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Multigrid techniques for a divergence-free finite
element discretization
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Abstract — We derive basic properties for a class of discretely divergence-free finite elements which
lead to a new proof of the smoothing property in a standard multigrid algorithm for solving the Stokes
equations. Using appropriate grid transfer routines which are of second-order accuracy and interpolate
in a divergence-free way, the ordinary multigrid convergence is obtained. The implementation of these
operators is described in detail and the theoretical results are confirmed by numerical tests.
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1. INTRODUCTION
We consider multigrid techniques for solving the Stokes problem

“Au+Vp=f, Vau=0 in Q

(L1)
u=g on N

where the pair {u, p} represents the velocity and the pressure, respectively, of a viscous
fluid contained in a bounded region @ C R?, with prescribed boundary values on 99,
and a given force f. We assume for simplicity that {1 is a convex polygon and the
boundary values are homogeneous, ¢ = 0. Using a standard weak discrete formulation
of (1.1) and discretely divergence-free finite element subspaces Hf C Hj, we obtain a
simplified positive definite scheme for the velocity only.

Find u{ € H{, such that
an(uf,vp) = (f,v))  Vuie Hy. (12)

Here, H; and the bilinear form ax(-,-) are discrete versions of H}(2) and (V-, V)12,
respectively, and are defined more precisely in the following section, where examples
of these spaces and some of their basic properties are also given.

There are obvious advantages of explicitly constructing the subspaces Hy (eliminating
the pressure, reducing the number of unknowns, definite stiffness matrices). However,
a disadvantage is a complicated implementation and a bad condition number of the
system matrices, which can be overcome by an appropriate multigrid algorithm with
convergence rates independent of the mesh size. The theoretical problem is to prove
the corresponding smoothing and approximation properties for the smoothing and grid
transfer routines used. The convergence proof of the approximation property is similar
to that of Brenner (2], while the smoothing property can be shown by a new technique,
mainly using the basic properties of the finite element spaces. On the other hand,
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we have the practical problem of efficiently implementing these transfer operators. This
can also be done by using a very precise and optimized code so that the final numerical
effort of solving the Stokes equation is about the same as solving a scalar Poisson
equation using the ordinary nonconforming spaces.

The subsequent numerical tests and the experience gathered in a fully developed
nonsteady Navier-Stokes code for a wide range of Reynolds numbers [17] confirm the
proposed theoretical results and show the high numerical flexibility of this class of finite
elements.

L*(Q) and H™(Q) are the usual conventional Lebesgue and Sobolev spaces for the
domain  C R? with the conventional norms ||-|Jo and ||- ||m. The inner product of L3(2)
is denoted by (-,-). The space H}() is the completion in H'(f2) of the space of test
functions Cg(Q) and H~1(N) is its dual space. By L3(f), we denote the subspace of all
L*())-functions over §} having mean zero value. Vector valued functions and spaces and
the corresponding norms and inner products are denoted as analogous scalar ones. We
use a subscript h for discrete mesh-dependent constructions like triangulations, discrete
spaces, norms, inner products, etc. Normal vectors are denoted by n, and tangential
vectors by ¢; a ~ b implies that both expressions are equivalent, e.g. there are constants
1, ¢z such that the relation ¢;a £ b € ¢ya is valid. Further special notation is introduced
and described as needed.

2. THE SIMPLE NONCONFORMING FINITE ELEMENT SPACES

We consider the conventional steady Stokes problem (1.1) which reads with bilinear
forms a(u,v) := (Vu,Vv) and &(p,v) := ~(p, V-v):

Find a pair {u,p} € H{(Q) x Li(f), such that
a(u,v) + b(p,v) + blg,u) = (f,v)  V{v,q} € Hy () x Li(N). 2.1)

An equivalent ‘shorter’ formulation with V() = {v € H}(Q): V-v = 0} is:
Find u € V(Q), such that

a(u,v) = (f,v) Yv e V(Q). (2.2)

This problem has a unique solution for any force f € H~Y(Q) (see, e.g. [9)), which is a
consequence of the familiar stability estimate

Vv
cup (q,V-v)
vEHI() ||VU||0

> Bllgllo>0  Vge Li(Q), g #0. (23)

If f e L3), the solution is in H*(Y) x H'Y() and satisfies the a priori estimate

llull2 + Nl < cllfllo- (24)

For discretization, let Ty be a regular decomposition of the domain § into triangles or
convex quadrilaterals denoted by T, where the mesh parameter h > 0 is the maximum
diameter of the elements of T},. By 0T, we denote the set of all boundary edges of
elements T € T,. Besides, the family {T,}, is assumed to satisfy the conventional
uniform shape condition {6, 16]. The common edge between two elements T,,7; €
Tw is denoted by I';; with corresponding midpoint m;;. Analogously, we define the
boundary edges [, C (97, N IN) with midpoints m,. To obtain the fine mesh T, from
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a coarse mesh T, we simply connect opposing midpoints (true domain boundaries are
respected). In the new grid T, coarse midpoints become vertices.

To approximate the problem (V) by the finite element method we introduce discrete
spaces Hy ~ H}{(Q) and Ly ~ L3(Q). For the (parametric) quadrilateral case we use
the reference element T = [—1,1)2 and define for each T € T the corresponding
one-to-one-transformation ¢r: T — T. Then we set (‘rotated bilinear elements’ [14])

Ou(T) := {gov7'| g€ span(n:2 —yhz,y, 1)} .(2.5)
while for the triangular case the linear functions from Py(T") are used. The degrees of
freedom are determined by the nodal functionals {Fx(‘“/ b)( -), T' € 8T} with

F® @) := 0|~ fr vdy or F®®):= v(mr). (2.6)

Either choice is unisolvable with P,(T) and Q,(T'), but for the quadrilateral case each
of them leads to different finite element spaces since the applied midpoint rule is only
correct for linear functions. Then, the corresponding ( parametric) finite element spaces
Hy = H®™® and L, are defined as

Ln:= {gn € LX(Q)| qur = const VT € Tn},  HE := S&/ x E/H  (2.7)

vh € LHQ)| vnr € Qu(T) VT €Ty
Sff‘/ ®:= { v, continuous w.r.t. all nodal functionals Fé")’ ey VI; ¢ - (2.8)
12 Igao/ up) =0 VI

Our definitions lead to piecewise constant pressure approximations and edge-oriented
velocity approximations with midpoints or integral mean values as degrees of freedom.
Since the spaces H*/® are nonconforming, i.e., H*/® ¢ HL(Q), we have to deal with
elementwise defined discrete bilinear forms and corresponding energy norms. We set

an(un,v)i= ¥ / Vuh-Vordz,  [oslls := an(on, vn)"2 (2.9)
TEeT, T

and define (), dependent on the choice of H*/®,

blgn ) i= = Y arQr(va),  Qr(wa):i= Y DI E(us)-nr (2.10)

TeTn rcar

which leads for H,(,") to an additional O(h?) quadrature error. Furthermore, let jj:
L3(Q1) — Ly be the operator of piecewise constant interpolation (modified to retain the
zero-mean value property) which satisfies for ¢ € L3(2) N H*(Q) [16]

llg = jngllo < chllgly Vg€ L§(Q) N H(2) (2.11)
and let i/”: H(Q) — H®' be the global interpolation operator in H*/%
Fe) = Fr(v) VI C 8T (2.12)

Using additional regularity assumptions on the mesh in the quadrilateral case [14, 16),
we can state:
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Lemma 2.1. For the interpolation operators i, = i&):

v —invllo + kv = invlls < ch?|vlls Vv € HXQ) N H} Q).

Analogously, we can show {14, 16] that for the element pairs (H,E°/b), L) the discrete
version of the continuous estimate (2.3) is valid:
bu(pr, vn)

Bllipallo < _
et lvalla

(2.13)

and we can essentially end up with the asymptotic error estimate (14, 16]:

Lemma 2.2. Suppose that the preceding assumptions are valid. Then, the discrete
Stokes problems have unique solutions {un,py} € H'® x Ly, and the inequality holds:

i = uallo + Bllu—unlls + hllp = pallo < ch?{Jlull2 + llplh}- (2.14)
To explicitly construct the divergence-free subspaces Hf C H, we give the definition.

Definition 2.1. A function v, € H, is called a discretely divergence-free function, if

bi(gn,va) =0 Vgn € Ly (2.15)

Since only piecewise constant pressure approximations are used, an equivalent cri-
terion is
’ QT(Uh) =0 VT eT,. (216)
With these modifications we can introduce subspaces Hf C Hx, and our discrete problem
for the velocity is reduced to:

Find uf € Hg, such that
an(uf,vd) = (f,vf) Vol € HE. (2.17)
Finally, thé: corresponding pressure p, € Ly is determined by the condition
ba(pasvp) = (f,0) —anlui, o) Vo € Hj (2.18)

~vhere the functions v;, span the curl-free part of the complete space H,. In our con-
Tguration this is done (Section 3) by a marching process from element to element not
solving any linear system of equations. In the end we obtain the same error estimates
or uf and p, as in Lemma 2.1,

. THE DIVERGENCE-FREE SUBSPACES AND THEIR PROPERTIES

Divergence-free subspaces have originally been introduced and analyzed in {7] and [9].
some helpful analytical results may be found in [8). We show the construction process
ind some properties, which are important for a better understanding, and the multigrid
roofs.

We consider a general quadrilateral T € T, (Fig. 1) with vertices a*, midpoints m’,
:dges [, unit tangential vectors ¢/, and normal unit vectors n/. Let ¢}, € 5,(:’/6) be
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ms ay

Figure 1. General quadrilateral 7.

ordinary nodal basis functions in the finite element space Sy = ,(,“/ " restricted to
element T, satisfying Fri(w}) = &ij,1,5 = 1,...,4. Then, the first group of trial functions
{vi'} of H{ corresponding to the edges of T is given by the local definition

viir € {eit!, j = 1,...,4}. : (3.1)

The second group {vi¥} corresponding to the vertices is locally determined by

; ko k Jj nt ) )
v,;fTe{%—%, j=1,....4, k=(]+2)mod4+1}. 32)
Thus, we get approximations for the tangential velocities at the edges, and for the
streamfunction values at the nodes (see also [10}). The full space H{ is the direct sum
of these two subspaces. When defining the inner product (-, - )4 on Hf by

(uh e 1= 3 3 IT1 3 Feon) - Frlon) (33)

TET, reaT

the induced norm ||-|)44 is equivalent to the L*-norm (or even identical for the triangular
case with weight 1/3), and both groups of trial functions are orthogonal relative to this
form. If we eliminate one of the functions {v;*¥} by prescribing the stream function
value at one (boundary) point or requiring that the mean value be zero, we get a basis
for the discretely divergence-free subspace H, assuming that our problem has only
one boundary component. This is a simple consequence of the familiar Euler-Poincaré
characteristic.

Lemma 3.1 (Euler—Poincaré characteristic). Define for a triangulation T):

NVT := #vertices of Ty,

NMT = #midpoints of Th( = #edges of T)
NEL := #elements of Ty

NBC := #boundary components of 0

then the formula holds:

NVT + NEL+ NBC = NMT + 2.

For only one boundary component, NBC = 1, the dimension of the subspace H¢
must be

2-NMT - NEL = NMT ~-~NEL+ NVT + NEL—-1=NMT + NVT - 1.
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By construction, we have NMT + NVT trial functions, which implies that at least one
of them has to be eliminated. It is easy to see that the tangennal functlons of (3.1) are
orthogonal relative to | - ||44. For the remaining functions =3 ‘IJ'vh , we can show

‘\yjﬂ _ ‘l,j‘z

4
TR ~ YOS R R (3.4)

TeTy k=1

”Uthh Z 7| Z

TeT, TieaT

This implies that the mass matrix is spectrally equivalent to the stiffness matrix corre-
sponding to the discretization of the Poisson equation with natural boundary conditions
for conforming linear or bilinear elements. Therefore, eliminating one of these func-
tions leads to a basis in two space dimensions, at least for the case of one boundary
component.

After introducing these new basis functions the size of our linear system for the
quadrilateral case is reduced from about SNV T unknowns for the ordinary formulation
to approximately 3NV T for the divergence-free case, and from SNV T to about 4NVT
for the triangular case.

Let v, € HY be a discretely divergence-free function with the two different repre-

sentations
vy = Z Vo + 3 Uyt = 3 Uref + SV (3.5)
] k {

where ¥, U, are the coefficient vectors in a divergence-free and U, V in a primitive
representation. Then, we can construct [8] rectangular transfer matrices R: and Rj,
such that
v ] v U
RS , R = ) (3.6)
v U, U, 1%

W

Rewriting vy € Hf as

=5 Xty = PRACE viv) + > Ukoit
i ; k

_ Z Py ‘P _ZUpm mP+ZVpI Lp (37)

with coefficient vectors X? and X7, we obtain
R‘;RZX“ = X9, RZR‘;X” = XP. (3.8)

Furthermore, let S} be ordinary conforming linear or bilinear finite element spaces
with nodal basis ¢}, satisfying 12}'(a;) = b;; for all vertices a; of Ty. By S; we denote the
corresponding positive definite stiffness matrix. Analogously, we assume that S, denotes
the corresponding stiffness matrix for the scalar nonconforming basis functions,

(") Z /Vy” V,ah dz, 5('1) = Z /th;lp V(p Pdz
TETy TeTs

and define
S0 5‘/2 0

Sfﬂ = , Qd = (39)

0 5 0 !

P
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The corresponding details are straightforward but very technical, therefore, we omit
them. Then, by the previous corollary we end up with

15,2 R2Q7' S5 llo < c. (3.14)
We can write the second expression as
'S 0
1S5 QaxIl5 = (X% x¢ (3.15)
0 5

and obtain with the basic eigenvalue estimates for standard finite element discretizations
Hlvalll} < c(¥TS S0 + UTS,0,) < (WS 5w + UTY,). (3.16)

By definition we also know
loallly = 970 + U7y, . (3.17)

Then, a first result in matrix-vector notation reads

v 17788 01w
Hoalll? < c (3.18)
U, o 5| |uw

and using interpolation arguments for norm scales (compare, for instance, with [13]), we
obtain for s = 1/2

1oalllie < e(UTSi¥ + UTU,) = cfl|Qux?|2. (3.19)
By Corollary 3.1 we finally get:

[oallliy2 < ch™Hulo.

We also need estimates for the condition numbers of mass and stiffness matrices.
As before we may rewrite vy, € H as

vh = D0 Xt = S W w4 T ke
i J

k

Using the standard finite element estimates
lvallo < cllvalla < ch™"{Junllo (3.20)

we obtain for the L,- and energy norm

Mwnllls = Jlonll} < ch™flonll2 < e QuX4% = c(97 S0 + Ul oy
< (T +UTU) = cffjun]|2 (3.21)
Hlwallls = ¥79 + UTU, < c(h-297 50 + uru,)
< kWIS + UTUL) = ch 2| Qux Yk
< chlonlly < ch™fluall? = ch™*{[ual]I2. (3.22)
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We summarize these results in the lemma.

Lemma 3.3. For functions vy, € H3, there holds:
(1) The condition number of the mass matrix My is O(h™2); that is

ch*ll[valllo < lloall} < CA?|]ual| 2.
(2) The condition number of the stiffness matrix Sy is O(h™*); that is

ch¥|l[vallff < Nleall? < C [lfoallf2.

In the rest of this section we want to elucidate practical questions concerning the
problem of several boundary components and the calculation of the pressure. We are
mainly interested in flows associated with the boundary conditions

g-nr;, =0, 1=23...,n ) (3.23)

on each additional boundary component {I;, i =2, 3,... ,n}. For such boundary con-
ditions we know that the streamfunction takes the fixed but unknown value ¢; on L.
In connection with iterative solution techniques for the finite elements used we apply a
so-called projection method [8]. This implies that before and after each matrix-vector
multiplication we have to correct the boundary values. We calculate the mean value of
the streamfunction values on each boundary component T}, and prescribe this value as
a new guess to ¢;. This method works for any number of components without modifying
the code by explicitly constructing the corresponding nonlocal basis functions (see [15]).

In order to calculate p, € L, corresponding to the already known velocity uj € Hg,
we use the remaining part of discretely curl-free trial functions Hf C Hy:

(o) = (f,0]) —an(uf,v;)  Vop € B} (3.24)

Analogous to our tangential trial functions v, we construct locally normal functions
v;l‘n, _ e

vt € {@in’, j = 1,...,4} (3.25)

which have support on only two elements called 7} and T; with common edge T Using
them, equation (3.24) is reduced to

PuT QT (0") + puyr, Qr, (vi™) = (f, i) — an(uf, vp™) (3.26)

which can be further simplified
T Q1 (v") + pam, Qry (0f") = Pun LI Fr(ui™) - ni — pu 7 ITIFr(op™) - g
[TICpai7, — payry) - (3.27)

Fixing the pressure value in one element, the other values can be calculated by a march-
ing process not solving any linear system of equations.

To conclude, we would like to state the advantages of the discretely divergence-free
finite element spaces. The pressure is decoupled from the velocity, which results in a
reduction of the unknowns and leading to definite systems of equations. The pressure
can be obtained from the velocity not solving a linear System. Another advantage is that
for graphical postprocessing the streamfunction values are directly available. Of course,
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this requires a greater computational effort. As we pointed out, this is mainly due to
constructing the basis functions and increasing the condition numbers. A remedy for
this trouble is the multigrid algorithm.

4. THE MULTIGRID ALGORITHM AND ITS ANALYSIS

The following algorithm and its analysis follow the ideas of Brenner [2-4]. Any differ-
ences from Brenner’s approach are pointed out in the text.

Let {Th, }», be a family of regular subdivisions which are obtained by the refinement
process discussed in Section 2. The discrete Stokes problem at level k reads:

Find v € H, such that
ar(uf,vf) = (f,vf)  Vule HE. (4.1)
As before, we write vy € Hf as
ve = 30 Xt = 5T Why oY) + 30 Ulol! 4.2)
: j {
and introduce the discrete scalar product (-, )¢

(e, wede 1= Y WLUL + S U UL (4.3)
t 7

This corresponds to the Euclidean scalar product < -,- >g, since
(vk,wk)k =< X:,Xg_, >E . (44)

The prolongation operator If_,: H{ ., — H{ and its adjoint restriction operator
IFY HE — HE_| are defined by

(G vie)ier = (i IEqueae Yo € HE, Vuww€ HE.  (45)
We further define the positive definite discrete operator Ayx: Hf — H
(Akvi, wie = ax(vk,wx)  Yog,wy € HE (4.6)
so that the eigenvalues A} of Ay satisfy (compare with Lemma 3.3)
Oh) <AL <...< M < ¢ 4.7

where ¢ is a constant independent of A. Finally, we introduce the operator P}~': HE —
H{_, which is the adjoint of If_, relative to ai(-,-),

ak_l(P:'Iwk,vk_l) = ak(wk,]f_lvk_l) Vvk_l € H:—l . Vwk € H: (48)

Corollary 4.1. With the above definitions the inequality holds: PE=' = A[! IF14,.

Again we introduce the mesh-dependent norm scale ||| - [||,x on H{

lvelllon = (A v, ve),2 (4.9)
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and repeat the estimates from the preceding section
Morllle = floellz, I3 = x4, [lloallly2 < chg?luali2. (4.10)

Our k-level multigrid algorithm MG(k, -, ) for solving the problem (V&) reads:

The k-level iteration MG(k,u?, g:)

The k-level iteration with initial guess v} yields an approximation to ug, the solution to
the problem
Akuk = gk - (411)

One step can be described in the following way:
For k =1, MG(1,40, ¢1) is the exact solution: MG(1,48,¢,) = Aflg,.
For k > 1, there are four steps:

(1) m-Presmoothing steps.

Apply m smoothing steps to u{ to obtain up.

For the damped Jacobi method this procedure reads: Let uf, I =1,... ,m, be defined
recursively by the equations

up = ul + wp(ge — Agul! (4.12)

where w, is a damping parameter which has to be smaller than the inverse of the largest
eigenvalue AP,

(2) A correction step.
Calculate the restricted defect

ge-1 = I g — Aguf) (4.13)
and let wj_, € HE |, 1<i<p, P 2 2, be defined recursively by

W = MGk - Lul™ g0 1), 1< <p, ul_, =0. (4.14)

(3) Step size control.
Calculate up*! by

upth =y g orlf uf_, (4.15)

where the parameter o, may be a fixed or chosen adaptively chosen value so as to
minimize the error ul**! — y, in the €nergy norm, that is

N RS SUSIY (4.16)
(Ak]k—luk—l) Le_yuk_i)
4) m-Postsmoothing steps.
Analogous to step (1), apply m smoothing steps to up*! to obtain u2m !,
One iteration step MG(k, -, ) yields, given an initial ), the new approximate ufm+l,
which may be written as
MG(k,u, gi) = wmtn (4.17)

The full multigrid algorithm with optimal efficiency [O(ny) arithmetic operations| con-
sists of a nested iteration of this scheme. For practical applications other smoothing
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schemes like GauB-Seidel or ILU may be used and the number of pre- and postsmooth-
ing steps may vary. Also, other cycle-types like the V-cycle (p = 1) or our favourite the
F-cycle [16] may be taken.

For the convergence analysis, we restrict ourselves to the case of a two-level method
(k = 2) without postsmoothing and step length control and show the ordinary smooth-
ing and approximation property for the damped Jacobi-method. The essential new
approach is that the smoothmg property may be shown using only the properties of the
finite element spaces. This is in contrast to the work of Brenner [2], where a strong rela-
tion between triangular divergence-free finite elements and the nonconforming Morley
element was used.

Lemma 4.1 (Smoothing property). For the error e} := uy, — uj* the relations hold for
pm) = m~V*:

(@) llex Il < cptm)h~"leRllo

(®) Illegllsy2 < cotm)?h~lex]lo-

Proof. Applying m damped Jacobi-steps to €] yields

em = (In —whAn)" el (4.18)
Furthermore,
Aty = A Un — A" el
_ w;‘/‘A},/‘u,i/‘A‘/‘(lh —wr A" A -1/4A1/4 0
and hence

2 m -1/2 1/4 m g — 4
AV < wr PN AT W A (I = wn )™ AR 1T AV el
m 1/4
< clll(wn A4 — wrn AR 1I1AY €011

respectively,
ller 12 < ellion An)*(In = waAn)™ 115 llleRllI/2 - (4.19)
By standard arguments for positive definite operators (see, e.g. [1,11])

Il 1wn AR (I = wn An)" llo < em™* = cp(m) (4.20)
and, therefore, with the help of Lemma 3.2,
lerllls < cp(m)illedlllyz < cp(m)hiexllo-
Analogously, for s = 3/2, we have
AV =AY — wn Al = wp P AV A (1 — wn A AT AN ) (421)

resulting in:
e sz < cp(m)h 7 lehllo - = (4.22)

The main work was done in the preceding section by proving Lemma 3.2. We now
show the appropriate approximation property following the ideas of Brenner [2-4]. The
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main difference is that the quadrilateral case is evaluated without using explicitly the
fact that the finite elements are divergence-free in a pointwise sense.

Since in the 2-level iteration the correction equation is solved exactly, the coarse
grid solution uy, := u}, satisfies: :

um = Az g = AZ[IP(gh — Anup)] = AZHP Arel = PPer . (4.23)
We make the following assumptions concerning the prolongation operator:
Condition L
() 1M3hvan — vaallo < chllvamllon Vo € H;
(2) 3Ty V()N HYQ) — H} py,, such that
v ~Tazznvllo + Allv ~ ayanvllnjan < cihflolla Vo € V(Q) N H(Q)

kv — Ly Tlanvllo + A||Tso — I Tonvlls < ch¥vllz Vo e V(Q)n HY().

Condition II.

(1) (I{‘h‘wzh — Wy, vs) = 0 Vwy, € H'Zih Y, € H,’f,

@ 143" B A ulllo < cllfonlllo Vou € HE.

Condition II is satisfied by the L,-projection only. Furthermore, condition I and the
inverse estimate for finite elements imply the relations:

Corollaxy 4.2. For v € th “I?’);vﬂ:”h S c||vy,[|2;,, ”I;},UZAHO S C”‘Uz},“o.

Corollary 4.3. For vy, € H: ||PPupl|on < clonlfs-
We can now show the main result for the approximation property.

Lemma 4.2 (Approximation property). For v; € Hf and o, = (In — I}, Py, € HE:
o < chllloalll If Condition II is valid, then: |jon o < chlfonll]syo.

{94
Proof. Let vy € Hf and 4, = (I, — I, P*Yu, € HE be given. We consider the

auxiliary problem:

Find r € V(Q) , such that

a(r,w) = (Dp,w) Yw e V(). (4.24)
We already know from the a priori estimate (2.4) that
lIrll2 < ¢|lZallo - (4.25)

Let ra € Hf and ry, € Hg be the corresponding discrete solutions which satisfy the
error estimates
I = rallo + Allr — ralls < ch?|5alo
(4.26)
Ir=ranlo + hllr — rasllsn < CA2|liao.
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Introducing the term z,, = P2vy, we can write

(ﬁh,flh) = (13h,vh - ]2’},27_1;)

i

an(rn, ) = (Dn, Iy 220 — 221) — (0n, 220)

= an(ra,va) — am(ran, z) — (0n, L2on — z2).

Further, letting I,: V(Q)NH2(2) — HE and M,,: VIQNH*(Q) — Hf, be interpolation
operators as in Condition I, we have

I24ll5 = an(ra = Tlar, v4) = azm(ran — Masr, z)
+an(Tlar, vs) — ap (g, 2o ) — (Dp, 1;',‘22;, — z)
= an(ra — Iar, va) — aon(ran — Hosr, 221)
tan(lar — Ly Tlor, o) — (4, 1 220 — 224)
=L+ 5+ 53+ 5y,
We now show that each term £, can be estimated by
IZil < chllfoalllsfiBallo,  respectively, |Si) < chllfonlllsallonllo

which are valid because
Za] = lan(ra ~ Mar, vn)] < llrn = Tar||s flon s < ch||dnllo |valla

|22

laan(ron = Taar, z20)| < [lran = Manrlfon || PP vllan < chlinlo fJusla

B3] = Jan(Tar — I Toar, v)] < ||Tlar — Ly Tanrin llonlla < chllonllo [lualla
|Zal = 1(Bn, Inzon — 224)| < |[Snlfo | /2,220 — 2o
< chllonfo || P2 vrllzn < chlloallo [lvalla -

As a result, we immediately obtain: loallo < chl|lval(];.
For s = 3/2, we also require Condition 1I:

1Z1] < Hllra = Tarlly2 Hlvall32
< k™ ra = Marllo loalllsy2 < chlonllo [[oalll3/2
1Za2] < [llraa = anr|llyy2 11 P2 valll3/2
< ch™Miran — Tanrllo 1A% A 12 Anun])lo
< chllonllo 1143 13 A/ 43 uulllo < chllsnllo 11ull]32
1Z3l < WTTar — By Taar |2 loalllsy2 < ch™ || Mpr — B Thoaranflo |l[valll2
< Ch||17h”0|”“h”|3/2

[E.‘I = O

This shows the second result: loallo < chll[ualllz/2. =
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We can summarize both lemmas in the following theorem.

Theorem 4.1 (Convergence of the 2-level scheme). Let e*! be an error after one
2-level step with m damped Jacobi-smoothing steps and initial error €. Using the grid
transfer routines I3}, and meeting Condition I, we get the error reduction

ller*llo < Co(m)||ed]lo
where p(m) = m~Y4, In addition, if Condition II is valid, we obtain
ller o < Cp(m)?||edlo .

Hence, our method is convergent If the number m of smoothing steps is large enough.

Using standard inductive arguments [1,2,17], we can verify> the theorem.

Theorem 4.2 (Convergence of the k-level scheme with p > 2). Performing one step of
MG(k,uQ, g¢) with m damped Jacobi-steps t we have for Condition I and m large enough

llue = MGk, g0 < Cp(m)us — udlo
with p(m) = m=Y4_ [f besides Condition II is valid, then

llue = MGk, u}, g)llo < Cp(m)?|jus — wlo.

We proved some results for the W-cycle with sufficiently many smoothing steps. It
seems impossible to derive by this technique analogous estimates for the V-cycle or F-
cycle, or any number of smoothing steps. However, we can easily show that the method
is convergent.

Theorem 4.3. The k-level iteration is convergent method, if the adaptive step-size
control and at least one smoothing step are applied.

Since the stiffness matrices are positive definite, the inequality holds for the error
el’ after m smoothing steps

llef lle < cilleRllx
with a constant ¢, = ¢(hy) < 1. Because of the step size control we have for the
correction
lef Mk < llep e
and, therefore,
e llk < cilleflli < 2] -

Hence, an error reduction in each iteration step is ensured but the convergence rates
are not independent of the step size hy.

In the following, we construct transfer operators I3, : H$ — HE, satisfying Condi-
tion I, and, if need be, Condition II. The natural choice analogous to scalar noncon-
forming finite elements [5, 18] is the L?-projection I%F from HE to HY,

([;',;Pwy,,vh) = (wz;.,v;,) szjl € th, Vv;, € H: (427)
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In matrix-vector notation with coefficient vectors X and X, = IQPXZ,,, we can rewrite
M,,‘;,X,. = Nh,ZhXZh s respectively, Xh = /Wh_,]IN}.z;,Xy‘
where M, , Is the mass matrix at level A, and Ny 2y is the transfer matrix with coefficients

MED = (0, NI = i v,

Lemma 4.3. The transfer operator I, = 15" satisfies Conditions I and II.

Proof. It is clear that the definition of an L?-projection implies
11302 ~ vanllo < chllomlln  Vou € HE, .

Let 14 (and analogously i,,) be the standard interpolation operator i,: V()N H*(N) —
11{ (2.12), which satisfies the estimate

lv = invllo + Aljv - 1hvln < ch2]|v||2 Yv e V()N HZ(Q) .

Then, letting IT, = ¢4 and My = 14,

1w — By Towvllg = (Mav ~ I Tonw, o — 74 av)

(Myv — 13, v, Ty — Ihv)

IA

IMa = I Masollo {Ilv = Mavllo + |jv — Mawlo}

and, consequently, ||Ilyv — 75 vlle < ch?||v]f,.
Furthermore, using a standard inverse inequality implies

IThw = I3, Masvlls < ch™ [Ty = IA Tyolfo < chlvlf;.

Condition I is straightforward, since equation (1) in Condition 11 is just the definition,
and estimate (2) is a direct consequence for L2-projections.

We have thus developed a grid transfer operator which is easy to analyze, and the
convergence rates are also excellent. However, in each transfer step a mass matrix
problem

Alh.h/\,h = Yh

where Y, = N, Xos, must be solved. The mass matrix corresponds to a second-order
problem, and the part for the streamfunction values is equivalent to a conformingly
discretized Laplacian operator [compare with (3.4)]. Consequently, we need fast Poisson
solvers for each prolongation and restriction, which may be a second (standard) multigrid
algorithm. However, the numerical effort is enormous. Thus we are looking for simpler
transfers with about the same convergence rates. For this we present two operators
which act on macroelements at level 24, interpolating directly into the divergence-free
subspace at level h. Then, the problem is to show that the approximation properties
are good enough. We consider the macrotriangle and quadrilateral with streamfunction
values ¥, and tangential components Ut; (Fig.2). One regular refinement leads to Fig.3.
We have to define three, respectively, five new streamfunction values at the vertices,
and tangential components at all new edges. At vertices belonging to the macrolevel
the values are retained. Then our elementwise macrointerpolation can be defined as
follows:
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The elementwise macrointerpolation algorithm

(1) Transfer the divergence-free coefficient vector (¥4, Uty) to the primitive coeffi-
cient vector (Uas, Var).

(2) Interpolate “fully’ on the macro elements to get (U, V;).

(3) Compute the tangential and normal components Ut, and Uny at all fine grid edges.

(4) Set ¥4 = Wy at the macro nodes and calculate at the new vertices the values for
U, by integrating Un,.

(5) Take the average for ¥ and Uty, which lie at macroedges.

| v v o v
T
A Ut + U,
1 }
% U, ¥ ¥ Uy ¥

Figure 2. Macro element.

% ({[6 V7 Ul (] WB
1

ugt Uy T Uty
Uty
v/ L [} w
8 ! ' 6
Uty %
Ulg"" 'Ulg "_Ul3

Figure 3. Refined elements.

us

3 &) i t t u;

£T 5

up “IS u '

Figure 4. Configuration for interpolation.
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In the following, we denote the full interpolation of the primitive nonconforming finite
elements by /. The problem to be analyzed is that the values for the inner normal
velocities are only implicitly given while the tangential ones are directly defined. Let
us start using the ‘full’ interpolation for I, which implies linear or rotated bilinear
interpolation on each macroelement. Then we get the prescriptions for the function
values (Fig.4) at the new edges [18]. For the linear case we calculate

ug = uy %uz + %m, us = %(ul + u3) (4.28)
for the trial space H{®
1 1 S 1
us = u = s + Su4 s ug = gu! + g(uz +u3 + uy) (4.29)
and for H,(,b)

This choice for /4 is denoted by I%. Another possibility is to use a constant interpolation
Iz'f, on each macro element, which results for the linear elements in

us = uy, Us = u (4.31)
and for the quadrilateral spaces #{*/*
us = uy, Ug = uy. (432)

Before starting with the analysis, we would like to make some remarks concerning an
efficient implementation. The described procedure looks very complicated, following
step (1)~(5). The main idea is to rewrite this procedure using local matrices, resulting
in 15 x 6, respectively, 21 x 8 elementwise defined matrices. This has to be done very
carefully but we obtain discretely divergence-free interpolation operators comparable
to corresponding operators for scalar Poisson equations [16] with quadratic elements in
terms of computational effort required.

For the analysis we start with the operator If, = I;" which is identical to the
operator proposed by Brenner (2], only formulated differently. Since our quadrilateral
elements are not pointwise divergence-free, we have to introduce slight modifications.
However, we demonstrate this technique for the linear elements, since the analysis of
the quadrilateral elements is the same but with more technical details.

In Section 3 we introduced on Hg, @ H the inner product Gy Yan

1
(s vadan := 5 30 (T 3. Fr(ua)- Fr(vs) (4.33)
3 i, reaT
and the induced norm || - ||44 which in our configuration is identical to the L%-norm.

Analogously, we can show that the elementwise defined functional Or(vs), with

Or(wn) = 3 (Fr.(va) = Fr(va))? (4.34)

I'.r,ear
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defines a norm || - || » which is equivalent to the energy norm,
172
[lvallos <= (Z OT(UA)) . (4.35)
TeT, .

Then, the relations are valid

lloalld ~ ch® 37 3~ |ow(mp)P ~ch? 3 |ua(mr))?

TeT, I'edT CcaT,

loalli ~ >° 3-  lowlmr,) — va(mr,) 2.

TeT, I“.»,I‘,-eaT

(4.36)

Lemma 4.4. For functions vy, € Hg,: || I van — vaallo < chljva]|zs.

Proof. We can first write

175020 — vanl} < ch? 3 2 1hvon = van ) (mp)| = ch¥(Sy + Sy + S5 + Ss).
TeT), TedT

The expressions S; are defined as
S1:= ) [(Ihvan = va 3, Ym)[2 + [(T5 van — v i) ()| (4.37)

where m ranges over all the midpoints of T} that belong to an inner edge in Ty. The
elements T, T; € T», contain m (Fig.5). We further have

S2:= 3" (I3 va — v pr )(m)|? (4.38)

where m ranges over all midpoints along T, on 8Q, and T € Ty, is the triangle that
contains this midpoint (Fig.5). We also have

83:= 23 [(Ghvan —vanr)(m) tml?,  Syi=2 2 (Bvn ~var)(m) nn P (4.39)

where m ranges over all the midpoints of Ty that are inside an element T € Ty, and
lm, Tespectively, n,, are the unit vectors tangential and normal to the edge T, containing
m (Fig.6). We complete the proof by showing that for /% = 1;,;’“ and ‘fully’ linear
interpolation o, = I there holds:

Si < cllom, - (4.40)

T,

Figure 5. Figure for S, and S,.
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Figure 6. Figure for S3 and S;.

us

U2

Figure 7. Configuration for S, and S,.

We begin with §; and S; and consider the following configuration (Fig.7). The proof
in this case is analogous to that of Brenner [2]. The definitions of I3, and I, imply:

I(]Zhhvﬂx - Unin )(m)lz + |([‘Zhv?ﬁ = Ux m)(m)'2

i

[(u, + Z(uz —uz + us — ug)) — (u; + %(uz - 113))}2

+ [(ul + 41(112 —u3+ us —ug)) — (ug + %(uS - u4))]2

(%(U3 - uz) + EI(U5 — u4)}2 + [%(UZ - U3) + %(u.g - 1.L5)J2 .

Referring to the definition of Or,(vy), we obtain

St= 30 1o = vanyr, J(m) 2 + [(Ih oo — von gz J(m) < cllvanll3,

52

2 v = van ) < cllvanlf?, -

For 53 there is nothing to show since by definition: Lovam(m) -t = va(m) - t,., and
therefore, S5 = Q.

The last and most interesting term is S;. Our problem is to determine the value for
I5vam(+) - nm at the edge S, (Fig.8). We know

Y6 = P4
vu(m) n, = uy -n, = E(“] + u3)ng,, L vw(m) -n,, =

TAREL
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' Vs
i
T
Ve juq T s
i) S3 Ja
us - Uq
Sy 85I
V1 i Vs V2
u4
il T T
u

Figure 8. Configuration for Sy.
Furthermore,

1
P =1 + |S3lus-n3 = ¢ + ‘53[(113 + Z(Ux ~u; + uy — ﬁz)) - n3

and in the same way

1
Yy = Py + |S,|(u1 + Z(ua —uy + ﬁs—ﬂz)) ‘ny.

This implies Yo .
Ts,,,[ : = G (Salus - na = ISifur o) + c(van)
with
S . . S _
C(‘Uz},) = 4||Sjl| [(U1 — uz) + (u; — uz)] ‘n3 + 4||Slr,|‘| [(UZ — U3) + (ﬁz — ‘U,3)] SNy

Since vy, is discretely divergence-free on T, we obtain by definition
[S3lus - n3 ~ [Sifur -y = [Spluz- nm

and by the definition of Or(va), we easily see: c(va)? < cf|vm |3,
Summarizing the last estimates, we have

1 2
|I£hv2;,(rn) ‘N — v (m) - ng? < (uz Ny — E(ul + u3) - nm) + c(van)?

IN

IA

Cllva iz
and finally:

Se =23 |UIhvm = vanr)(m) - no 2 < cllvm |13 -

1 1
ZKUZ —up) |t + 1|(u2 —u3) |’ + c(van)

249
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S ~
+75, 3

Sy
Ss S2

Figure 9. Figure for Lemma 4.6.

The second inequality in Condition I is proved by using homogeneity arguments. For
this we need the lemma concerning estimates on the reference element. The proof can
be found in [2,17].

Lemma 4.5. Let G be a union of two triangles Ty, T, with diam G = 1. Referring to
Fig. 9, there exist constants ¢ and C, dependent only on the angles of Ty, T, such that for
all functions u € H*(G): '

1 1 1 1 1 1
— (- wdo - - - )
{a) ‘|51| }gluda+ 4( 5 fs]u a 5l SQuda+ 54 S‘uda B s_,,UdU
1
- <c¢ 2 ;
5 éluda~_clu|g(c),

171 1 1
b) |2 4 wdo+ — d)—~— d
()‘z(w Jé,“ MR A AT N fs‘,u 7

To show the second relation in Condition I we again need an interpolation operator
h: V(Q) N HAY) — HE, satisfying

< Cluluze) -

v = Maollo + hllv - Mavlls < ch?|lvlle Vo € V(Q) N HX Q).
As before, let I, = i, be a standard interpolation operator.
Lemma 4.6. For v € V()N HX(Q): |[T4v ~ Ih Manvllo < ch?||v]2-
Proof. As before we make the splitting

IMaw — 15Tl < ch? 30 57 [y — I Tlav)(mr)?

TeT, Te€dT

ch*(Sy + S, + S35+ Sa).
Lemma 4.5 and standard estimates for finite elements (see, for instance, [6]) lead to
Sy + S+ S3 < ch?|v3-
Since Myv — I4 uv € HE is discretely divergence-free, we also have
Se <c(1Si] +1S2]) < eh?lvll

which implies the desired result. =
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With analogous conclusions, the proof of which requires more technical details due
to a larger number of local degrees of freedom Condition I can be shown for the quadri-
latcral cases. Condition 1I could not be proved for this operator, only for the choice

=0,
B, = Iy

For the operator 12, = I3 which is a modification of 13", using the locally constant

interpolation operator I%, we can only show a slightly weaker result [16].

Lemma 4.7. The inequality holds:

“12’}11}% — vallo < ch|lvalla Yoy € H}_‘h .

We have not proved the second relation for 1%,
IMav — I&Maolo + Al TTav — I Masvlla < kvl Vo € V()N HY(Q). (442)

Nevertheless, this operator 15 one of those used in our test calculations. There is another
approach for developing IM We consider the discretization of the generalized Stokes
problem

ou—eAu+Vp=f, Veu=90 (4.43)
with a > 0, £ > 0. As ¢ — 0, the effect of the Stokes operator decreases, and for £ = 0,
we only have to solve a linear system for the mass matrix My . As mentioned above,
the streamfunction part of this matrix is spectrally equivalent to the Laplacian matrix
which is discretized using conforming linear or bilinear finite elements. Hence, it seems
logical to solve this system by conforming multigrid routines. This procedure, however,
is exactly the same as the one proposed for I;‘,;K , if for the tangential part at the edges
the operator IX is taken. In the subsequent section we carefully examine the numerical
cost of solving the Stokes equations by the different schemes proposed.

Table 1. Rates for grid L.

¥ 7

NEQ = 3201 12545 49665 3201 12545 49665

ALK
I2h

GS1 0404 0834 1220 0.714 . 3440 —
GS2 0193 0210 0298 0.597 0612 0.840
GS4 0161 0162 0165 0.815 0808 0.849

it
GSt 0.128 0118 0.111 0.544 0473 0467
GS2 0104 0.092 0.106 0622 0548 0.619
GS4 0.082 0078 0078 0775 0718 0.801
i ,
GS1 0.139 0144 0.147 1220 1180 1.620
GS2 0.066 0058 0.050 1.080 1.010 1.250

GS4 0057 0054 0048 1.230 1210 1730
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Table 2. Rates for grid II.

" v
NEQ = 2417 9441 37313 2417 9441 37313
i
GS1 0434 0764 1.130 0.708 2370 —
GS2 0356 0379 0.440 0.856 0947 1200
GS4 0264 0302 0327 1010 1240 . 1.550
AL
L
GS1 0.150 0.184 0.186 0.591 0.600 0.698
GS2 0136 0.143 0.143 0.605 0.667 0.792
GS4 0099 0119 0.118 0730 0865 1.010
AP
I2h
GS1 0241 0254 0275 2040 2060 3.120
GS2 0175 019 0.220 1880 1940 2.89%0
GS4 0123 0.148 0.173 1770 1930 2930
Table 3. Rates for grid III.
% 2
NEQ = 2433 9473 37377 2433 9473 37377
Ly
GS1 0661 1320 1430 1780 — —
GS2 0286 0321 0.545 0811 0998 1950
GS4 0212 0229 0249 1.060 1250 1370
AL
12h
GS1 0.237 0.246 0.259 0957 1.040 1120
GS2 0175 0193 0211 0964 1100 1.200
GS4 0.144 0.136 0.155 1190 1280 1440
AP
[2h
GS1 0254 0283 0307 4910 5100 6.640
GS2 0.151 0.184 0210 3660 3980 5250
GS4 0091 0119 0.141 3.070 3.530 4.450
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Table 4. Rates for ellipse.

x v

NEQ = 5184 20352 5184 20352

Ly
GS2 2450 4.840 - —
GS4 1880 3.120 _—
GS8 1030 1970 —_—
GS16 0473 0981 1600 3650

hL

I2h
GS2 0282 0276 3.450 2.500
GS4 0.153  0.141 2960 2420

Table 5. Grid I with I2;% and & = 10", n = 0,3,6,9.

I b
n 3201 12545 49665 3201 12545 49665
0 GS1 0473 0800 1290 0665 2468 —
GS2 0195 0.193 0292 0470 0483 0.657
3 GS1 028 0325 0419 0.435 0490 0645
GS2 0173 0170 0.180 0434 0450 0470
6 GS1 0028 0025 0082 0.154 0.150 0225
GS2 0015 0023 0083 0.182 0211 0325
9 GS1 0020 0025 0030 0.140 0.150 0.160
GS2 0.020 0019 0017 0197 0198 0.197

5. NUMERICAL RESULTS

Our aim is to examine the influence of different smoothing and transfer operators and
different meshes on the efficiency and robustness of our multigrid algorithm. As a
smoothing operator, we restrict ourselves to the Gaufi-Seidel method which is about as
expensive as the Jacobi-iteration, at least on scalar workstations like the SUN 4/260
used. The case of the [LU-method is studied in [19], in which we give an overview
of possible renumbering strategies. For the grid transfer routines we expect that the
projection method 15,7 will have the best convergence rates followed by 15" and 1;‘,;K .
But these convergence rates are not a true measure since, for instance, Gaussian elimi-
nation has the best rates, namely zero. In order to take account of this discrepancy we

introduce efficiency rates as a measure in real time.
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We start with the standard problem of the Stokes Driven Cavity on a unit square,
Au—-Vp =0, Vau=0 inQ
v=0 ondMN{y =1}, u=(1,07T ondQn{y=1}

with the coarse grids as typical representations of possible meshes (Fig. 10). The finer
subdivisions are generated using the regular refinement process as described in Section 2.
In the tables we present the number of unknowns (NEQ), the number m of pre- and
postsmoothing steps, the convergence rate » and the efficiency rate «,

100075

n = yf|r®|/|r O], 7= —‘m- (5.1

Here, r® denotes the residual after 8 iterations, and Ty the corresponding computational
time. The efficiency rate 4 measures the time in milliseconds needed to gain one
digit per unknown For the operator Iz,l we used the adaptive step length control,
while for I;;* a fixed value smaller than 1, and for I%7 the choice a = 1, due to the
character of a projection method, seems optimal. The numbers are generated using
an F-cycle, since the V-cycle seems unstable sometimes, while the W-cycle shows no
visible advantages. As finite element space, we use the space Hy, = H®). The tables
show that the projection method leads to the best convergence rates but at the expense
of the greatest computational effort. The constant operator I;},K leads to surprisingly
good results, but the robustness against grid irregularities seems to be lost, at least as
compared to 12,‘ , which produces the best results. Similar results can be obtained in
the next domain, which simulates the flow around an ellipse. This is a practical example
of domains (a coarse grid, see Fig. 11} as to concerning the Navier-Stokes equations.
As a final example, we show the results for the class of problems (with a > 0)

ou—Au+Vp=f, Vu=0. (5.2)

Figure 10. Used coarse grids.

o

Figure 11. Coarse grid for ellipse configuration.
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This configuration is a typical example for an unsteady calculation, where the mass
matrix is weighted with O(1/At). Here, the values o = 107, n = 0,3,6,9, are taken.
Our theoretical consxderatlons as to the influence as a — oo are justified. I3, is now
the best but our favourite 12,, was not much worse, only the projection method was
surprisingly bad.

Summarizing, we have found an interpolation operator, namely 17,, , which satisfies
all requirements: small numerical effort, good convergence rates, robust against grid and
parameter variations, and theoretically analyzable. In connection with the GauB-Seidel
iteration as a smoother in our algorithm, we seem to have found a good candidate as a
Black Box solver for linear systems in a fully nonstationary Navier-Stokes code [16-18].
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