

Effiziente Diskretisierungs-und Lösungsmethoden für Lattice-Boltzmann Gleichungen

Charakteristiken-Upwind Diskretisierung auf beliebigen Dreiecksgittern und spezielle Numerierungstechniken

nite 1/23 Effiziente Diskretisierungs- und Lösungsmethoden für Lattice-Boltzmann Gleichungen

Lattice-Boltzmann vs.

Strahlungstransportgleichung

Lattice-Boltzmann Gleichung (LBE) zur Lösung der Navier-Stokes Gleichung

• Approximation der Dichte und Geschwindigkeit über $\frac{1}{2} = \int_{i}^{r} f_{i} bzw$. $\frac{1}{2} = \int_{i}^{r} f_{i}v_{i}$

• (Lineare) 2+1D-Strahlungstransportgleichung in $\neg := - \pounds [0; 2^{1/3}]$ mit Einströmrand $i_{\mu}^{i} := f x 2 @ jn_x @ n_{\mu} < 0g:$ $Z_{21/4}$

$$n_{\mu} \phi r_{x} u(x;\mu) + \cdot (x) u(x;\mu) = (x) \int_{0}^{2/4} R(\mu;\mu^{0}) u(x;\mu^{0}) d\mu^{0} + f(x) \text{ in } \gamma^{0}$$

$$u(x; \mu) = g(x; \mu)$$
 on i_{μ}^{i}

Mit Transport, Absorption, Streuung, Wiederverteilungs- und Quellfunktion

oito 2/23 Effizionto Diskrotisiorungs- und Lösungsmothodon für Lattico-Boltzmann Gloichungon

Allgemeine Diskretisierung der RTE (im Ordinatenraum)

- Diskretisiere Ordinatenraum und Integralterm (z.B. summierte Trapezregel)
- Ergibt semidiskretes gekoppeltes System an Differentialgleichungen
- Mit $u^{k}(x) \gg u(x; \mu_{k}); !_{K}^{kj} = 2\frac{1}{4} K_{c}R(\mu_{k}; \mu_{j})$

Allgemeine Diskretisierung der RTE (im Ortsraum)

- Diskretisiere im Ort, z.B. mittels Finite Elemente/Volumen/Differenzen
- Ergibt diskretes gekoppeltes Gleichungssystem
- Mit U^k_h Koeffizientenvektor der Lösung U^k_h

$$T_{h}^{k} U_{h}^{k} + M_{h}^{\cdot} U_{h}^{k} = \begin{pmatrix} X \\ j=1 \end{pmatrix} ! \begin{pmatrix} k j \\ K \end{pmatrix} M_{h}^{j} U_{h}^{j} + B_{h} ; \quad k = 1; \dots; K \\ X = \begin{pmatrix} 2 \\ T_{h}^{1} & 0 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 3 \\ T_{h}^{2} & 2 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 3 \\ K \end{pmatrix} \begin{pmatrix} 2 \\ M_{h}^{2} & 0 \end{pmatrix} \begin{pmatrix} 3 \\ M_{h}^{2} & 0 \end{pmatrix} \begin{pmatrix} 3 \\ 0 \end{pmatrix} \begin{pmatrix} 3 \\$$

oito 1/23 Effizionto Diskrotisiorungs- und Lösungsmothodon für Lattico-Boltzmann Gloichungon

Generalized Mean Intensity (GMI)

 Summiere gewichtete Intensitäten zur GMI, die nur ortsabhängige Informationen enthält

$$J(x) := \int_{m=1}^{N^{n}} c^{m}(P) I^{m}(x)$$

• Ergibt semidiskretes System

• Diskretes System mit Feinheitsgrad h

$$\begin{array}{rcl} T_{h}^{m} I_{h}^{m} & = & L_{h} J_{h} + f_{h}^{m} & m = 1; \dots; M \\ & & , \\ I_{h}^{m} & = & (T_{h}^{m})^{i \ 1} (L_{h} J_{h} + f_{h}^{m}) & m = 1; \dots; N \end{array}$$

oito 5/23 Effizionto Diskrotisiorungs- und Lösungsmothodon für Lattico-Boltzmann Gloichungon

LGS mit impliziter Systemmatrix

• Aufsummieren der Gleichungen

• Ergibt diskrete *mean intensity* Formulierung

$$\left(\frac{I_h i}{Z_h L_h} \right)_{h} = F_h$$
mpl. Systemmatrix A_h

- Resultat:
- Speicherersparnis um Anzahl Richtungen
- spezifische Lösungen in einem Postprocess-Schritt

oita 6/23 Effizianta Diskratisiarungs- und Läsungsmathadan für Lattica-Baltzmann Claichungar

ę

Transport auf unstrukturiertem Gitter

1D Vorgehen beim Transportproblem

• 2. Ordnung Upwinding Diskretisierung liefert (mit h_1 + h_2 = r $\ensuremath{\ensuremath{vh_1}}$)

$$\overset{-}{r} \&r_{x} u(v_{0}) = u^{0}(v_{0}) = \frac{i (1i r^{2})u(v_{0})i r^{2}u(v_{1}) + u(v_{2})}{h_{1}(r^{2}i r)} + O(h_{1};h_{2})^{2}$$

• Äquidistanter Fall ($h_1 = h_2$, r = 2) liefert wohlbekanntes Schema

$$u^{0}(v_{0}) \gg \frac{3u(v_{0}) + 4u(v_{1}) + u(v_{2})}{2h_{1}}$$
 bzw. $u^{0}(v_{0}) \gg \frac{u(v_{0}) + u(v_{1})}{h_{1}}$

Ziel: Untere Dreiecksmatrizen für Transportprobleme => Direkte (mit O(NEQ) Aufwand) Lösung der Transportschritte

aita 8/23 Effizianta Diskratisiarungs- und Läsungsmathadan für Lattica-Baltzmann Glaichungan

Untere Dreiecksmatrizen für Transportprobleme

 Nichttriviales Problem der Knotennummerierung: (Schwierigkeiten bei naivem Vorgehen auf einfachsten Gittern)

 Deswegen: Hilfsmittel aus Graphentheorie (Struktur der Differenzengleichungen als Graph behandelbar)

oito 9/23 Effizionto Diskrotisiorungs- und Lösungsmothodon für Lattico-Boltzmann Cloichungon

Topologischer Sortieralgorithmus

ORDER (QUEUE[*], INKNOTEN[*][*], OUTKNOTEN[*][*], NVT)

- 0. INIT:
- i.) QUEUE[*]=0, OUTDEG[*]=0, k = 1
- ii.) FOR EACH ENTRY IN OUTKNOTEN[i][*] DO OUTDEG[i]++iii.) FOR EACH i WITH OUTDEG[i]=0 DO i! QUEUE
- 1. DO WHILE k < NVT
- a.) v=QUEUE[k]
- b.) IF v=0 THEN OUTPUT 'Graph ist nicht kreisfrei', STOP!
- c.) FOR EACH j IN INKNOTEN[v][*] DO:
- d.) OUTDEG[j]- -
- e.) IF OUTDEG[j]=0 THEN j ! QUEUE
- f.) END FOR
- g.) k = k + 1

aita 10/23 Effizianta Diskratisiarungs- und Läsungsmathadan für Lattica-Baltzmann Glaichungan

 Analytische (glatte) Lösung zur Fehleranalyse für verschiedene Richtungen, zum Beispiel

$$u(x) = u(x_1; x_2) = x_1(2:5; x_1)x_2(0:41; x_2)$$

oito 11/23 Effizionto Diskrotisiorungs- und Lösungsmothodon für Lattico-Boltzmann Cloichungon

Laufzeitanalyse

 Initialisierungszeit (Erzeugen der Nummerierung) sowie Lösungszeit (Invertieren der Transportmatrizen) für 8 Winkel in Sekunden

NEQ	INIT-Time	SOLVER-Time	INIT-Time	SOLVER-Time
12992	5:00 ¢10 ⁱ ²	1:00 ¢10 ⁱ ²	8:00 ¢10 ⁱ ²	1:00 ¢10 ⁱ ²
50560	2:50 ¢10 ^{i 1}	3:00 ¢10 ⁱ ²	2:70 ¢10 ^{i 1}	4:00 ¢10 ⁱ ²
199424	1:10 ¢10 ^{+ 0}	1:30 ¢10 ^{i 1}	1:31 ¢10 ^{+ 0}	2:50 ¢10 ^{i 1}
792064	5:53 ¢10 ^{+ 0}	8:00 ¢10 ^{i 1}	6:59 ¢10 ^{+ 0}	1:24 ¢10 ^{+ 0}
3156992	31:16 ¢10 ^{+ 0}	4:83 ¢10 ^{+ 0}	36:81 ¢10 ⁺⁰	6:59 ¢10 ^{+ 0}
12605440	174:40 ¢10 ^{+ 0}	26:15 ¢10 ^{+ 0}	208:51 ¢10 ⁺⁰	37:99 ¢10 ^{+ 0}

ő

UPW=1	Level 3	Level 4	Level 5	Level 6	Level 7
$0(\cdot = 10^{i^2})$	8:40 ¢10 ^{; 2}	4:34 ¢10 ⁱ ²	2:21 ¢10 ⁱ ²	1:12 ¢10 ⁱ ²	5:62¢10 ^{i 3}
$0 (\cdot = 10^{+0})$	4:30 ¢10 ^{i 2}	2:22 ¢10 ⁱ ²	1:13 <i>¢</i> 10 ^{i 2}	5:68 ¢10 ^{i 3}	2:85 ¢10 ^{i 3}
$0 (\cdot = 10^{+2})$	9:90 ¢10 ⁱ ⁴	5:02 ¢10 ⁻⁴	2:54 ¢10 ^{i 4}	1:28 ¢10 ^{i 4}	6:40¢10 ^{i 5}
$135(\cdot = 10^{12})$	1:87 ¢10 ^{i 1}	9:36 ¢10 ^{;2}	4:68 ¢10 ⁱ ²	2:34 ¢10 ⁱ ²	1:17¢10 ^{i 2}
$135(- = 10^{+0})$	1:52 ¢10 ^{i 1}	7:63 ¢10 [;] 2	3:83 ¢10 ⁱ ²	1:92 ¢10 ⁱ ²	9:60 ¢10 ^{i 3}
$135(\cdot = 10^{+2})$	5:80 ¢10 ^{i 3}	2:93 ¢10 ⁻³	1:47 ¢10 ^{i 3}	7:39 ¢10 ^{i 4}	3:70¢10 ^{i 4}

UPW = 2	Level 3	Level 4	Level 5	Level 6	Level 7
 $0 (\cdot = 10^{j-2})$	9:00 ¢10 ⁻⁴	2:18 ¢10 ⁻⁴	5:29 ¢10 ^{i 5}	1:26¢10 ^{; 5}	2:88 ¢10 ^{i 6}
$0(\cdot = 10^{+0})$	8:16 ¢10 ^{;4}	1:98 ¢10 ^{; 4}	4:83 ¢10 ^{i 5}	1:16¢10 ^{i 5}	2:67 ¢10 ^{i 6}
$0(\cdot = 10^{+2})$	8:23 ¢10 ^{i 5}	2:17 ¢10 ^{;5}	5:69 ¢10 ^{i 6}	1:48¢10 ⁱ⁶	3:78¢10 ^{i 7}
$135(\cdot = 10^{12})$	9:96 ¢10 ^{; 3}	2:33 ¢10 ⁻³	5:59 ¢10 ^{i 4}	1:36 ¢10 ^{i 4}	3:37 ¢10 ^{i 5}
$135(- = 10^{+0})$	8:25 ¢10 ^{;3}	1:90 ¢10 [;] 3	4:48 ¢10 ^{i 4}	1:08¢10 ^{i 4}	2:65 ¢10 ^{i 5}
$135(- = 10^{+2})$	1:03 ¢10 ^{i 3}	3:04 ¢10 ⁱ ⁴	8:30 ¢10 ^{i 5}	2:09¢10 ^{i 5}	4:93¢10 ^{i 6}

• L2-Fehler für Upwind 1. und 2. Ordnung

Typisches Verhalten bei Irregularität

Test: Gebe charakteristische Lösung auf Randkomponente vor
 => Unstetigkeit führt zu Oszillationen (2.Ordnung), Verschmieren (1. Ordnung)

-9.0943

-0.0008

Adaptiver Ansatz

- Gewichtete Kombination der Diskretisierungen 1. und 2. Ordnung entsprechend "Steilheit" der approximierten Lösung
 Adaptives Upwind
- $ADPUPW = a^*UPW1 + (1-a)^*UPW2$

aita 15/23 Effizianta Diskratisiarungs- und Läsungsmathadan für Lattica-Baltzmann Glaichungan

Verhalten bei steilen Gradienten

• "Modellproblem": steiler Anstieg auf kleinem ϵ Abschnitt

• Damit Gradient ca. $1/\epsilon$

oito 16/23 Effizionto Diskrotisiorungs- und Lösungsmothodon für Lattico-Boltzmann Cloichungon

Verlust von Genauigkeit und Asymptotik

"	Leve	UPW1	UPW2
	1. Lev	8; 64 ¢10 ⁱ ²	2; 06 ¢10 ⁱ ²
" = 0:05	2. Lev	4; 80 ¢10 ^{i 2}	5; 73 ¢10 ^{i 3}
	3. Lev	2; 58 ¢10 ⁱ 2	1; 49 ¢10 ^{i 3}
	1. Lev	1; 78 ¢10 ⁱ 1	2; 20 ¢10 ⁱ 1
" = 0:01	2. Lev	1; 11 ¢10 ^{i 1}	6; 68 ¢10 ⁱ ²
	3. Lev	6; 82 ¢10 ⁱ ²	1; 87 ¢10 ⁱ ²
	1. Lev	2;64 ¢10 ^{i 1}	9; 36 ¢10 ⁱ 1
" = 0:005	2. Lev	1; 37 ¢10 ^{i 1}	2; 47 ¢10 ⁱ 1
	3. Lev	8; 44 ¢10 ^{i 2}	5; 47 ¢10 ⁱ ²
	1. Lev	9; 70 ¢10 ^{i 1}	2; 51 ¢10 ⁰
" = 0:001	2. Lev	6; 50 ¢10 ^{i 1}	1; 79 ¢10 ⁰
	3. Lev	2; 14 ¢10 ^{i 1}	1; 18 ¢10 ⁰

• Deswegen: Adaptive Gitter!

Adaptive Gitter

oito 19/23 Effizionto Diskrotisiorungs- und Lösungsmothodon für Lattico-Boltzmann Cloichungon

Gitterdeformation

oito 10/22 Effizionto Diskrotisiorungs- und Lösungsmothodon für Lattico-Boltzmann Gloichungon

Gewinn von Genauigkeit und Asymptotik

"	Level	UPW1	UPW2	UPW1	UPW2	UPW1	UPW2
	1. Lev	8; 64 ¢10 ⁱ ²	2; 06 ¢10 ⁱ ²	8; 77 ¢10 ⁱ ²	1; 12 ¢10 ⁱ ²	1; 20 ¢10 ⁱ 1	1; 92 ¢10 ⁱ ²
" = 0:05	2. Lev	4; 80 ¢10 ⁱ 2	5; 73 ¢10 ⁱ 3	4; 65 ¢10 ^{; 2}	3; 37 ¢10 ^{; 3}	6; 21 ¢10 ^{; 2}	4; 05 ¢10 ^{i 3}
	3. Lev	2; 58 ¢10 ⁱ 2	1; 49 ¢10 ^{i 3}	2; 43 ¢10 ^{i 2}	9; 70 ¢10 ^{i 4}	3; 15 ¢10 ^{i 2}	1;06 ¢10 ^{i 3}
	1. Lev	1; 78 ¢10 ⁱ 1	2; 20 ¢10 ⁱ 1	3; 52 ¢10 ⁱ ²	3; 44 ¢10 ⁱ ²	8; 74 ¢10 ⁱ ²	2; 23 ¢10 ⁱ ²
" = 0:01	2. Lev	1; 11 ¢10 ^{; 1}	6; 68 ¢10 ^{; 2}	1; 86 ¢10 ^{; 2}	2; 45 ¢10 ^{; 3}	4; 46 ¢10 ^{; 2}	2; 45 ¢10 ^{i 3}
	3. Lev	6; 82 ¢10 ⁱ ²	1; 87 ¢10 ^{i 2}	9; 81 ¢10 ^{i 3}	4; 87 ¢10 ^{i 4}	2; 28 ¢10 ^{i 2}	6; 37 ¢10 ^{i 4}
	1. Lev	2; 64 ¢10 ⁱ 1	9; 36 ¢10 ⁱ 1	4; 33 ¢10 ⁱ ²	7; 64 ¢10 ⁱ ²	2; 14 ¢10 ⁱ ²	1; 99 ¢10 ⁱ ²
" = 0:005	2. Lev	1; 37 ¢10 ⁱ 1	2; 47 ¢10 ^{; 1}	2; 32 ¢10 [;] 2	5; 53 ¢10 ⁱ 3	1; 17 ¢10 ^{; 2}	2; 54 ¢10 ^{i 3}
	3. Lev	8; 44 ¢10 ^{i 2}	5; 47 ¢10 ^{i 2}	1; 24 ¢10 ^{i 2}	1; 21 ¢10 ^{i 3}	6; 48 ¢10 ^{i 3}	6; 58 ¢10 ^{i 4}
	1. Lev	9; 70 ¢10 ^{i 1}	2; 51 ¢10 ⁰	8; 34 ¢10 ⁱ ²	4; 26 ¢10 ⁱ 1	6; 51 ¢10 ⁱ ²	3; 80 ¢10 ⁱ 1
" = 0:001	2. Lev	6; 50 ¢10 ⁱ 1	1; 79¢10 ⁰	4; 38 ¢10 ^{; 2}	1; 11 ¢10 ^{; 1}	2; 06 ¢10 ^{; 2}	3; 90 ¢10 [;] 2
	3. Lev	2; 14 ¢10 ^{i 1}	1; 18¢10 ⁰	2; 45 ¢10 ⁱ ²	1; 50 ¢10 ⁱ ²	8; 40 ¢10 ^{i 3}	9; 79 ¢10 ^{i 3}

 Grosser Genauigkeitsgewinn bei moderat (mitte) und fein adaptiertem Gitter (rechts (bei vergleichbarem Rechenaufwand bzw. NEQ)

oita 20/23 Effizianta Diskratisiarungs- und Läsungsmathadan für Lattica-Baltzmann Glaichungan

Lösung des nichtlinear gekoppelten Systems

- Iterative Lösungsmethoden erforderlich
- (z.B. Richardson-Schema oder BiCG-Stab Verfahren)
- . Konvergenzrate abhängig von Verhältnis Absorption/Transport: 10^n » · = n_{μ} ¢r $_{x}$ u
- Daher: Vorkonditionierung!

Iterationszahlen und Laufzeit

	$10^{n} = 10^{0}$		$10^{n} = 10^{1}$		$10^{n} = 10^{2}$		$10^{n} = 10^{3}$		$10^{n} = 10^{4}$		$10^{n} = 10^{5}$	
IEQ	UPW1	UPW2	UPW1	UP\								
1:056	6	6	17	18	58	66	79	81	66	77	25	6
3:640	6	6	18	19	60	70	91	84	70	91	47	4
9:416	6	6	19	20	66	70	89	89	76	87	55	74
1:056	6	6	12	16	33	51	44	86	32	66	16	27
3:640	6	6	15	17	43	64	57	96	46	79	22	36
9:416	6	6	17	18	47	73	66	99	62	101	32	49

- Oben: Iterationszahlen f
 ür Testrechnung (auf fein adaptiertem Gitter, ohne und mit Vorkonditionierung)
- Rechts: Ausgewählte Laufzeit pro Iterationsschritt (Lineare Entwicklung in Problemgröße bzw. NEQ)

	$10^{n} = 10^{2}$	
NEQ	UPW1	UPW2
34:056	2; 2 ¢10 ^{i 2}	2;9 ¢10 ^{i 2}
133:640	1;2¢10 ^{i 1}	1;5 ¢10 ^{i 1}
529:416	5;6¢10 ^{i 1}	7;3¢10 ^{;1}
34:056	3; 0 ¢10 ^{i 2}	3;8 ¢10 ^{i 2}
133:640	1;6¢10 ^{i 1}	1;5 ¢10 ^{i 1}
529:416	7; 0¢10 ^{i 1}	6;3¢10 ^{i 1}

LS3

oita 22/23 Effizianta Diskratisiarungs- und Läsungsmathadan für Lattica-Baltzmann Glaichungan

Zusammenfassung

- Anwendung der Methoden aus Strahlungstransport auf LBE Statt z.B. 128 Winkel "nur" 9 Richtungen (in 2D) Wichtig: Direkte TransportLöser von hoher Ordnung
- Adaptive Gitter: Lokal unstrukturiert + Gitterdeformation
- Nichtlineare Kopplung der Richtungen → Newton + BiCG-Stab Frage: Mehrgitter notwendig?
- (Semi-)Implizite Zeitschrittverfahren → direkt stationärer Löser?
- Nummerierung stets möglich?
- Unstetigkeiten \rightarrow Oszillationen bei 2. Ordnung Diskretisierung \rightarrow Limiter
- Welche Regularität bei LBE?

oita 23/23 Effizianta Diskratisiarungs- und Läsungsmathadan für Lattica-Baltzmann Claichungan

Gitterdeformation

oita 10/23 Effizianta Diskratisiarungs- und Läsungsmathadan für Lattica-Baltzmann Claichungan

