

# Effiziente Diskretisierungs-und Lösungsmethoden für Lattice-Boltzmann Gleichungen

Charakteristiken-Upwind Diskretisierung auf beliebigen Dreiecksgittern und spezielle Numerierungstechniken



#### Lattice-Boltzmann vs.

## Strahlungstransportgleichung

 $\frac{@t_i}{@t} + v_i \not \text{ or } f_i = i \frac{1}{2} (f_i i f_i^{eq}) ; \quad f_i^{eq} = w_i \frac{1}{2} [1 + \frac{3}{2} (v_i \not \text{ ou}) + \frac{9}{2} (v_i \not \text{ ou})^2 i \frac{3}{2} j u j^2]$ 

• Approximation der Dichte und Geschwindigkeit über  $\frac{1}{2} = \frac{P}{i} f_i bzw. \frac{P}{2} = \frac{P}{i} f_i v_i$ 

• (Lineare) 2+1D-Strahlungstransportgleichung in ~ := - £ [0; 21/2) mit Einströmrand  $Z_{21/4}$   $n_{\mu} \phi r_{x} u(x; \mu) + \cdot (x) u(x; \mu) = \cdot (x) R(\mu; \mu^{0}) u(x; \mu^{0}) d\mu^{0} + f(x) in - \infty$ 

$$u(x; \mu) = g(x; \mu) \quad \text{on } i$$

Mit Transport, Absorption, Streuung, Wiederverteilungs- und Quellfunktion



## Allgemeine Diskretisierung der RTE (im Ordinatenraum)

- Diskretisiere Ordinatenraum und Integralterm (z.B. summierte Trapezregel)
- Ergibt semidiskretes gekoppeltes System an Differentialgleichungen
- Mit  $u^{k}(x)$  »  $u(x; \mu_{k}); !_{k}^{kj} = 2 / = K_{c} R(\mu_{k}; \mu_{i})$

$$n_{\mu^k} \ \phi r_x u^k(x) + \cdot (x) u^k(x) = \cdot (x) \sum_{j=1}^{K} !_K^{kj} u^j(x) + f(x) ; k = 1; : : ; K$$



## Allgemeine Diskretisierung der RTE (im Ortsraum)

- Diskretisiere im Ort, z.B. mittels Finite Elemente/Volumen/Differenzen
- Ergibt diskretes gekoppeltes Gleichungssystem
- Mit U<sub>h</sub><sup>k</sup> Koeffizientenvektor der Lösung u<sub>h</sub><sup>k</sup>

$$\begin{split} T_h^k U_h^k + M_h^i U_h^k &= \underbrace{ \begin{array}{c} X^K \\ ! \ K^j M_h^i U_h^j + B_h \end{array} }_{j=1} ; \quad k=1;\ldots;K \\ &= \underbrace{ \begin{array}{c} 2 \\ T_h^1 \\ 0 \end{array} }_{j=1} \underbrace{ \begin{array}{c} 3 \\ 0 \\ 0 \end{array} }_{j=1} \underbrace{ \begin{array}{c} 2 \\ M_h^i \\ 0 \end{array} }_{j=1} \underbrace{ \begin{array}{c} 3 \\ 0 \\ 0 \end{array} }_{j=1} \underbrace{ \begin{array}{c} 3 \\ M_h^i \end{array} }_{j=1} \underbrace{ \begin{array}{c} 3 \\ 0 \\ 0 \end{array} }_{j=1} \underbrace{ \begin{array}{c} 3 \\ M_h^i \end{array} }_{j=1} \underbrace{ \begin{array}{c} 3 \\ 0 \\ 0 \end{array} }_{j=1} \underbrace{ \begin{array}{c} 3 \\ M_h^i \end{array} }_{j=1} \underbrace{ \begin{array}{c} 3 \\ 0 \\ 0 \end{array} }_{j=1} \underbrace{ \begin{array}{c} 3 \\ M_h^i \end{array} }_{j=1} \underbrace{ \begin{array}{c$$





#### Generalized Mean Intensity (GMI)

 Summiere gewichtete Intensitäten zur GMI, die nur ortsabhängige Informationen enthält

$$J(x) := c^{m}(P)I^{m}(x)$$

Ergibt semidiskretes System

$$n_{u^m} \phi r_x I^m(x) + \cdot (x) I^m(x) = (x) J(x) + f^m(x) ; m = 1; :::; M$$

Diskretes System mit Feinheitsgrad h





#### LGS mit impliziter Systemmatrix

• Aufsummieren der Gleichungen

$$c^{m}(P)I_{h}^{m} = c^{m}(T_{h}^{m})^{i} L_{h}J_{h} + c^{m}(T_{h}^{m})^{i} I_{h}^{m}$$

$$\sum_{j=1}^{m-1} \{z_{j}\} \qquad \sum_{j=1}^{m-1} \{z_{j}\} \qquad \sum_{j=1}^{m-1} \{z_{j}\} = i \cdot F_{h}^{m}$$

• Ergibt diskrete mean intensity Formulierung

oita 6/22 Effizianta Dickraticiarunga und Lägungsmathadan für Lattiaa Paltzmann Glaichungan

#### Resultat:

- Speicherersparnis um Anzahl Richtungen
- spezifische Lösungen in einem Postprocess-Schritt



#### Transport auf unstrukturiertem Gitter







#### 1D Vorgehen beim Transportproblem

$$-\diamondsuit_{\begin{subarray}{c} h_2\\ \begin{subarray}{c} h_2\\ \begin{subarray}{c} h_2\\ \begin{subarray}{c} h_2\\ \begin{subarray}{c} h_1\\ \begin{subarray}{c} ----\\ \begin{subarray}{c} h_2\\ \begin{subarra$$

• 2.Ordnung Upwinding Diskretisierung liefert (mit  $h_1 + h_2 = r \phi h_1$ )

$$- \phi r_{x} u(v_{0}) = u^{0}(v_{0}) = \frac{i (1 i r^{2})u(v_{0}) i r^{2}u(v_{1}) + u(v_{2})}{h_{1}(r^{2} i r)} + O(h_{1}; h_{2})^{2}$$

• Äquidistanter Fall ( $h_1 = h_2$ , r = 2) liefert wohlbekanntes Schema

$$u^{0}(v_{0}) \approx \frac{3u(v_{0}) + 4u(v_{1}) + u(v_{2})}{2h_{1}}$$
 bzw.  $u^{0}(v_{0}) \approx \frac{u(v_{0}) + u(v_{1})}{h_{1}}$ 

Ziel: Untere Dreiecksmatrizen für Transportprobleme => Direkte (mit O(NEQ) Aufwand) Lösung der Transportschritte



## Untere Dreiecksmatrizen für Transportprobleme

Nichttriviales Problem der Knotennummerierung:
 (Schwierigkeiten bei naivem Vorgehen auf einfachsten Gittern)



Deswegen: Hilfsmittel aus Graphentheorie
 (Struktur der Differenzengleichungen als Graph behandelbar)





### Topologischer Sortieralgorithmus

```
ORDER (QUEUE[*], INKNOTEN[*][*], OUTKNOTEN[*][*], NVT)
0. INIT:
i.) QUEUE[*] = 0, OUTDEG[*] = 0, k = 1
ii.) FOR EACH ENTRY IN OUTKNOTEN[i][*] DO OUTDEG[i]++
iii.) FOR EACH I WITH OUTDEG[i]= 0 DO I! QUEUE
1. DO WHILE k < NVT
a.) v=QUEUE[k]
b.) IF v=0 THEN OUTPUT 'Graph ist nicht kreisfrei', STOP!
c.) FOR EACH | IN INKNOTEN[v][*] DO:
```

e.) IF OUTDEG[j]=0THEN j! QUEUE f.) END FOR

d.) OUTDEG[j]--

g.) k = k + 1





#### Tests mit Benchmarkkonfiguration



 Analytische (glatte) Lösung zur Fehleranalyse für verschiedene Richtungen, zum Beispiel

$$u(x) = u(x_1; x_2) = x_1(2:5; x_1)x_2(0:41; x_2)$$

11/22 Effizionto Dickroticiorungo und Löcungsmothodon für Lattica Paltzmann Claichungan





#### Laufzeitanalyse

 Initialisierungszeit (Erzeugen der Nummerierung) sowie Lösungszeit (Invertieren der Transportmatrizen) für 8 Winkel in Sekunden

|          | <del></del>                        |                          |                          |                                    |
|----------|------------------------------------|--------------------------|--------------------------|------------------------------------|
| NEQ      | INIT-Time                          | SOLVER-Time              | INIT-Time                | SOLVER-Time                        |
| 12992    | 5:00 ¢10 <sup>i</sup> <sup>2</sup> | 1:00 ¢10 <sup>i 2</sup>  | 8:00 ¢10 <sup>i 2</sup>  | 1:00 ¢10 <sup>i</sup> <sup>2</sup> |
| 50560    | 2:50 ¢10 <sup>i</sup> 1            | 3:00 ¢10 <sup>i 2</sup>  | 2:70 ¢10 <sup>i</sup> 1  | 4:00 ¢10i <sup>2</sup>             |
| 199424   | 1:10 ¢10 <sup>+ 0</sup>            | 1:30 ¢10 <sup>i 1</sup>  | 1:31 ¢10 <sup>+ 0</sup>  | 2:50 ¢10 <sup>i</sup> 1            |
| 792064   | 5:53 ¢10 <sup>+ 0</sup>            | 8:00 ¢10 <sup>i 1</sup>  | 6:59 ¢10 <sup>+ 0</sup>  | 1:24 ¢10 <sup>+ 0</sup>            |
| 3156992  | 31:16 ¢10 <sup>+ 0</sup>           | 4:83 ¢10 <sup>+ 0</sup>  | 36:81 ¢10 <sup>+0</sup>  | 6:59 ¢10 <sup>+ 0</sup>            |
| 12605440 | 174:40 ¢10 <sup>+ 0</sup>          | 26:15 ¢10 <sup>+ 0</sup> | 208:51 ¢10 <sup>+0</sup> | 37:99 ¢10 <sup>+ 0</sup>           |





#### Fehleranalyse

| UPW=1                        | Level 3                            | Level 4                            | Level 5                            | Level 6                 | Level 7                 |
|------------------------------|------------------------------------|------------------------------------|------------------------------------|-------------------------|-------------------------|
| $0 (\cdot = 10^{i \cdot 2})$ | 8:40 ¢10 <sup>i</sup> <sup>2</sup> | 4:34 ¢10 <sup>i 2</sup>            | 2:21 ¢10 <sup>i</sup> <sup>2</sup> | 1:12 ¢10 <sup>i 2</sup> | 5:62 ¢10 <sup>i 3</sup> |
| $0 (\cdot = 10^{+0})$        | 4:30 ¢10 <sup>i 2</sup>            | 2:22 ¢10 <sup>i 2</sup>            | 1:13 ¢10 <sup>i 2</sup>            | 5:68 ¢10 <sup>i 3</sup> | 2:85¢10 <sup>i 3</sup>  |
| $0 (\cdot = 10^{+2})$        | 9:90 ¢10 <sup>i</sup> <sup>4</sup> | 5:02 ¢10 <sup>i</sup> <sup>4</sup> | 2:54 ¢10 <sup>i</sup> <sup>4</sup> | 1:28 ¢10 <sup>i 4</sup> | 6:40¢10 <sup>i 5</sup>  |
| $135 (\cdot = 10^{i-2})$     | 1:87 ¢10 <sup>i 1</sup>            | 9:36 ¢10 <sup>i 2</sup>            | 4:68 ¢10 <sup>i 2</sup>            | 2:34 ¢10 <sup>i 2</sup> | 1:17¢10 <sup>i 2</sup>  |
| $135 (\cdot = 10^{+0})$      | 1:52 ¢10 <sup>i 1</sup>            | 7:63 ¢10 <sup>-2</sup>             | 3:83 ¢10i <sup>2</sup>             | 1:92 ¢10 <sup>i 2</sup> | 9:60 ¢10 <sup>i 3</sup> |
| $135 (\cdot = 10^{+2})$      | 5:80 ¢10 <sup>i 3</sup>            | 2:93 ¢10 <sup>i 3</sup>            | 1:47 ¢10 <sup>i 3</sup>            | 7:39 ¢10 <sup>i 4</sup> | 3:70 ¢10 <sup>i 4</sup> |

| UPW=2                    | Level 3                 | Level 4                            | Level 5                            | Level 6                           | Level 7                 |
|--------------------------|-------------------------|------------------------------------|------------------------------------|-----------------------------------|-------------------------|
| $0 (\cdot = 10^{j-2})$   | 9:00 ¢10 <sup>i 4</sup> | 2:18 ¢10 <sup>; 4</sup>            | 5:29 ¢10 <sup>i 5</sup>            | 1:26 ¢10 <sup>i 5</sup>           | 2:88 ¢10 <sup>i 6</sup> |
| ,                        | ·                       | ·                                  | •                                  | •                                 |                         |
| $0 (\cdot = 10^{+0})$    | 8:16 ¢10 <sup>; 4</sup> | 1:98 ¢10 <sup>; 4</sup>            | 4:83 ¢10 <sup>i 5</sup>            | 1:16¢10 <sup>i 5</sup>            | 2:67 ¢10 <sup>i 6</sup> |
| $0 (\cdot = 10^{+2})$    | 8:23 ¢10 <sup>i 5</sup> | 2:17 ¢10 <sup>i 5</sup>            | 5:69 ¢10 <sup>i 6</sup>            | 1:48¢10 <sup>i 6</sup>            | 3:78 ¢10 <sup>i 7</sup> |
| $135 (\cdot = 10^{j-2})$ | 9:96 ¢10 <sup>i 3</sup> | 2:33 ¢10 <sup>-3</sup>             | 5:59 ¢10 <sup>i</sup> <sup>4</sup> | 1:36¢10 <sup>i</sup> <sup>4</sup> | 3:37 ¢10 <sup>i 5</sup> |
| $135 (\cdot = 10^{+0})$  | 8:25 ¢10 <sup>i 3</sup> | 1:90 ¢10 <sup>i 3</sup>            | 4:48 ¢10 <sup>i 4</sup>            | 1:08 ¢10 <sup>i 4</sup>           | 2:65 ¢10 <sup>i 5</sup> |
| $135 (\cdot = 10^{+2})$  | 1:03 ¢10 <sup>i 3</sup> | 3:04 ¢10 <sup>i</sup> <sup>4</sup> | 8:30 ¢10 <sup>i 5</sup>            | 2:09 ¢10 <sup>i 5</sup>           | 4:93 ¢10 <sup>i 6</sup> |

• L2-Fehler für Upwind 1. und 2. Ordnung





#### Typisches Verhalten bei Irregularität

- Test: Gebe charakteristische Lösung auf Randkomponente vor
  - => Unstetigkeit führt zu Oszillationen (2.Ordnung), Verschmieren (1. Ordnung)











#### Adaptiver Ansatz

 Gewichtete Kombination der Diskretisierungen 1. und 2. Ordnung entsprechend "Steilheit" der approximierten Lösung =>Adaptives Upwind

#### ADPUPW = a\*UPW1 + (1-a)\*UPW2











#### Verhalten bei steilen Gradienten

• "Modellproblem": steiler Anstieg auf kleinem ε Abschnitt





• Damit Gradient ca. 1/ε









#### Verlust von Genauigkeit und Asymptotik

| "         | Level  | UPW1                                | UPW2                                |
|-----------|--------|-------------------------------------|-------------------------------------|
|           | 1. Lev | 8; 64 ¢10 <sup>i</sup> <sup>2</sup> | 2; 06 ¢10 <sup>i</sup> <sup>2</sup> |
| " = 0:05  | 2. Lev | 4; 80 ¢10i <sup>2</sup>             | 5; 73 ¢10 <sup>i 3</sup>            |
|           | 3. Lev | 2; 58 ¢10 <sup>i 2</sup>            | 1; 49 ¢10 <sup>i 3</sup>            |
|           | 1. Lev | 1; 78 ¢10i 1                        | 2; 20 ¢10i <sup>1</sup>             |
| " = 0:01  | 2. Lev | 1; 11 ¢10 <sup>i 1</sup>            | 6; 68 ¢10 <sup>i 2</sup>            |
|           | 3. Lev | 6; 82 ¢10 <sup>i 2</sup>            | 1; 87 ¢10 <sup>i 2</sup>            |
|           | 1. Lev | 2; 64 ¢10 <sup>i</sup> 1            | 9; 36 ¢10 <sup>i</sup> 1            |
| " = 0:005 | 2. Lev | 1; 37 ¢10 <sup>i</sup>              | 2; 47 ¢10 <sup>i</sup> 1            |
|           | 3. Lev | 8; 44 ¢10 <sup>i 2</sup>            | 5; 47 ¢10 <sup>i 2</sup>            |
|           | 1. Lev | 9; 70 ¢10i 1                        | 2; 51 ¢10 <sup>0</sup>              |
| " = 0:001 | 2. Lev | 6; 50 ¢10 <sup>i</sup> 1            | 1; 79 ¢10 <sup>0</sup>              |
|           | 3. Lev | 2; 14 ¢10 <sup>i</sup> 1            | 1; 18 ¢10 <sup>0</sup>              |

Deswegen: Adaptive Gitter!





## Adaptive Gitter









#### Gitterdeformation









### Gewinn von Genauigkeit und Asymptotik

| "         | Level  | UPW1                                | UPW2                                | UPW1                                | UPW2                                | UPW1                                | UPW2                                |
|-----------|--------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|
|           | 1. Lev | 8; 64 ¢10 <sup>i 2</sup>            | 2; 06 ¢10 <sup>i</sup> <sup>2</sup> | 8; 77 ¢10 <sup>i</sup> <sup>2</sup> | 1; 12 ¢10 <sup>i</sup> <sup>2</sup> | 1; 20 ¢10 <sup>i</sup> 1            | 1; 92 ¢10 <sup>i</sup> <sup>2</sup> |
| " = 0:05  | 2. Lev | 4; 80 ¢10i <sup>2</sup>             | 5; 73 ¢10i <sup>3</sup>             | 4; 65 ¢10i <sup>2</sup>             | 3; 37 ¢10i <sup>3</sup>             | 6; 21 ¢10i <sup>2</sup>             | 4; 05 ¢10 <sup>i</sup> <sup>3</sup> |
|           | 3. Lev | 2; 58 ¢10 <sup>i</sup> <sup>2</sup> | 1; 49 ¢10 <sup>i 3</sup>            | 2; 43 ¢10 <sup>i</sup> <sup>2</sup> | 9; 70 ¢10 <sup>i</sup> <sup>4</sup> | 3; 15 ¢10 <sup>i</sup> <sup>2</sup> | 1; 06 ¢10 <sup>i</sup> <sup>3</sup> |
|           | 1. Lev | 1; 78 ¢10 <sup>i</sup>              | 2; 20 ¢10 <sup>i</sup> 1            | 3; 52 ¢10 <sup>i</sup> <sup>2</sup> | 3; 44 ¢10 <sup>i</sup> <sup>2</sup> | 8; 74 ¢10 <sup>i 2</sup>            | 2; 23 ¢10 <sup>i</sup> <sup>2</sup> |
| " = 0:01  | 2. Lev | 1; 11 ¢10 <sup>i 1</sup>            | 6; 68 ¢10i <sup>2</sup>             | 1; 86 ¢10i <sup>2</sup>             | 2; 45 ¢10i <sup>3</sup>             | 4; 46 ¢10i <sup>2</sup>             | 2; 45 ¢10 <sup>i</sup> <sup>3</sup> |
|           | 3. Lev | 6; 82 ¢10 <sup>i</sup> <sup>2</sup> | 1; 87 ¢10 <sup>i</sup> <sup>2</sup> | 9; 81 ¢10 <sup>i 3</sup>            | 4; 87 ¢10 <sup>i</sup> <sup>4</sup> | 2; 28 ¢10 <sup>i</sup> <sup>2</sup> | 6; 37 ¢10 <sup>i</sup> <sup>4</sup> |
|           | 1. Lev | 2; 64 ¢10 <sup>i</sup> 1            | 9; 36 ¢10 <sup>i</sup> 1            | 4; 33 ¢10 <sup>i</sup> <sup>2</sup> | 7; 64 ¢10 <sup>i 2</sup>            | 2; 14 ¢10 <sup>i</sup> <sup>2</sup> | 1; 99 ¢10 <sup>i</sup> <sup>2</sup> |
| " = 0:005 | 2. Lev | 1; 37 ¢10i <sup>1</sup>             | 2; 47 ¢10i <sup>1</sup>             | 2; 32 ¢10i <sup>2</sup>             | 5; 53 ¢10i <sup>3</sup>             | 1; 17 ¢10i <sup>2</sup>             | 2; 54 ¢10 <sup>i</sup> <sup>3</sup> |
|           | 3. Lev | 8; 44 ¢10 <sup>i 2</sup>            | 5; 47 ¢10 <sup>i</sup> <sup>2</sup> | 1; 24 ¢10 <sup>i</sup> <sup>2</sup> | 1; 21 ¢10 <sup>i 3</sup>            | 6; 48 ¢10 <sup>i 3</sup>            | 6; 58 ¢10 <sup>i</sup> <sup>4</sup> |
|           | 1. Lev | 9; 70 ¢10 <sup>i</sup>              | 2; 51 ¢10 <sup>0</sup>              | 8; 34 ¢10 <sup>i</sup> <sup>2</sup> | 4; 26 ¢10 <sup>i</sup>              | 6; 51 ¢10 <sup>i 2</sup>            | 3; 80 ¢10 <sup>i</sup> 1            |
| " = 0:001 | 2. Lev | 6; 50 ¢10i <sup>1</sup>             | 1; 79 ¢10 <sup>0</sup>              | 4; 38 ¢10i <sup>2</sup>             | 1; 11 ¢10i <sup>1</sup>             | 2; 06 ¢10i <sup>2</sup>             | 3; 90 ¢10i <sup>2</sup>             |
|           | 3. Lev | 2; 14 ¢10 <sup>i</sup> 1            | 1; 18 ¢10 <sup>0</sup>              | 2; 45 ¢10 <sup>i</sup> <sup>2</sup> | 1; 50 ¢10 <sup>i</sup> <sup>2</sup> | 8; 40 ¢10 <sup>i 3</sup>            | 9; 79 ¢10 <sup>i</sup> <sup>3</sup> |

Grosser Genauigkeitsgewinn bei moderat (mitte) und fein adaptiertem Gitter (rechts (bei vergleichbarem Rechenaufwand bzw. NEQ)



#### Lösung des nichtlinear gekoppelten **Systems**

Konvergenzrate abhängig von Verhältnis Absorption/Transport: 10<sup>n</sup> » - =n<sub>u</sub> ¢r <sub>x</sub> t

Iterative Lösungsmethoden erforderlich

(z.B. Richardson-Schema oder BiCG-Stab Verfahren)

Daher: Vorkonditionierung!







#### Iterationszahlen und Laufzeit

|       | $10^{\circ} = 10^{\circ}$ | ,    | $10^{\rm n} = 10^{\rm 1}$ | ,    | $10^{\circ} = 10^{\circ}$ |      | $10^{\rm n} = 10^{\rm 3}$ | ,    | $10^{\circ} = 10^{4}$ |      | $10^{\rm n} = 10^{\rm 5}$ |     |
|-------|---------------------------|------|---------------------------|------|---------------------------|------|---------------------------|------|-----------------------|------|---------------------------|-----|
| NEQ   | UPW1                      | UPW2 | UPW1                      | UPW2 | UPW1                      | UPW2 | UPW1                      | UPW2 | UPW1                  | UPW2 | UPW1                      | UP∖ |
| 4:056 | 6                         | 6    | 17                        | 18   | 58                        | 66   | 79                        | 81   | 66                    | 77   | 25                        | 61  |
| 3:640 | 6                         | 6    | 18                        | 19   | 60                        | 70   | 91                        | 84   | 70                    | 91   | 47                        | 4   |
| 9:416 | 6                         | 6    | 19                        | 20   | 66                        | 70   | 89                        | 89   | 76                    | 87   | 55                        | 7   |
| 4:056 | 6                         | 6    | 12                        | 16   | 33                        | 51   | 44                        | 86   | 32                    | 66   | 16                        | 27  |
| 3:640 | 6                         | 6    | 15                        | 17   | 43                        | 64   | 57                        | 96   | 46                    | 79   | 22                        | 36  |
| 9:416 | 6                         | 6    | 17                        | 18   | 47                        | 73   | 66                        | 99   | 62                    | 101  | 32                        | 49  |
|       |                           |      |                           |      |                           |      |                           |      |                       |      |                           |     |

- Oben: Iterationszahlen für Testrechnung (auf fein adaptiertem Gitter, ohne und mit Vorkonditionierung)
- Rechts: Ausgewählte Laufzeit pro Iterationsschritt (Lineare Entwicklung in Problemgröße bzw. NEQ)

|         | $10^{\rm n} = 10^2$     |                         |
|---------|-------------------------|-------------------------|
| NEQ     | UPW1                    | UPW2                    |
| 34:056  | 2; 2 ¢10 <sup>i 2</sup> | 2; 9 ¢10 <sup>i</sup> 2 |
| 133:640 | 1; 2 ¢10 <sup>i</sup>   | 1;5 ¢10 <sup>i</sup> ´  |
| 529:416 | 5; 6 ¢10 <sup>i</sup>   | 7;3 ¢10 <sup>i</sup> ´  |
| 34:056  | 3; 0 ¢10 <sup>i 2</sup> | 3; 8 ¢10 <sup>i</sup>   |
| 133:640 | 1; 6 ¢10 <sup>i</sup>   | 1;5 ¢10 <sup>i</sup> ´  |
| 529:416 | 7: 0 ¢10 <sup>i</sup> 1 | 6:3¢10i                 |





#### Zusammenfassung

- Anwendung der Methoden aus Strahlungstransport auf LBE Statt z.B. 128 Winkel "nur" 9 Richtungen (in 2D) Wichtig: Direkte TransportLöser von hoher Ordnung
- Adaptive Gitter: Lokal unstrukturiert + Gitterdeformation
- Nichtlineare Kopplung der Richtungen → Newton + BiCG-Stab Frage: Mehrgitter notwendig?
- (Semi-)Implizite Zeitschrittverfahren → direkt stationärer Löser?
- Nummerierung stets möglich?
- Unstetigkeiten → Oszillationen bei 2. Ordnung Diskretisierung → Limiter

oita 22/22 Effizianta Dickraticiarunga und Lägungsmathadan für Lattiaa Paltzmann Glaiahungan

• Welche Regularität bei LBE?









#### Gitterdeformation











