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concept(1)

Chemotaxis describes an oriented movement towards or away from
regions of higher concentrations of chemical agents and plays a vitally
important role in the evolution of many living organisms.

http://dictybase.org/Multimedia/motility/motility.htm
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concept(2)

It is common to use continuous models → system of partial differential
equations (PDE)

Minimal Keller-Segel model (1970) for chemotaxis:

equation for motile
species u:

∂u
∂t = ∇ ·

(
∇u︸︷︷︸

diffusion

− χu∇c︸ ︷︷ ︸
chemotaxis

)
equation for the
chemical agent c:

∂c
∂t = ∆c︸︷︷︸

diffusion

− c + u︸ ︷︷ ︸
reaction
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models(1)

Since 1970 various models have been proposed (especially in the recent
decades).

∂u
∂t = ∇ ·

(
∇u︸︷︷︸

diffusion

− χu∇c︸ ︷︷ ︸
chemotaxis

)
∂c
∂t = ∆c︸︷︷︸

diffusion

− c + u︸ ︷︷ ︸
reaction

(nonlinear) coefficients modeling
saturation effects:

e.g. D(u), χ(u, c), β(u)
u→∞→ 0

introducing kinetics:
e.g. f (u) = νu(1− u) (logistic)

multispecies:
e.g. species u1, . . . , uN , chemical
agents c1, . . . , cM
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models(1)

Since 1970 various models have been proposed (especially in the recent
decades).

∂ui
∂t = ∇ ·

[( N∑
l=1

Du
i,l (ui )∇ul

)
−

( M∑
k=1

χi,k(ui )∇ck

)]
+ fi (ui )

∂cj
∂t = Dc

j ∆cj −
M∑

k=1
αk,jck +

N∑
l=1

βl,jul
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models(2)

Biology

models are well motivated
all ingredients for their own are
well understood

→ numerical ansatz is highly desired to validate models and obtain more
insights from mathematical point of view

Mathematics
existence and uniqueness are
nontrivial
analysis revealed mathematical
artifacts
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model examples(1)

1) the minimal model may lead to blowing up solutions. From biological
point of view, those unbounded solutions do not make any sense.

minimal model

∂u
∂t = ∇ ·

(
∇u − χu∇c

)
∂c
∂t = ∆c − c + u

R1 : all solutions are bounded
R2 : blow-up iff ||u0||1 > 8π/χ
R≥3 : no explicit threshold is known
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model examples(2)

2) Stunning results were obtained when biologists study certain mutated
bacteria colonies. Their proliferation seems to follow certain patterns.

E. Ben-Jacob,
http://star.tau.ac.il/∼eshel/image-flow.html

kinetic model

∂u
∂t = ∇ ·

(
Du − χu∇c) + νu(1− u)

∂c
∂t = ∆c − βc + u

R1,2 : unique global weak solution
(at least for ν � 1)

R≥3 : far less is known
existence of nontrivial steady states
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overview

In order to obtain a reliable solver for chemotaxis PDEs many
(numerical) concerns has to be tackled:

challenges
high-order resolution (of sharp interfaces/steep gradients)
fast solver techniques
smart memory management
robustness for a variety of parameters
user interface (arbitrary coefficients)
mass conservation (when applicable) and positivity preservation

Especially the last three are of particular interest in the presence of
chemotaxis PDEs.
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high-order vs. robustness

Applying standard (high-order) Finite Element Methods (FEM) on
chemotaxis dominated PDEs lead to severe numerical instabilities.
When restricted to the minimal model, the troublemaker is the essential
chemotaxis term ∇ · (χu∇c).

→ upwind schemes guarantee to ’smooth-out’ instabilities and preserve
physical entities

BUT: high-order is not anymore obtained.

REMEDY: merging the two approaches leads to FCT/TVD
which combines all desired properties
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fast solver techniques

In the presence of more comprehensive models, the introduced
nonlinearities also ask for a special treatment.
Common segregated linearization techniques converge very poorly when
applied to ill-conditioned systemmatrices.

set up a block system matrix (monolithic approach) and
apply (damped) Newton-like or fixpoint methods

a segregated approach:
1.A1(un−1, cn−1) cn = b1

2.A2(un−1, cn) un = b2

a monolithic approach:

(
A11 A12
A21 A22

)
︸ ︷︷ ︸

=:A(un,cn)

(
un
cn

)
=

(
b1
b2

)
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user interface

When developing a software for solving a diversity of underlying models,
an user-prescribed input is highly favorable.
Our software FEAST/FEATFLOW is designed in a module based fashion
and allows for easy access via single ’stand-alone’ objects.

Generic super-model
The current underlying generic (single-species) model reads:

∂u
∂t = ∇ · (D(u)∇u − χ(u, c)∇c) + f (u)

∂c
∂t = ∆c − α c + β(u) u

→ all coefficients may be user-prescribed
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going beyond academic models

Certainly, applied mathematicians look for practical benefits of their work.
Since chemotaxis plays a key role for organisms, plenty applications come
into mind.

proliferation of bacteria (not only in petri dishes)
tumour growth/angiogenesis/haptotaxis
breeding concerns (insemination of sea urchins)
immunology (production of chemokines at infection sites)

E. Ben-Jacob,
http://star.tau.ac.il/∼eshel/
image-flow.html

M.A.J. Chaplain,
Journal of Neuro-Oncology

C. Pietschmann, MPI L. Kinzel, LMU
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summary/features

The developed software embeds the following features:

supported domains: Ω ⊂ R2,R3 (reasonable mesh restrictions)
spatial discretization via Q1,Q2, . . . elements
temporal discretization: θ-scheme
reasonable boundary conditions at will: Dirichlet, Neumann,
periodic,...
user-prescribed parameters/coefficients/callback functions
(module-based Open Source Software)
FCT/TVD stabilized solver (preservation of physical entities)
embedded nonlinear solvers: (Deuflhard) damped Newton-like
methods, fixpoint, Picard-linearization
graphical output via GMV/PARAVIEW
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extentions/outlook

Further aims for the software:

extend the framework to multi-species systems
implementation of fast multigrid-solvers
spatial (h-, r-) and temporal (t-) adaptivity
parallelization
...
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Further informations:
email: robert.strehl@math.tu-dortmund.de

homepage: http://www.mathematik.tu-dortmund.de/
~rstrehl/downloads.html

software: http://www.featflow.de

model organism: http://dictybase.org

list of figures: http://dictybase.org/Multimedia/motility/motility.htm ; http://www.youtube.com/watch?v=hpHpBHJZQvU ;

http://star.tau.ac.il/ eshel/image-flow.html ; M. A. J. Chaplain, Mathematical modelling of angiogenesis, Journal of Neuro-Oncology, Vol.

50, pp. 37-51, 2000 ; Catarina Pietschmann, MaxPlanckForschung 2009 Heft 2, Wo, bitte, geht’s denn hier zum Ei? ; Linda Kinzel,

Seminar Autoimmunität, Einführung Chemokine, 24./25. Juni 2006
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