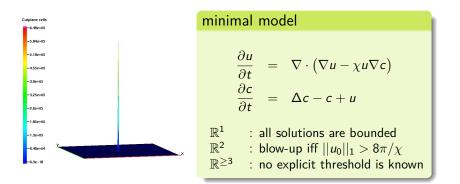
Mathematics • existence and uniqueness are nontrivial • analysis revealed mathematical artifacts

underlying	models
000000	0

numerical challenges

applications

1) the minimal model may lead to blowing up solutions. From biological point of view, those unbounded solutions do not make any sense.



underlying	models
000000	0

model examples(2)

2) Slime molds aggregate to form more energetic structures. The underlying regularized model introduces quorum-sensing alike nonlinearities.

T. Gregor, http://tglab.princeton.edu/

regulated model $\frac{\partial u}{\partial t} = \nabla \cdot \left(D\nabla u - \chi \frac{u}{(1+c)^2} \nabla c \right)$ $\frac{\partial c}{\partial t} = \Delta c - c + \omega \frac{u^2}{\mu + u^2}$ global existence is proven \rightarrow saturating signal production, signal-dependent sensitivity,

quorum-sensing

underlying	models
00000	0

numerical challenges 0000 applications 000

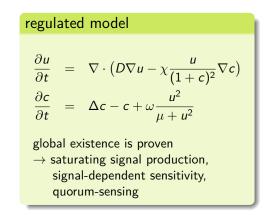
technische universität

dortmund

model examples(2)

U technische universität dortmund

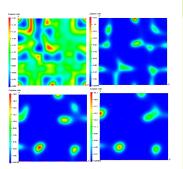
2) Slime molds aggregate to form more energetic structures. The underlying regularized model introduces quorum-sensing alike nonlinearities.



underlying n	nodels
0000000)

model examples(2)

2) Slime molds aggregate to form more energetic structures. The underlying regularized model introduces quorum-sensing alike nonlinearities.



regulated model $\frac{\partial u}{\partial t} = \nabla \cdot \left(D \nabla u - \chi \frac{u}{(1+c)^2} \nabla c \right)$ $\frac{\partial c}{\partial t} = \Delta c - c + \omega \frac{u^2}{\mu + u^2}$ global existence is proven \rightarrow saturating signal production, signal-dependent sensitivity, quorum-sensing

numerical challenges

applications 000

technische universität

dortmund

3) Stunning results were obtained when biologists study certain mutated bacteria colonies. Their proliferation follow certain patterns.

E Ben-Jacob http://star.tau.ac.il/~eshel/image-flow.html

kinetic model

$$\frac{\partial u}{\partial t} = \nabla \cdot (Du - \chi u \nabla c) + \nu u (1 - u)$$

$$\frac{\partial c}{\partial t} = \Delta c - \beta c + u$$

$$\Delta c - \beta c + u$$

 $\mathbb{R}^{1,2}$: unique global weak solution (at least for $\nu \gg 1$)

 $\mathbb{R}^{\geq 3}$: far less is known

existence of nontrivial steady states

underlying	models
000000	•

technische universität

dortmund

3) Stunning results were obtained when biologists study certain mutated bacteria colonies. Their proliferation follow certain patterns.

kinetic model

$$\frac{\partial u}{\partial t} = \nabla \cdot (Du - \chi u \nabla c) + \nu u (1 - u)$$
$$\frac{\partial c}{\partial t} = \Delta c - \beta c + u$$

technische universität

dortmund

$$= \Delta c - \beta c + u$$

 $\mathbb{R}^{1,2}$: unique global weak solution (at least for $\nu \gg 1$)

 $\mathbb{R}^{\geq 3}$: far less is known existence of nontrivial steady states

underlying models	
000000	

numerical challenges

applications

model examples(3)

U technische universität dortmund

3) Stunning results were obtained when biologists study certain mutated bacteria colonies. Their proliferation follow certain patterns.

kinetic model
$\begin{aligned} \frac{\partial u}{\partial t} &= \nabla \cdot \left(Du - \chi u \nabla c \right) + \nu u (1 - u) \\ \frac{\partial c}{\partial t} &= \Delta c - \beta c + u \end{aligned}$
$\mathbb{R}^{1,2}$: unique global weak solution (at least for $\nu \gg 1$) $\mathbb{R}^{\geq 3}$: far less is known existence of nontrivial steady states

underlying models	
000000	

outline

underlying	models
000000	0

numerical challenges

applications

In order to obtain a reliable solver for chemotaxis PDEs many (numerical) concerns has to be tackled:

- high-order resolution (of sharp interfaces; 'shock capturing')
- fast solver techniques
- smart memory management
- robustness for a variety of parameters
- user interface (arbitrary coefficients)
- mass conservation (when applicable) and positivity preservation

In order to obtain a reliable solver for chemotaxis PDEs many (numerical) concerns has to be tackled:

- high-order resolution (of sharp interfaces; 'shock capturing')
- fast solver techniques
- smart memory management
- robustness for a variety of parameters
- user interface (arbitrary coefficients)
- mass conservation (when applicable) and positivity preservation

In order to obtain a reliable solver for chemotaxis PDEs many (numerical) concerns has to be tackled:

- high-order resolution (of sharp interfaces; 'shock capturing')
- fast solver techniques
- smart memory management
- robustness for a variety of parameters
- user interface (arbitrary coefficients)
- mass conservation (when applicable) and positivity preservation

In order to obtain a reliable solver for chemotaxis PDEs many (numerical) concerns has to be tackled:

- high-order resolution (of sharp interfaces; 'shock capturing')
- fast solver techniques
- smart memory management
- robustness for a variety of parameters
- user interface (arbitrary coefficients)
- mass conservation (when applicable) and positivity preservation

In order to obtain a reliable solver for chemotaxis PDEs many (numerical) concerns has to be tackled:

- high-order resolution (of sharp interfaces; 'shock capturing')
- fast solver techniques
- smart memory management
- robustness for a variety of parameters
- user interface (arbitrary coefficients)
- mass conservation (when applicable) and positivity preservation

In order to obtain a reliable solver for chemotaxis PDEs many (numerical) concerns has to be tackled:

- high-order resolution (of sharp interfaces; 'shock capturing')
- fast solver techniques
- smart memory management
- robustness for a variety of parameters
- user interface (arbitrary coefficients)
- mass conservation (when applicable) and positivity preservation

In order to obtain a reliable solver for chemotaxis PDEs many (numerical) concerns has to be tackled:

challenges

- high-order resolution (of sharp interfaces; 'shock capturing')
- fast solver techniques
- smart memory management
- robustness for a variety of parameters
- user interface (arbitrary coefficients)
- mass conservation (when applicable) and positivity preservation

Especially the last three are of particular interest in the presence of chemotaxis PDEs.

Applying standard (high-order) Finite Element Methods (FEM) on chemotaxis dominated PDEs lead to severe numerical instabilities. When restricted to the minimal model, the troublemaker is the essential chemotaxis term $\nabla \cdot (\chi u \nabla c)$.

high-order vs. robustness

Applying standard (high-order) Finite Element Methods (FEM) on chemotaxis dominated PDEs lead to severe numerical instabilities. When restricted to the minimal model, the troublemaker is the essential chemotaxis term $\nabla \cdot (\chi u \nabla c)$.

 \rightarrow upwind schemes guarantee to 'smooth-out' instabilities and preserve physical entities

high-order vs. robustness

Applying standard (high-order) Finite Element Methods (FEM) on chemotaxis dominated PDEs lead to severe numerical instabilities. When restricted to the minimal model, the troublemaker is the essential chemotaxis term $\nabla \cdot (\chi u \nabla c)$.

 \rightarrow upwind schemes guarantee to 'smooth-out' instabilities and preserve physical entities

BUT: high-order is not anymore obtained.

high-order vs. robustness

Applying standard (high-order) Finite Element Methods (FEM) on chemotaxis dominated PDEs lead to severe numerical instabilities. When restricted to the minimal model, the troublemaker is the essential chemotaxis term $\nabla \cdot (\chi u \nabla c)$.

 \rightarrow upwind schemes guarantee to 'smooth-out' instabilities and preserve physical entities

BUT: high-order is not anymore obtained.

REMEDY: merging the two approaches leads to FCT/TVD which combines all desired properties

In the presence of more comprehensive models, the introduced nonlinearities also ask for a special treatment.

Common segregated linearization techniques converge very poorly when applied to ill-conditioned systemmatrices.

In the presence of more comprehensive models, the introduced nonlinearities also ask for a special treatment.

Common segregated linearization techniques converge very poorly when applied to ill-conditioned systemmatrices.

set up a block system matrix (monolithic approach) and apply (damped) Newton-like or fixpoint methods

In the presence of more comprehensive models, the introduced nonlinearities also ask for a special treatment. Common segregated linearization techniques converge very poorly when applied to ill-conditioned systemmatrices.

set up a block system matrix (monolithic approach) and apply (damped) Newton-like or fixpoint methods

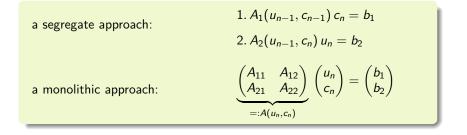
a segregate approach:

1. $A_1(u_{n-1}, c_{n-1}) c_n = b_1$

2.
$$A_2(u_{n-1}, c_n) u_n = b_2$$

In the presence of more comprehensive models, the introduced nonlinearities also ask for a special treatment. Common segregated linearization techniques converge very poorly when applied to ill-conditioned systemmatrices.

set up a block system matrix (monolithic approach) and apply (damped) Newton-like or fixpoint methods



technische universität

dortmund

When developing a software for solving a diversity of underlying models, an user-prescribed input is highly favorable.

Our software FEAST/FEATFLOW is designed in an object oriented fashion and allows for easy access via single modules.

When developing a software for solving a diversity of underlying models, an user-prescribed input is highly favorable.

Our software FEAST/FEATFLOW is designed in an object oriented fashion and allows for easy access via single modules.

Generic super-model

The current underlying generic (single-species) model reads:

$$\frac{\partial u}{\partial t} = \nabla \cdot (D(u)\nabla u - \chi(u, c)\nabla c) + f(u)$$
$$\frac{\partial c}{\partial t} = \Delta c - \alpha c + \beta(u) u$$

 \rightarrow all coefficients may be user-prescribed

und	erly	ing	models
00	00	00	0

technische universität

dortmund

underlying models

2 numerical challenges

underlying	models			
0000000				

numerical challenges 0000 applications

- proliferation of bacteria (not only in petri dishes)
- tumour growth/angiogenesis/haptotaxis
- breeding concerns (insemination of sea urchins)
- immunology (production of chemokines at infection sites)

- proliferation of bacteria (not only in petri dishes)
- tumour growth/angiogenesis/haptotaxis
- breeding concerns (insemination of sea urchins)
- immunology (production of chemokines at infection sites)

E. Ben-Jacob, http://star.tau.ac.il/~eshel/ image-flow.html

- proliferation of bacteria (not only in petri dishes)
- tumour growth/angiogenesis/haptotaxis
- breeding concerns (insemination of sea urchins)
- immunology (production of chemokines at infection sites)

E. Ben-Jacob, http://star.tau.ac.il/~eshel/ image-flow.html

M.A.J. Chaplain, Journal of Neuro-Oncology

- proliferation of bacteria (not only in petri dishes)
- tumour growth/angiogenesis/haptotaxis
- breeding concerns (insemination of sea urchins)
- immunology (production of chemokines at infection sites)

E. Ben-Jacob, $\label{eq:http://star.tau.ac.il} $$ http://star.tau.ac.il/\sim eshel/$$ image-flow.html $$$

M.A.J. Chaplain, Journal of Neuro-Oncology

C. Pietschmann, MPI

- proliferation of bacteria (not only in petri dishes)
- tumour growth/angiogenesis/haptotaxis
- breeding concerns (insemination of sea urchins)
- immunology (production of chemokines at infection sites)

E. Ben-Jacob, $\label{eq:http://star.tau.ac.il} $$ http://star.tau.ac.il/\sim eshel/$$ image-flow.html $$$

M.A.J. Chaplain, Journal of Neuro-Oncology

C. Pietschmann, MPI

... Kinzel, LMU

- \bullet supported domains: $\Omega \subset \mathbb{R}^2, \mathbb{R}^3$ (reasonable mesh restrictions)
- spatial discretization via Q_1, Q_2, \ldots elements
- temporal discretization: θ -scheme
- reasonable boundary conditions at will: Dirichlet, Neumann, periodic,...
- user-prescribed parameters/coefficients/callback functions (module-based Open Source Software)
- FCT/TVD stabilized solver (preservation of physical entities)
- embedded nonlinear solvers: (Deuflhard) damped Newton-like methods, fixpoint, Picard-linearization
- o graphical output via GMV/PARAVIEW

- \bullet supported domains: $\Omega \subset \mathbb{R}^2, \mathbb{R}^3$ (reasonable mesh restrictions)
- spatial discretization via Q_1, Q_2, \ldots elements
- temporal discretization: θ -scheme
- reasonable boundary conditions at will: Dirichlet, Neumann, periodic,...
- user-prescribed parameters/coefficients/callback functions (module-based Open Source Software)
- FCT/TVD stabilized solver (preservation of physical entities)
- embedded nonlinear solvers: (Deuflhard) damped Newton-like methods, fixpoint, Picard-linearization
- graphical output via GMV/PARAVIEW

- \bullet supported domains: $\Omega \subset \mathbb{R}^2, \mathbb{R}^3$ (reasonable mesh restrictions)
- spatial discretization via Q_1, Q_2, \ldots elements
- temporal discretization: θ -scheme
- reasonable boundary conditions at will: Dirichlet, Neumann, periodic,...
- user-prescribed parameters/coefficients/callback functions (module-based Open Source Software)
- FCT/TVD stabilized solver (preservation of physical entities)
- embedded nonlinear solvers: (Deuflhard) damped Newton-like methods, fixpoint, Picard-linearization
- o graphical output via GMV/PARAVIEW

- \bullet supported domains: $\Omega \subset \mathbb{R}^2, \mathbb{R}^3$ (reasonable mesh restrictions)
- spatial discretization via Q_1, Q_2, \ldots elements
- temporal discretization: θ -scheme
- reasonable boundary conditions at will: Dirichlet, Neumann, periodic,...
- user-prescribed parameters/coefficients/callback functions (module-based Open Source Software)
- FCT/TVD stabilized solver (preservation of physical entities)
- embedded nonlinear solvers: (Deuflhard) damped Newton-like methods, fixpoint, Picard-linearization
- graphical output via GMV/PARAVIEW

- \bullet supported domains: $\Omega \subset \mathbb{R}^2, \mathbb{R}^3$ (reasonable mesh restrictions)
- spatial discretization via Q_1, Q_2, \ldots elements
- temporal discretization: θ -scheme
- reasonable boundary conditions at will: Dirichlet, Neumann, periodic,...
- user-prescribed parameters/coefficients/callback functions (module-based Open Source Software)
- FCT/TVD stabilized solver (preservation of physical entities)
- embedded nonlinear solvers: (Deuflhard) damped Newton-like methods, fixpoint, Picard-linearization
- o graphical output via GMV/PARAVIEW

- supported domains: $\Omega \subset \mathbb{R}^2, \mathbb{R}^3$ (reasonable mesh restrictions)
- spatial discretization via Q_1, Q_2, \ldots elements
- temporal discretization: θ -scheme
- reasonable boundary conditions at will: Dirichlet, Neumann, periodic,...
- user-prescribed parameters/coefficients/callback functions (module-based Open Source Software)
- FCT/TVD stabilized solver (preservation of physical entities)
- embedded nonlinear solvers: (Deuflhard) damped Newton-like methods, fixpoint, Picard-linearization
- graphical output via GMV/PARAVIEW

- \bullet supported domains: $\Omega \subset \mathbb{R}^2, \mathbb{R}^3$ (reasonable mesh restrictions)
- spatial discretization via Q_1, Q_2, \ldots elements
- temporal discretization: θ -scheme
- reasonable boundary conditions at will: Dirichlet, Neumann, periodic,...
- user-prescribed parameters/coefficients/callback functions (module-based Open Source Software)
- FCT/TVD stabilized solver (preservation of physical entities)
- embedded nonlinear solvers: (Deuflhard) damped Newton-like methods, fixpoint, Picard-linearization
- graphical output via GMV/PARAVIEW

- supported domains: $\Omega \subset \mathbb{R}^2, \mathbb{R}^3$ (reasonable mesh restrictions)
- spatial discretization via Q_1, Q_2, \ldots elements
- temporal discretization: θ -scheme
- reasonable boundary conditions at will: Dirichlet, Neumann, periodic,...
- user-prescribed parameters/coefficients/callback functions (module-based Open Source Software)
- FCT/TVD stabilized solver (preservation of physical entities)
- embedded nonlinear solvers: (Deuflhard) damped Newton-like methods, fixpoint, Picard-linearization
- graphical output via GMV/PARAVIEW

Further aims for the software:

extend the framework to multi-species systems

- implementation of fast multigrid-solvers
- spatial (h-, r-) and temporal (t-) adaptivity
- o parallelization

Further aims for the software:

- extend the framework to multi-species systems
- implementation of fast multigrid-solvers
- spatial (h-, r-) and temporal (t-) adaptivity
- parallelization

Further aims for the software:

- extend the framework to multi-species systems
- implementation of fast multigrid-solvers
- spatial (h-, r-) and temporal (t-) adaptivity
- parallelization

Further aims for the software:

- extend the framework to multi-species systems
- implementation of fast multigrid-solvers
- spatial (h-, r-) and temporal (t-) adaptivity
- parallelization

Further aims for the software:

- extend the framework to multi-species systems
- implementation of fast multigrid-solvers
- spatial (h-, r-) and temporal (t-) adaptivity
- parallelization

Further informations:

- email: robert.strehl@math.tu-dortmund.de
- homepage: http://www.mathematik.tu-dortmund.de/ ~rstrehl/downloads.html
- software: http://www.featflow.de
- model organism: http://dictybase.org
- next conference: http://www.biomath.bg

list of figures: http://dictybase.org/Multimedia/motility/motility.htm; http://www.youtube.com/watch?v=hpHpBHJZQvU; http://star.tau.ac.il/ eshel/image-flow.html; M. A. J. Chaplain, Mathematical modelling of angiogenesis, Journal of Neuro-Oncology, Vol. 50, pp. 37-51, 2000; Catarina Pietschmann, MaxPlanckForschung 2009 Heft 2, Wo, bitte, geht's denn hier zum Ei?; Linda Kinzel, Seminar Autoimmunität, Einführung Chemokine, 24./25. Juni 2006

underlying	models			
0000000				