FEM Techniques for Multiphase Flow Simulation

Stefan Turek

Institut für Angewandte Mathematik, Univ. Dortmund

http://www.mathematik.uni-dortmund.de/LS3

http://www.featflow.de

- FEM discretization and solution techniques
- Gas-liquid configurations
- Liquid-solid configurations

Multiphase Flow Models

Incompressible Navier-Stokes Equations

$$\rho(\mathbf{u}_t + \mathbf{u} \cdot \nabla \mathbf{u}) = \mathbf{f} + \mu \Delta \mathbf{u} - \nabla p \quad , \quad \nabla \cdot \mathbf{u} = 0$$

'Complex' Extensions for Multiphase Flows

 $\Rightarrow \textbf{Discretization:} \quad ``Find u_h \in V_h: a_h(u_h, v_h) = (f, v_h) \forall v_h \in V_h`'$

 \Rightarrow **Solver:** 'Solve (nonlinear) System $A \cdot X = F$ '

⇒ **Software:** 'FEATFLOW/FEASTFLOW'

Aspects of FEM Discretization

- 1) **BB Condition:** $\min_{q_h \in L_h} \max_{\mathbf{v}_h \in \mathbf{V}_h} \frac{(q_h, \nabla \cdot \mathbf{v}_h)}{\|\mathbf{v}_h\|_{1,h} \|q_h\|_0} \ge \alpha > 0$
- \rightarrow Deformed and anisotropic meshes?
- \rightarrow Quantitative (nonlinear) stabilization strategies?

2) Korn's Inequality: $||D(\mathbf{v}_h)||_0 \ge \beta ||\mathbf{v}_h||_{1,h}$

 \rightarrow For 'discontinuous' FEM?

3) Stabilization of the convective term $\mathbf{u}_h \cdot \nabla \mathbf{u}_h^*$

 \rightarrow Upwind/Streamline-Diffusion for 'diffusion-dominated' case ! \rightarrow FEM-Stabilization for pure 'transport-dominated' case?

4) Higher Order FEM Spaces w.r.t. 1), 2), 3)

1) Second Order Accurate

2) (Semi) Implicit + (Strongly) A-Stable

 \rightarrow Allowing huge time steps for (quasi-) stationary flow! \rightarrow No CFL-type restrictions! \leftarrow *local mesh adaptivity*

3) Accuracy-Based (Implicit) Error Indicator

 \rightarrow Based on local truncation error for <u>all</u> physical quantities!

4) Rigorous Error Control

 \rightarrow Residual-based a posteriori error control via dual problem?

 \rightarrow For user-defined time/space-averaged quantities ?

Aspects of 'Fast Solvers'

1) Newton Schemes: $U^{n+1} = U^n - \tilde{F}_{\delta}(U^n)^{-1}F(U^n)$

 \rightarrow Frechet derivative $F_{\delta}(U^n)$? Simplifications $\tilde{F}_{\delta}(U^n)$?

 \rightarrow Solvers for linear problems? Dependence on parameters (Re,...)?

Simplifications $\tilde{F}_{\delta}(U^n)$? Dependence on parameters (

2) Linear Multigrid/DD Schemes: $A_{lev}U_{lev} = F_{lev}$

 \rightarrow Robustness! Efficiency! Parallelism!

 \rightarrow Re ? Mesh size/deformations ? FEM types ?

3) (De)Coupling: $U^{n+1} = f(P^n), P^{n+1} = g(U^{n+1})$

 \rightarrow Coupling of NSE with other components?

 \rightarrow Decoupling of pressure from velocity/temperature/etc. ?

 \Rightarrow *Pressure Schur Complement (PSC) solvers !*

Key Ideas of MPSC Approaches

'Re-interpretation of Navier-Stokes solvers (Chorin, Van Kan, Uzawa, etc.) as "incomplete solvers" for discrete saddle-point problems'

LOCAL MPSC ('MULTILEVEL PRESSURE SCHUR COMPLEMENT'):

'Fully coupled Newton-like solver as outer nonlinear procedure' 'Solve "exactly" on "subsets/patches" and perform an outer Block–Gauß-Seidel/Jacobi iteration as smoother'

⇒ For (quasi-) stationary flow with "large" time steps

GLOBAL MPSC ('MULTILEVEL PRESSURE SCHUR COMPLEMENT'): 'Outer (multigrid) coupling of velocity and pressure' 'Newton/Multigrid solver for all scalar subproblems'

 \Rightarrow For highly nonstationary flow

Parallel Realization of GLOBAL MPSC

LOCAL MPSC: Flow around Cylinder

Nonlinear 'Power-Law' model				
				discrete Newton
	Conforming $Q_2 - P_1$ FEM			GMRES(ILU(1),200)
Lev	Drag	Lift	Δp	NNL/AVGMRES
3	0.9475 + 03	0.3453 + 01	16.02	21/34
4	0.9534 + 03	0.3957 + 01	15.82	20/94
5	0.9569 + 03	0.4069 + 01	15.86	39/186
				continuous Newton
	Nonconforming $ ilde{Q}_1 - Q_0$ FEM			Multigrid
Lev	Drag	Lift	Δp	NNL/AVMG
4	0.9160 + 03	0.3738 + 01	15.74	13/2
5	0.9351 + 03	0.3995 + 01	15.82	13/2
6	0.9462 + 03	0.4059 + 01	15.85	13/2

Continuous Newton + Multigrid Solvers !!!

HPC Techniques

'Exploit hierarchical, but locally regular structures !!!'

I) Patch-oriented adaptivity

'Many' tensorproduct grids 'Few' unstructured grids

==++++++++++++++++++++++++++++++++++++		
+++	 	+++++++++++++++++++++++++++++++++++++++

II) Generalized MG-DD solver: SCARC

Exploit locally 'regular' structures (efficiency) Recursive 'clustering' of anisotropies (robustness) 'Strong local solvers improve global convergence !'

Concepts for Adaptive Meshing

1) macro-oriented adaptivity

2) patchwise 'deformation' adaptivity

3) (patchwise) 'local' adaptivity

Example for SCARC

Parallel convergence rates for SCARC-CG (2 global smoothing, V-cycle; 2 local 'MGTRI', F-cycle) with direct coarse mesh solver

#NEQ-global	AR	ρ (#IT)
1,704	3	0.03 (5)
44,544	3	0.03 (5)
431,317	10	0.09 (6)
1,722,773	10	0.08 (6)
9,344,533	10	0.09 (6)
37,366,805	10^{7}	0.09 (6)

Global (parallel) convergence rates

#NEQ-local	MV-V/C	MGTRI-V/C	
65^{2}	245/1275	299/706	
257^{2}	193/638	173/382	
1025^{2}	168/614	146/288	
Local MFLOP/s rates (AMD 'XP 1500+')			

Applications

GAS-LIQUID REACTORS

LIQUID-SOLID PARTICULATED FLOW

Gas-Liquid Reactors

Drift-Flux model with mass transfer and chemical reaction (Gas holdup ϵ , Number density n, Mass flux N, Interfacial area a_S)

$$\frac{\partial \mathbf{v}_L}{\partial t} + \mathbf{v}_L \cdot \nabla \mathbf{v}_L = -\nabla P + \nu \Delta \mathbf{v}_L - \epsilon \mathbf{g} , \ \nabla \cdot \mathbf{v}_L = 0 \quad , \quad \mathbf{v}_G = \mathbf{v}_L + \mathbf{v}_{\text{slip}} + \mathbf{v}_{\text{drift}}$$

Gas-Liquid Reactors

Drift-Flux model with mass transfer and chemical reaction (Gas holdup ϵ , Number density n, Mass flux N, Interfacial area a_S)

$$\frac{\partial \mathbf{v}_L}{\partial t} + \mathbf{v}_L \cdot \nabla \mathbf{v}_L = -\nabla P + \nu \Delta \mathbf{v}_L - \epsilon \mathbf{g} , \ \nabla \cdot \mathbf{v}_L = 0 \quad , \quad \mathbf{v}_G = \mathbf{v}_L + \mathbf{v}_{\text{slip}} + \mathbf{v}_{\text{drift}}$$

$$\frac{\partial \tilde{\rho}_G}{\partial t} + \nabla \cdot (\tilde{\rho}_G \mathbf{v}_G) = -a_S m_\mu N \quad , \quad N = E k_L^0 (p/H - c_A)$$
$$\frac{\partial n}{\partial t} + \nabla \cdot (n \mathbf{v}_G) = 0 \quad , \quad \epsilon = \frac{\tilde{\rho}_G RT}{p m_\mu} \quad , \quad a_S = (4\pi n)^{1/3} (3\epsilon)^{2/3}$$

$$\frac{\partial \tilde{c}_A}{\partial t} + \nabla \cdot (\tilde{c}_A \mathbf{v}_L) = \nabla \cdot (\tilde{D}_A \nabla c_A) - \tilde{k}_2 c_A c_B + a_S N$$
$$\frac{\partial \tilde{c}_B}{\partial t} + \nabla \cdot (\tilde{c}_B \mathbf{v}_L) = \nabla \cdot (\tilde{D}_B \nabla c_B) - \nu_B \tilde{k}_2 c_A c_B$$
$$\frac{\partial \tilde{c}_P}{\partial t} + \nabla \cdot (\tilde{c}_P \mathbf{v}_L) = \nabla \cdot (\tilde{D}_P \nabla c_P) + \nu_P \tilde{k}_2 c_A c_B$$

Properties of Drift-Flux Simulations

No explicit tracking of bubbles via Euler-Euler formulation

- Modelling of 'small-scale' effects (single bubbles)?
- Improved Two-Fluid model?
- Two-Phase turbulence? Population Balance models?

Extension I: Two-Phase Turbulence

- 0

'Effective' viscosity ($k - \varepsilon$ model)

$$\nu_{\text{eff}} = \nu + \nu_T, \qquad \nu_T = C_\mu \frac{k^2}{\varepsilon} + \underbrace{C_g \epsilon |\mathbf{u}_{\text{slip}}| r}_{BIT}$$

with

 $k = \frac{1}{2} \langle |\mathbf{u}'|^2 \rangle$ $\varepsilon = \frac{\nu}{2} \langle |\nabla \mathbf{u}' + (\nabla \mathbf{u}')^T|^2 \rangle$

turbulent kinetic energy

dissipation rate

$$\frac{\partial k}{\partial t} + \nabla \cdot \left(k \mathbf{u} - \frac{\nu_T}{\sigma_k} \nabla k \right) = P_k + S_k - \varepsilon$$
$$\frac{\partial \varepsilon}{\partial t} + \nabla \cdot \left(\varepsilon \mathbf{u} - \frac{\nu_T}{\sigma_\varepsilon} \nabla \varepsilon \right) = \frac{\varepsilon}{k} (C_1 P_k + C_\varepsilon S_k - C_2 \varepsilon)$$

Modelling of production terms

 $P_k = \frac{\nu_T}{2} |\nabla \mathbf{u} + \nabla \mathbf{u}^T|^2$ shear induced turbulence $S_k = -C_k \epsilon \nabla p \cdot \mathbf{u}_{slip}$ bubble induced turbulence

Extension II: Population Balance Models

$$\frac{\partial f}{\partial t} + \nabla \cdot (f \mathbf{u}_G) + \frac{\partial}{\partial m} (f \dot{m}) = Q - S$$

$$f = f(\mathbf{x}, m, t)$$
Bubble size distribution $\mathbf{u}_G = \mathbf{u} + \mathbf{u}_{slip}(m)$ Gas velocity $\dot{m} = Ek_L^0 \left(c_A - \frac{p}{H} \right) \eta a_B$ Mass transfer rate $Q - S$ Coalescence and breakup rates

Calculation of the local gas holdup

$$\epsilon(\mathbf{x},t) = \frac{RT}{p\eta} \int_0^\infty m f(\mathbf{x},m,t) \, dm$$

Treatment of Integro-Differential equation ??? Coupling with CFD ???

Extension III: Forces in Two-Fluid Model

$$\tilde{\rho}_{G} \left[\frac{\partial \mathbf{u}_{G}}{\partial t} + \mathbf{u}_{G} \cdot \nabla \mathbf{u}_{G} \right] = \epsilon \nabla \cdot \mathcal{S}_{G} + \tilde{\rho}_{G} \mathbf{g} + \mathbf{f}_{\text{int}}$$
$$\tilde{\rho}_{L} \left[\frac{\partial \mathbf{u}_{L}}{\partial t} + \mathbf{u}_{L} \cdot \nabla \mathbf{u}_{L} \right] = (1 - \epsilon) \nabla \cdot \mathcal{S}_{L} + \tilde{\rho}_{L} \mathbf{g} - \mathbf{f}_{\text{int}}$$

with: $\mathbf{f}_{int} = \mathbf{f}_D + \mathbf{f}_{VM} + \mathbf{f}_L$

$$\mathbf{f}_{D} = -\epsilon C_{D} \frac{3}{8} \frac{\rho_{L}}{r} |\mathbf{u}_{G} - \mathbf{u}_{L}| (\mathbf{u}_{G} - \mathbf{u}_{L}) \quad (drag \ force)$$
$$\mathbf{f}_{VM} = -\epsilon C_{VM} \rho_{L} \left(\frac{\mathrm{d}\mathbf{u}_{G}}{\mathrm{d}t} - \frac{\mathrm{d}\mathbf{u}_{L}}{\mathrm{d}t} \right) \quad (virtual \ mass \ force)$$
$$\mathbf{f}_{L} = -\epsilon C_{L} \rho_{L} (\mathbf{u}_{G} - \mathbf{u}_{L}) \times (\nabla \times \mathbf{u}_{L}) \quad (lift \ force)$$

Recent Application

'ADMIRE Benchmark' (cf. Pfleger/BASF)

$\Rightarrow Full Model !?$

Extension IV: 'Single Bubble'

$$\rho_i \left(\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} \right) - \nabla \cdot (2\mu_i \mathbf{S}) + \nabla p = \rho_i \mathbf{g}$$

 $\nabla \cdot \mathbf{v} = 0$ in Ω_i , $i = 1, 2, \dots$

$$\left[\mathbf{v}\right]_{\mid_{\Gamma}} \cdot \mathbf{n} = 0, \qquad -\left[-p\mathbf{I} + 2\mu(\mathbf{x})\mathbf{S}\right]_{\mid_{\Gamma}} \cdot \mathbf{n} = \kappa\sigma\mathbf{n}$$

 \rightarrow (Implicit) Reconstruction via 'Indicator function' ϕ !

Level-Set vs. VOF Method

- 1. "Easy" integration of surface tension (in weak formulation)
- 2. High order schemes due to high smoothness
 - $\rightarrow\ Reinitialisation:$ Signed distance function

$$\frac{\partial \phi}{\partial t} + \mathbf{v} \cdot \nabla \phi = 0 \quad , \quad |\nabla \phi| = 1$$

(Nonstationary) Reformulation:

$$\frac{\partial \phi}{\partial t} = sign(\phi_{old})(1 - |\nabla \phi|)$$

$$\frac{\partial \phi}{\partial t} + sign(\phi_{old}) |\nabla \phi| = sign(\phi_{old})$$

$$\frac{\partial \phi}{\partial t} + sign(\phi_{old}) \frac{\nabla \phi \cdot \nabla \phi}{|\nabla \phi|} = \frac{\partial \phi}{\partial t} + \mathbf{w} \cdot \nabla \phi = sign(\phi_{old})$$

TG for Level Set with/without reinitialisation vs. VOF

\rightarrow Oscillation free + highly accurate discretization !!!

Future Challenges

- A posteriori error control + adaptive mesh refinement
- Robust + accurate FEM discretization of higher order
- Efficient solution of (nonlinear) 'reinitialisation part'
- (Implicit) coupling with CFD part
- Preserve the high efficiency of FEATFLOW !

Liquid-Solid Flow

Development of simulation tools for the understanding of:

- 1. Interaction of solid particles with flow (\rightarrow 'many complex objects' !)
- 2. Behaviour of non-newtonian fluids

- Exploit the high efficiency and accuracy of FEATFLOW !
- 'Fictitious Boundary Method' on fixed meshes + Operator-Splitting

The 'Fictitious Boundary Method'

- 1. Use (rough) boundary parametrization and locally refined coarse mesh for large-scale structures!
- 2. Describe fine-scale structures and time-dependent objects via (level-dependent) inner points!
- 3. Use projectors onto the "right" b.c.'s in iterative components!

Computational mesh independent of 'internal objects'

How to Calculate (Surface) Forces?

Define a function α as

$$\alpha_p(X) = \begin{cases} 1 & \text{for } X \in \Omega_p \\ 0 & \text{for } X \in \Omega_f \end{cases}$$

Remark: $\nabla \alpha_p = 0$ everywhere except at wall surface of the particles, and equal to the normal vector \mathbf{n}_p defined on the global grid

$$\mathbf{n}_p = \nabla \alpha_p \tag{0}$$

Force acting on the wall surface of the particles can be computed by

$$F_p = \int_{\Gamma_p} \sigma \cdot \mathbf{n}_p \, d\, \Gamma_p = \int_{\Omega_T} \sigma \cdot \nabla \alpha_p \, d\, \Omega_T$$

with $\bar{\Omega}_T = \bar{\Omega}_f \cup \bar{\Omega}_p$ (analogously for the torque)

'Flow around Cylinder' Benchmark

LEVEL 6 \approx 280.000 elements

LEVEL 6 \approx 150.000 elements

LEVEL	ch. mesh I	ch. mesh II	ch. mesh I	ch. mesh II
3	0.5529+01	0.5569+01	0.1216-01	0.2443-03
4	0.5353+01	0.5575+01	0.1074-01	0.0014-01
5	0.5427+01	0.5572+01	0.6145-02	0.0812-01
6	0.5501+01	0.5578+01	0.9902-02	0.1020-01
	$C_d = 0.55795 + 01$		$C_l = 0.10618-01$	

LEVEL	C_d	C_l	
2	0.55201+01	0.1057-01	
3	0.55759+01	0.1036-01	
4	0.55805+01	0.1041-01	
$I E V E I 2 \approx 10,000$ elements			

Application to Liquid-Solid Flow

Consider flow of N solid particles in a fluid with density ρ and viscosity μ

Denote by $\Omega_f(t)$ the domain occupied by the fluid at time t, and by $\Omega_p(t)$ the domain occupied by the particle p at time t

Fluid flow is modeled by the Navier-Stokes equations in $\Omega_f(t)$

$$\rho \left(\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} \right) - \nabla \sigma = 0, \qquad \nabla \cdot \mathbf{u} = 0$$

where σ is the total stress tensor in the fluid phase, which is defined as

$$\sigma(X, t) = -p \mathbf{I} + \mu \left[\nabla \mathbf{u} + (\nabla \mathbf{u})^T \right]$$

Model for Particle Motion

Motion of particles is modeled by the Newton-Euler equations, i.e., the translational velocities U_p and angular velocities ω_p of the *p*-th particle satisfy

$$M_p \frac{d U_p}{d t} = F_p + (\Delta M_p) \mathbf{g}, \qquad \mathbf{I}_p \frac{d \omega_p}{d t} + \omega_p \times (\mathbf{I}_p \,\omega_p) = T_p$$

with M_p the mass of the *p*-th particle $(p = 1, \dots, N)$; \mathbf{I}_p the moment of inertia tensor of the *p*-th particle; ΔM_p the mass difference between the mass M_p and the mass of the fluid occupying the same volume

 F_p and T_p are the hydrodynamical forces and the torque at mass center acting on the *p*-th particle

$$F_p = \int_{\Gamma_p} \sigma \cdot \mathbf{n}_p \, d\,\Gamma_p \,, \qquad T_p = \int_{\Gamma_p} (X - X_p) \times (\sigma \cdot \mathbf{n}_p) \, d\,\Gamma_p$$

with X_p the position of the center of gravity of the *p*-th particle, $\Gamma_p = \partial \Omega_p$ the boundary of *p*-th particle, \mathbf{n}_p is the unit normal vector on the boundary Γ_p

Interaction between Particle and Fluid

No-slip boundary conditions at interface Γ_p between particle and fluid, i.e., for any $X \in \Gamma_p$, the velocity $\mathbf{u}(X)$ is defined by

$$\mathbf{u}(X) = U_p + \omega_p \times (X - X_p)$$

Position X_p of the *p*-th particle and its angle θ_p are obtained by integration of the kinematic equations

$$\frac{d X_p}{d t} = U_p , \qquad \frac{d \theta_p}{d t} = \omega_p$$

Operator-Splitting Approach

The algorithm for $t^n \rightarrow t^{n+1}$ consists of the following 3 substeps:

- 1. Fluid velocity and pressure: $NSE(\mathbf{u}_{f}^{n+1}, p^{n+1}) = BC(\Omega_{p}^{n}, \mathbf{u}_{p}^{n})$
- 2. Calculate hydrodynamic forces: $\mathbf{F_p}^{n+1}$
- 3. Calculate velocity of particles: $\mathbf{u}_p^{n+1} = g(\mathbf{F_p}^{n+1})$
- 4. Update position of particles: $\Omega_p^{n+1} = f(\mathbf{u}_p^{n+1})$

Rotating Airfoil (cf. Glowinski)

'Balls raising/falling in a Box'

Challenges (for 'many' Particles)

- Adaptive time-stepping + locally adaptive grid alignement
- Solution Accurate calculation of forces ($\rightarrow \alpha \in [0, 1]$) for 'complex' shapes
- Efficient data structures for treating the particles/particle forces
- (Better) Collision models
- Nonlinear fluids ('Kissing, Drafting, Thumbling')
- 🌑 3D
- "100.000" particles...

Future Multiphase CFD Tools

Mathematical Key Techniques

(Special) Implicit FEM schemes in space/time, adaptivity/error control, FCT/TVD stabilization, hierarchical Newton/multigrid solvers,...

Hardware-oriented Numerics for PDE, High Performance Computing techniques,...

'Higher (guaranteed) accuracy with less unknowns via hierarchical solvers with 'optimal' numerical complexity while exploiting the available huge sequential/parallel GFLOP/s rates'

Conclusions:

There is a huge potential...

There is much to do...:-)