FEM Techniques for Incompressible Flow Problems with Time-Dependent Interfaces

Stefan Turek

Institut für Angewandte Mathematik, Univ. Dortmund

- Liquid (rigid) solid interfaces
- [Liquid (elastic) solid interfaces]
- [Liquid gas interfaces]
- [Liquid liquid interfaces]

Fluid - (Rigid) Solid Interfaces

- 1. Sedimentation (e.g. sand flow in river)
- 2. Suspensions (fluidized beds)
- 3. Lubricated transport (e.g. coal slurries in water)
- 4. Hydraulic fracturing (separation process using cyclones)
- 5. Gas-liquid reactors (fragmentation/coalescence)

6. ...

Aim: Exploit the high efficiency of operator-splitting techniques for highly (!!!) time-dependent configurations in FeatFlow

How far can we come with "simple Mathematics"???

Model for Fluid Flow

Consider flow of N solid particles in a fluid with density ρ and viscosity μ . Denote by $\Omega_f(t)$ the domain occupied by the fluid at time t, and by $\Omega_p(t)$ the domain occupied by the particle p at time t:

Fluid flow is modelled by the Navier-Stokes equations in $\Omega_f(t)$

$$\rho \left(\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} \right) - \nabla \cdot \sigma = \mathbf{f}, \qquad \nabla \cdot \mathbf{u} = 0$$

where σ is the total stress tensor in the fluid phase, which is defined as:

$$\sigma(X, t) = -p \mathbf{I} + \mu \left[\nabla \mathbf{u} + (\nabla \mathbf{u})^T \right]$$

Motion of particles is described by the Newton-Euler equations, i.e., the translational velocities U_p and angular velocities ω_p of the *p*-th particle satisfy

$$M_p \frac{d U_p}{d t} = F_p + F'_p + (\Delta M_p) \mathbf{g}, \qquad \mathbf{I}_p \frac{d \omega_p}{d t} + \omega_p \times (\mathbf{I}_p \,\omega_p) = T_p$$

with M_p the mass of the *p*-th particle (p = 1, ..., N);

 I_p the moment of inertia tensor of the *p*-th particle;

 ΔM_p the mass difference between the mass M_p and the mass of the fluid occupying the same volume.

 F_p and T_p are the **hydrodynamical forces** and the **torque** at mass center acting on the *p*-th particle

$$F_p = -\int_{\Gamma_p} \sigma \cdot \mathbf{n}_p \, d\,\Gamma_p \,, \qquad T_p = -\int_{\Gamma_p} (X - X_p) \times (\sigma \cdot \mathbf{n}_p) \, d\,\Gamma_p$$

and F'_p are collision forces.

 X_p is the position of the center of gravity of the *p*-th particle; $\Gamma_p = \partial \Omega_p$ the boundary of the *p*-th particle; \mathbf{n}_p is the unit normal vector on the boundary Γ_p .

Interaction between Particle and Fluid

No-slip boundary conditions at interface Γ_p between particles and fluid, i.e., for any $X \in \Gamma_p$, the velocity $\mathbf{u}(X)$ is defined by:

$$\mathbf{u}(X) = U_p + \omega_p \times (X - X_p)$$

The **position** X_p of the *p*-th particle and its **angle** θ_p are obtained by integration of the kinematic equations:

$$\frac{d X_p}{d t} = U_p , \qquad \frac{d \theta_p}{d t} = \omega_p$$

Coupling between Fluid and Particle

1. Implicit coupling ("Distributed Lagrange Multiplier/Fictitious Domains")

Idea: Calculate the fluid on the complete fluid-solid domain; the solid domain is constrained to move with the rigid motion; mutual forces between solid and fluid are cancelled.

- Body-force-DLM (*Glowinski*, *Pan*, *Hesla*, *Joseph and Périaux* (1999)): the constraint of rigid-body motion is represented by $\mathbf{u} = \mathbf{U} + \boldsymbol{\omega} \times \mathbf{r}$
- Stress-DLM (*Patankar, Singh, Joseph, Glowinski and Pan* (2000)): the constraint of rigid-body motion is represented by a stress field just as there is pressure in fluid
- 2. Explicit coupling

$$t^n$$
 fluid $\rightarrow t^n$ force on solid $\rightarrow t^{n+1}$ solid $\rightarrow t^{n+1}$ fluid ...

- FVM-fictitious domain methods (*Duchanoy and Jongen* (2003))
- **FEM-fictitious boundary methods** (*Turek, Wan and Rivkind*)

Further Classification

1. Eulerian approach: fixed meshes!

Use a "fixed" mesh that covers the whole domain where the fluid may be present.

- The distributed Lagrange multiplier/fictitious domain method
- FEM-fictitious boundary method
- FVM-fictitious domain method
- 2. Lagrangian approach: moving meshes! Based on a moving mesh which follows the motion of the fluid boundary.
 - Ð
 - Arbitrary Lagrangian Eulerian (*Hu, Joseph and Crochet* (1992), *Johnson and Tezduyar* (1996))
 - Ð
- Fat boundary method (Maury (2001))

The 'Fictitious Boundary Method'

- 1. Describe fine-scale geometrical structures and time-dependent objects via (level-dependent) inner "boundary points"!
- 2. Use projectors onto the "right" b.c.'s in iterative components!

Computational mesh (can be) independent of 'internal objects'

How to Calculate (Surface) Forces?

Hydrodynamic forces and torque acting on the *i***-th particle:**

$$\mathbf{F}_{i} = -\int_{\partial P_{i}} \boldsymbol{\sigma} \cdot \mathbf{n}_{i} \, d \, \Gamma_{i} \,, \qquad T_{i} = -\int_{\partial P_{i}} (\mathbf{X} - \mathbf{X}_{i}) \times (\boldsymbol{\sigma} \cdot \mathbf{n}_{i}) \, d \, \Gamma_{i}$$

Reconstruction of the shape is only first order accurate ⇒ local grid adaptivity or alignment ⇐ "only" averaged/integral quantities are required

But: The FBM can only decide "INSIDE" or "OUTSIDE"

'Replace the surface integral by a volume integral'

Calculation of Hydrodynamic Forces

Define auxiliary function α as

$$\alpha_p(X) = \begin{cases} 1 & \text{for } X \in \Omega_p \\ 0 & \text{for } X \in \Omega_f \end{cases}$$

Remark: $\nabla \alpha_p = 0$ everywhere except at wall surface of the particles, and equal to the normal vector \mathbf{n}_p defined on the global grid:

$$\mathbf{n}_p = \nabla \alpha_p$$

Force acting on the wall surface of the particles can be computed by

$$F_p = -\int_{\Gamma_p} \sigma \cdot \mathbf{n}_p \, d\,\Gamma_p = -\int_{\Omega_T} \sigma \cdot \nabla \alpha_p \, d\,\Omega_T$$

with $\bar{\Omega}_T = \bar{\Omega}_f \cup \bar{\Omega}_p$ (analogously for the torque)

Evaluation of Force Calculations

LEVEL $6 \approx 280.000$ elements

LEVEL $6 \approx 150.000$ elements

LEVEL	ch. mesh I	ch. mesh II	ch. mesh I	ch. mesh II
3	0.5529+01	0.5569+01	0.1216-01	0.2443-03
4	0.5353+01	0.5575+01	0.1074-01	0.0014-01
5	0.5427+01	0.5572+01	0.6145-02	0.0812-01
6	0.5501+01	0.5578+01	0.9902-02	0.1020-01
	$C_d = 0.5$	55795+01	$C_l = 0.1$	0618-01

LEVEL	C_d	C_l				
2	0.55201+01	0.1057-01				
3	0.55759+01	0.1036-01				
4	0.55805+01	0.1041-01				
$\Gamma \Gamma V \Gamma I = 150,000$ alone and a						

(Explicit) Operator-Splitting Approach

The algorithm for $t^n \to t^{n+1}$ consists of the following 4 substeps:

- 1. Fluid velocity and pressure: $NSE(\mathbf{u}_{f}^{n+1}, p^{n+1}) = BC(\Omega_{p}^{n}, \mathbf{u}_{p}^{n})$
- 2. Calculate hydrodynamic forces: $\mathbf{F}_{\mathbf{p}}^{n+1}$
- 3. Calculate velocity of particles: $\mathbf{u}_p^{n+1} = g(\mathbf{F_p}^{n+1})$
- 4. Update position of particles: $\Omega_p^{n+1} = f(\mathbf{u}_p^{n+1})$

- \rightarrow Required: efficient calculation of hydrodynamic forces !
- \rightarrow Required: efficient treatment of particle interaction (?)
- \rightarrow Required: fast (nonstationary) Navier-Stokes solvers (?)

'One particle in a rotating circular container'

 $R_{\Omega} = 2.0, \quad R_p = 1.0$

'One particle in a rotating circular container'

viscosity ν	Terminal angular velocity ω_p	Time reaching the steady state
0.001	0.0099185	7000.0
0.01	0.0099989	600.0
0.1	0.0099998	60.0
1.0	0.0099999	10.0

'One ellipse falling in an (infinite) channel'

'Viscous flow around a moving airfoil' (Glowinski)

'(Prototypical) Heart Valve'

Velcoity ($A_0 = 0.925$)

Velocity $(A_0 = 1.250)$

Inlet velocity
$$U = 9.828(A_0 + \sin(\frac{1.85 t}{\pi}))$$

'Kissing, Drafting, Thumbling'

'Impact of heavy balls on 2000 small particles'

 $\rho_f = 1, \, \rho_{bd} = 2, \, \rho_{sp} = 1.1$

Collision Models

- Theoretically, it is impossible that smooth particle-particle collisions take place in finite time in the continuous system since there are repulsive forces to prevent these collisions in the case of viscous fluids.
- In practice, however, particles can contact or even overlap each other in numerical simulations since the gap can become arbitrarily small due to unavoidable numerical errors.

Repulsive Force Collision Model

- Handling of small gaps and contact between particles
 - Dealing with overlapping in numerical simulations
- For the particle-particle collisions (analogous for the particle-wall collisions), the repulsive forces between particles read:

$$\mathbf{F}_{i,j}^{P} = \begin{cases} 0 & \text{for } d_{i,j} > R_i + R_j + \rho \\ \frac{1}{\epsilon_P} (\mathbf{X}_i - \mathbf{X}_j) (R_i + R_j + \rho - d_{i,j})^2 & \text{for } R_i + R_j \le d_{i,j} \le R_i + R_j + \rho \\ \frac{1}{\epsilon_P'} (\mathbf{X}_i - \mathbf{X}_j) (R_i + R_j - d_{i,j}) & \text{for } d_{i,j} \le R_i + R_j \end{cases}$$

The total repulsive forces exerted on the ith particle by the other particles and the walls can be expressed as follows:

$$\mathbf{F}'_i = \sum_{j=1, j \neq i}^N \mathbf{F}_{i,j}^P + \mathbf{F}_i^W$$

'Fluidization/Sedimentation of many particles'

Complete Algorithm

The complete algorithm /($t_n \rightarrow t_{n+1}$) for the coupled fluid-solid system can be summarized as follows:

- 1. Given the position and velocity of the particles at time t_n .
- 2. Set the fictitious boundary and its boundary condition for the fluid.
- 3. Solve the fluid equations to get the fluid velocity and the pressure.
- 4. Calculate the hydrodynamic forces acting on every particle.
- 5. Calculate the motion of the solid particles.
- 6. Check if collision happens and calculate collision forces.
- 7. Update the particle position and velocity by the collision forces.
- 8. Return to the first step $(n \rightarrow n+1)$ and advance to the next time step.

Efficient Data Structures

 $L3 \approx 220.000 \, elements$ $L4 \approx 880.000 \, elements$ $L5 \approx 3.530.000 \, elements$

 $\approx 1.100.000 \, d.o.f.s$ $\approx 4.400.000 \, d.o.f.s$ $\approx 17.600.000 \, d.o.f.s$

DEC/COMPAQ EV6, 833 MHz

CPU (s)	'brute force'					
#PART		= 10			= 1000	
items	L=3	L=4	L=5	L=3	L=4	L=5
NSE	17	88	440	16	80	403
Force	5	20	79	443	1771	7092
Particle	1	5	25	20	82	331
Total	24	114	546	480	1934	7827

Efficient Data Structures

 $\begin{array}{l} L3 \approx 220.000 \ elements \\ L4 \approx 880.000 \ elements \\ L5 \approx 3.530.000 \ elements \end{array}$

 $\approx 1.100.000 \, d.o.f.s \\ \approx 4.400.000 \, d.o.f.s \\ \approx 17.600.000 \, d.o.f.s$

DEC/COMPAQ EV6, 833 MHz

CPU (s)	'brute force'						'impr	oved'				
#PART		= 10		= 1000			= 10			= 1000		
items	L=3	L=4	L=5	L=3	L=4	L=5	L=3	L=4	L=5	L=3	L=4	L=5
NSE	17	88	440	16	80	403	17	95	423	17	83	435
Force	5	20	79	443	1771	7092	0	0	1	0	0	1
Particle	1	5	25	20	82	331	0	3	14	1	5	21
Total	24	114	546	480	1934	7827	18	98	439	18	89	468

Next: Efficient flow solver (for small Δt **)** ???

Multilevel Pressure Schur Complement

'Re-interpretation of Navier-Stokes solvers (Chorin, Van Kan, Uzawa, etc.) as "incomplete solvers" for discrete saddle-point problems'

LOCAL MPSC ('MULTILEVEL PRESSURE SCHUR COMPLEMENT'):

 'Fully coupled Newton-like solver as outer nonlinear procedure'
 'Solve "exactly" on "subsets/patches" and perform an outer Block–Gauβ-Seidel/Jacobi iteration as smoother'

 \Rightarrow For (quasi-) stationary flow with "large" time steps

GLOBAL MPSC ('MULTILEVEL PRESSURE SCHUR COMPLEMENT'): 'Outer (multigrid) decoupling of velocity and pressure'

'Newton/Multigrid solver for all scalar subproblems'

 \Rightarrow For highly nonstationary flow

Key Ideas of GLOBAL MPSC Approaches:

$$\begin{bmatrix} S & kB \\ B^T & 0 \end{bmatrix} \begin{bmatrix} \mathbf{u} \\ p \end{bmatrix} = \begin{bmatrix} \mathbf{g} \\ 0 \end{bmatrix} \iff B^T S^{-1} B p = \frac{1}{k} B^T S^{-1} \mathbf{g}$$
$$\mathbf{u} = S^{-1} (\mathbf{g} - kBp)$$

 \Rightarrow **Preconditioned Richardson scheme** for scalar problems:

$$p^{l} = p^{l-1} - C^{-1}(Ap^{l-1} - b)$$

= $p^{l-1} - C^{-1}(B^{T}S^{-1}Bp^{l-1} - \frac{1}{k}B^{T}S^{-1}\mathbf{g})$

 \Rightarrow Choice of (global) PSC preconditioner C^{-1} :

 $C^{-1} = \sum \alpha_i \tilde{C_i}^{-1} \quad (\approx [B^T S^{-1} B]^{-1}) \quad , \quad S := \alpha M + \theta_1 \nu k L + \theta_2 k N(\tilde{\mathbf{U}})$

'GOOD' SMOOTHER FOR SCALAR PROBLEM $A := B^T S^{-1} B$?

'Additive' GLOBAL PSC Preconditioners:

$$C^{-1} = \alpha_R P^{-1} + \alpha_D M_p^{-1}$$

Complete GLOBAL PSC Basic Iteration:

$$p^{l} = p^{l-1} - \left[\alpha_{R}P^{-1} + \alpha_{D}M_{p}^{-1}\right] \left(B^{T}S^{-1}Bp^{l-1} - \frac{1}{k}B^{T}S^{-1}\mathbf{g}\right)$$

Realization of 1 "Discrete Projection" step:

 $S\tilde{\mathbf{u}} = \mathbf{g} - kBp^n$ (**Burgers** problem with p^n and \mathbf{u}^n given) $f_p := \frac{1}{k}B^T\tilde{\mathbf{u}} \quad [= \frac{1}{k}B^TS^{-1}\mathbf{g} - B^TS^{-1}Bp^n = \mathbf{Residual}(p^n)]$ $Pq = f_p \quad (\sim \mathbf{'Pressure-Poisson'})$

$$\Rightarrow p^{n+1} = p^n + \alpha_R q + \alpha_D M_p^{-1} f_p$$

Key Ideas of GLOBAL MPSC (cont.):

REACTIVE PRECONDITIONER $(\nabla \cdot I \nabla)^{-1}$:

• explicit calculation of $P := B^T M^{-1} B \Rightarrow \tilde{Q}_1/Q_0$: 5 (2D)/7 (3D)

• P 'exact' discrete PSC preconditioner for $\Delta t \rightarrow 0$

DIFFUSIVE PRECONDITIONER $(\nabla \cdot \Delta^{-1} \nabla)^{-1}$:

- explicit calculation of $B^T L^{-1} B$ impossible $(L^{-1} \text{ full } !!!)$
- However: $\nabla \cdot \Delta^{-1} \nabla \sim I \implies B^T L^{-1} B \sim M_p$

Convective Preconditioner $(\nabla \cdot (\mathbf{u} \cdot \nabla)^{-1} \nabla)^{-1}$:

- discrete construction \longrightarrow **ILU** ???
- continuous construction $\rightarrow \nabla \cdot (\beta \cdot \nabla)^{-1} \nabla \sim ???$
 - new techniques...

Lift-Off for Circle

Lift-Off for Ellipse

Current Aim (Dan Joseph)

Challenges

Adaptive time-stepping + dynamical adaptive grid alignment

- (Better) Collision models/Repulsive forces
- Coupling with turbulence models
- Modelling of Break-up/Coalescence phenomena
- Deformable particles/fluid-structure interaction
- Analysis of viscoelastic effects
- Benchmarking and experimental validation for "many" particles
- **1.000.000"** particles...

Concepts for Adaptive Meshing

1) macro-oriented adaptivity

2) (patchwise) 'deformation' adaptivity

3) (patchwise) 'local' adaptivity

Example for Deformed Mesh

Example for Deformed Mesh

Grid deformation preserves the (local) logical structure of the grid.

R-Adaptivity

- 1. location based methods:
 - Winslow's method
 - Brackbill's and Saltzman's method
 - harmonic mapping

disadvantages:

- (a) non-linear problems (demanding)
- (b) interaction of monitor function and grid not clear

2. velocity based methods:

- MMPDE/GCL (Cao, Huang, Russell)
- ¢
- Deformation method (Liao et al.)

advantages:

- (a) (several) Laplace problems on fixed mesh (fast)
- (b) monitor function "directly" from error distribution
- (c) mesh tangling prevented

Deformation Method (Moser/Liao)

idea : construct transformation $\phi, x = \phi(\xi, t)$ with det $\nabla \phi = f$ \Rightarrow local mesh area $\approx f$

1. compute monitor function $f(x,t) > 0, f \in C^1$ and $\int_{\Omega} f^{-1}(x,t) dx = |\Omega| \quad \forall t \in [0,1]$

Deformation Method (Moser/Liao)

idea : construct transformation $\phi, x = \phi(\xi, t)$ with det $\nabla \phi = f$ \Rightarrow local mesh area $\approx f$

1. compute monitor function $f(x,t) > 0, f \in C^1$ and $\int_{\Omega} f^{-1}(x,t) dx = |\Omega| \quad \forall t \in [0,1]$

2. solve $(t \in (0, 1])$

$$\Delta v(\xi, t) = -\frac{\partial}{\partial t} \left(\frac{1}{f(\xi, t)} \right), \quad \frac{\partial v}{\partial n} \Big|_{\partial \Omega} = 0$$

Deformation Method (Moser/Liao)

idea : construct transformation $\phi, x = \phi(\xi, t)$ with det $\nabla \phi = f$ \Rightarrow local mesh area $\approx f$

1. compute monitor function $f(x,t) > 0, f \in C^1$ and $\int_{\Omega} f^{-1}(x,t) dx = |\Omega| \quad \forall t \in [0,1]$

2. solve $(t \in (0, 1])$

$$\Delta v(\xi, t) = -\frac{\partial}{\partial t} \left(\frac{1}{f(\xi, t)} \right), \quad \frac{\partial v}{\partial n} \Big|_{\partial \Omega} = 0$$

3. solve the ODE system

$$\frac{\partial}{\partial t}\phi(\xi,t) = f\left(\phi(\xi,t),t\right)\nabla v\left(\phi(\xi,t),t\right)$$

new grid points: $x_i = \phi(\xi_i, 1)$

Dynamic Mesh Deformation

Fluid - (Elastic) Solid Interfaces

Governing Equations

structure part		fluid part	
$\frac{\partial \boldsymbol{v}^s}{\partial t} = \operatorname{div}(J\boldsymbol{\sigma}^s \boldsymbol{F}^{-T}) + \boldsymbol{f}$ $\operatorname{det}(\boldsymbol{I} + \nabla \boldsymbol{u}^s) = 1$	in Ω^s in Ω^s	$\frac{\partial \boldsymbol{v}^f}{\partial t} + (\nabla \boldsymbol{v}^f) \boldsymbol{v}^f = \operatorname{div} \boldsymbol{\sigma}^f + \boldsymbol{f}$ $\operatorname{div} \boldsymbol{v}^f = 0$	in Ω^f_t in Ω^f_t
$oldsymbol{u}^s=oldsymbol{0}$	on Γ^2	$oldsymbol{v}^f = oldsymbol{v}_0$	on Γ^1_t
$\boldsymbol{\sigma}^{s}\boldsymbol{n}=\boldsymbol{0}$	on Γ^3	$oldsymbol{\sigma}^foldsymbol{n}=oldsymbol{t}$	on Γ^1_t

interface conditions				
$oldsymbol{v}^f = oldsymbol{v}^s$	on Γ_0			
$oldsymbol{\sigma}^foldsymbol{n}=oldsymbol{\sigma}^soldsymbol{n}$	on Γ_0			

Fully Coupled Formulation

$$\frac{\partial \boldsymbol{u}}{\partial t} = \begin{cases} \boldsymbol{v} & \text{in } \Omega^s \\ \Delta \boldsymbol{u} \text{ "mesh deformation operator" in } \Omega^f \end{cases}$$
(1)

$$\frac{\partial \boldsymbol{v}}{\partial t} = \begin{cases} -(\nabla \boldsymbol{v}) \boldsymbol{F}^{-1} (\boldsymbol{v} - \frac{\partial \boldsymbol{u}}{\partial t}) + \frac{1}{J} \nabla \cdot (-Jp^f \boldsymbol{F}^{-T} + J\boldsymbol{\sigma}^f \boldsymbol{F}^{-T}) & \text{in } \Omega^f \\ \frac{1}{J\beta} \nabla \cdot (-Jp^s \boldsymbol{F}^{-T} + J\boldsymbol{\sigma}^s \boldsymbol{F}^{-T}) & \text{in } \Omega^s \end{cases}$$
(2)

$$0 = \begin{cases} \nabla \cdot (J \boldsymbol{v} \boldsymbol{F}^{-T}) & \text{in } \Omega^f \\ J - 1 & \text{in } \Omega^s \end{cases}$$
(3)

Sequence of discrete saddle point problems

$$\begin{pmatrix} M - \frac{k}{2}L^{f} & \frac{k}{2}M^{s} & 0\\ \frac{1}{2}\frac{\partial N_{2}}{\partial u_{h}} + \frac{k}{2}\frac{\partial (N_{1} + S^{s} + S^{f})}{\partial u_{h}} + k\frac{\partial B}{\partial u_{h}}p_{h} & M^{s} + \beta M^{f} + \frac{1}{2}\frac{\partial N_{2}}{\partial v_{h}} + \frac{k}{2}\frac{\partial (N_{1} + S^{2}_{f})}{\partial v_{h}} & kB\\ B^{sT} + \frac{\partial B^{fT}}{\partial u_{h}}v_{h} & B^{fT} & 0 \end{pmatrix}$$

Fully Coupled Formulation

$$\frac{\partial \boldsymbol{u}}{\partial t} = \begin{cases} \boldsymbol{v} & \text{in } \Omega^{s} \\ \Delta \boldsymbol{u} \text{ "mesh deformation operator" in } \Omega^{f} & (3) \end{cases}$$

$$\frac{\partial \boldsymbol{v}}{\partial t} = \begin{cases} -(\nabla \boldsymbol{v}) \boldsymbol{F}^{-1} (\boldsymbol{v} - \frac{\partial \boldsymbol{u}}{\partial t}) + \frac{1}{J} \nabla \cdot (-Jp^{f} \boldsymbol{F}^{-T} + J\boldsymbol{\sigma}^{f} \boldsymbol{F}^{-T}) & \text{in } \Omega^{f} \\ \frac{1}{J\beta} \nabla \cdot (-Jp^{s} \boldsymbol{F}^{-T} + J\boldsymbol{\sigma}^{s} \boldsymbol{F}^{-T}) & \text{in } \Omega^{s} & (3) \end{cases}$$

$$0 = \begin{cases} \nabla \cdot (J\boldsymbol{v} \boldsymbol{F}^{-T}) & \text{in } \Omega^{f} \\ J-1 & \text{in } \Omega^{s} & (3) \end{cases}$$

Sequence of discrete saddle point problems

$$\begin{bmatrix} S_{\mathbf{u}\mathbf{u}} & S_{\mathbf{u}\mathbf{v}} & 0 \\ S_{\mathbf{v}\mathbf{u}} & S_{\mathbf{v}\mathbf{v}} & kB \\ c_{\mathbf{u}}B_s^T & c_{\mathbf{v}}B_f^T & 0 \end{bmatrix} \begin{bmatrix} \mathbf{u} \\ \mathbf{v} \\ p \end{bmatrix} = \begin{bmatrix} \mathbf{f}_{\mathbf{u}} \\ \mathbf{f}_{\mathbf{v}} \\ f_p \end{bmatrix}$$

Discretization in Space and Time

Discretization in space: FEM $Q_2/Q_2/P_1$

$$U_h = \{ \boldsymbol{u}_h \in [C(\Omega_h)]^2, \boldsymbol{u}_h |_T \in [Q_2(T)]^2 \forall T \in \mathcal{T}_h, \boldsymbol{u}_h = \boldsymbol{0} \text{ on } \Gamma_1 \},$$

$$V_h = \{ \boldsymbol{v}_h \in [C(\Omega_h)]^2, \boldsymbol{v}_h |_T \in [Q_2(T)]^2 \forall T \in \mathcal{T}_h, \boldsymbol{v}_h = \boldsymbol{0} \text{ on } \Gamma_2 \},$$

$$P_h = \{ p_h \in L^2(\Omega_h), p_h |_T \in P_1(T) \forall T \in \mathcal{T}_h \}.$$

Discretization in time: Crank-Nicolson scheme with adaptive time-step selection

Solution of the Nonlinear Problem

compute the Jacobian matrix via divided differences

$$\left[\frac{\partial \boldsymbol{\mathcal{R}}}{\partial \boldsymbol{X}}\right]_{ij}(\boldsymbol{X}^n) \approx \frac{[\boldsymbol{\mathcal{R}}]_i(\boldsymbol{X}^n + \varepsilon \boldsymbol{e}_j) - [\boldsymbol{\mathcal{R}}]_i(\boldsymbol{X}^n - \varepsilon \boldsymbol{e}_j)}{2\varepsilon},$$

solve for \dot{X}

$$\left[\frac{\partial \boldsymbol{\mathcal{R}}}{\partial \boldsymbol{X}}(\boldsymbol{X}^n)\right] \dot{\boldsymbol{X}} = \boldsymbol{\mathcal{R}}(\boldsymbol{X}^n)$$

adaptive line search strategy

$$\mathbf{X}^{n+1} = \mathbf{X}^n + \omega \dot{\mathbf{X}}$$
 ω such that $f(\omega) = \mathcal{R}(\mathbf{X} + \omega \dot{\mathbf{X}}) \cdot \mathbf{X} \searrow$

BiCGStab/GMRes(m) with ILU(k) preconditioner or multigrid for the linear problems

Multigrid Solver

standard geometric multigrid approach

(F)

C B

smoother by local MPSC-Ansatz (Vanka-like smoother)

$$\begin{bmatrix} \mathbf{u}^{l+1} \\ \mathbf{v}^{l+1} \\ p^{l+1} \end{bmatrix} = \begin{bmatrix} \mathbf{u}^l \\ \mathbf{v}^l \\ p^l \end{bmatrix} - \omega \sum_{\text{Patch }\Omega_i} \begin{bmatrix} S_{\mathbf{u}\mathbf{u}|\Omega_i} & S_{\mathbf{u}\mathbf{v}|\Omega_i} & 0 \\ S_{\mathbf{v}\mathbf{u}|\Omega_i} & S_{\mathbf{v}\mathbf{v}|\Omega_i} & kB_{|\Omega_i} \\ c_{\mathbf{u}}B_{s|\Omega_i}^T & c_{\mathbf{v}}B_{f|\Omega_i}^T & 0 \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{def}^l_{\mathbf{u}} \\ \mathbf{def}^l_{\mathbf{v}} \\ def^l_p \end{bmatrix}$$

- Image: full inverse of the local problems by optimized LAPACK (39×39 systems)Image: simplified local problems (3×3 systems) or ILU(k)Image: simplified local problems (3×3 systems) or ILU(k)Image: simplified local problems (3×3 systems)Image: simplified local problems (3×3 systems)Image:
- fast, robust and efficient Q_2 multigrid solvers available

Current Status

Discretization

- monolithic, fully coupled FEM (Q_2/P_1) for viscous incompressible fluid and incompressible or compressible hyperelastic structure
- fully implicit 2nd order discretization in time (Crank-Nicholson, Fractional θ -step)

Solver

CF

(F)

- Newton-like method for the coupled system (Jacobian matrix via divided differences)
- **multigrid method** with Vanka-like smoother, preconditioned Krylov space (ILU(k)/GMRES(m)) or combination of both

Further improvements

- adaptive time step control
- dynamically space-adapted mesh aligned with the structure (\rightarrow *deformation method*)
- smoothers robust with respect to anisotropy
- global MPSC/Discrete Projection solvers
- accurate + robust + non-oscillatory stabilization for convection

Fluid-Structure Interaction Benchmark

Ś

Ś

based on the successful DFG flow around cylinder

realistic materials

incompressible Newtonian fluid, laminar flow regime

elastic solid, large deformations (compressible + incompressible)

setup with simple periodic oscillations + reasonable deformations

validation by experiments (Erlangen)

Computational Domain

domain dimensions

$$H = 0.41 \oint \left[\begin{array}{c} \overbrace{l = 0.35}^{\bullet} h = 0.02 \\ i = 0.35 \end{array} \right]$$

$$L = 2.2$$

detail of the submerged structure

$$A(t=0) = (0.6, 0.2), \quad B = (0.15, 0.2), \quad C = (0.2, 0.2)$$

Boundary and Initial Conditions

 $oldsymbol{v}^f = oldsymbol{0}$

inflow parabolic velocity profile is prescribed at the left end of the channel

$$v^{f}(0,y) = 1.5 \frac{y(H-y)}{\left(\frac{H}{2}\right)^{2}} = 1.5 \frac{4.0}{0.1681} y(0.41-y),$$

outflow condition can be chosen by the user, assuming zero reference pressure (stress free or do nothing)

- interface condition on Γ_t^0 is $\boldsymbol{v}^f = \boldsymbol{v}^s$ and $\boldsymbol{\sigma}^f \boldsymbol{n} = \boldsymbol{\sigma}^s \boldsymbol{n}$
- **otherwise** the *no-slip* condition is prescribed for the fluid on the other boundary parts. i.e. top and bottom wall and cylinder
 - **initial** condition (suggestion)

zero velocity in the fluid and no deformation of the structure + smooth increase of the inflow profile

Quantities of Interest

the position A(t) = (x(t), y(t)) of the end of the structure

pressure difference between the points A(t) and B

$$\Delta p^{AB}(t) = p^B(t) - p^{A(t)}(t)$$

forces exerted by the fluid on the *whole* body, i.e. lift and drag forces acting on the cylinder and the structure together

frequency and maximal amplitude

compare results for *one* full period and 3 different levels of spatial discretization h and 3 time step sizes Δt

Suggested Material Parameters

solid

 ϱ^s density

 ν^s Poisson ratio

 μ^s shear modulus

fluid

 ϱ^f density

 ν^f kinematic viscosity

parameter	polybutadiene & glycerine	polypropylene & glycerine
$\varrho^s \left[10^3 \frac{\text{kg}}{\text{m}^3}\right]$	0.91	1.1
ν^s	0.5	0.42
$\mu^s \; [10^6 rac{\mathrm{kg}}{\mathrm{ms}^2}]$	0.53	317
$\varrho^{f} [10^{3} \frac{\text{kg}}{\text{m}^{3}}]$	1.26	1.26
$\nu^{f} \left[10^{-3} \frac{\text{m}^{2}}{\text{s}} \right]$	1.13	1.13

Some material combinations

parameter	test 1	test 2	test 2a
$\varrho^{s} [10^{3} \frac{\text{kg}}{\text{m}^{3}}]$	1	0.8	0.8
$ u^s$	0.5	0.4	0.4
$\mu^{s} \ [10^{6} rac{\mathrm{kg}}{\mathrm{ms}^{2}}]$	0.5	100	0.5
$\varrho^{f} [10^{3} \frac{\text{kg}}{\text{m}^{3}}]$	1	1	1
$ u^{f} \left[10^{-3} \frac{\text{m}^{2}}{\text{s}} \right] $	1	1	1

Suggested parameter settings for the tests

Test 1: Incompressible

$$\varrho^s = 1 \times 10^3$$
 $\nu^s = 0.5$
 $\mu^s = 0.5 \times 10^6$
 $\varrho^f = 1 \times 10^3$
 $\nu^f = 1 \times 10^3$

Test 2: Compressible (realistic)

 $\varrho^s = 0.8 \times 10^3 \qquad \nu^s = 0.4 \qquad \mu^s = 100.0 \times 10^6 \qquad \varrho^f = 1 \times 10^3 \qquad \nu^f = 1 \times 10^3$

Test 2a: Compressible (numerical)

 $\rho^s = 0.8 \times 10^3$ $\nu^s = 0.4$ $\mu^s = 0.5 \times 10^6$ $\rho^f = 1 \times 10^3$ $\nu^f = 1 \times 10^3$

Challenges and Problems

- Coupled ('monolithic') + fully implicit FEM discretization \rightarrow YES
- Efficient coupling/decoupling strategies for solver \rightarrow YES (?)
 - Adaptive meshing/Error control of user-specific quantities \rightarrow YES (???)

\rightarrow Prototypical for (multiphase) flow problems ?

Challenges and Problems

- Coupled ('monolithic') + fully implicit FEM discretization \rightarrow YES
- Efficient coupling/decoupling strategies for solver \rightarrow YES (?)
 - Adaptive meshing/Error control of user-specific quantities \rightarrow YES (???)

→ **Prototypical for (multiphase) flow problems ?**

But: Problems with large deformations ? Remeshing of solid interfaces ?

Similar techniques (implicit reconstruction, accurate and oscillation-free transport solvers) as for multiphase flow ?