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Classification of PDE software:

For education: MATLAB, MAPLE, MATHEMATICA, etc.

= ‘play—around’ with Mathematics, ‘easy’ user interface
= simple, but robust algorithms, easy applicable
= ‘Independent of implementation/language’

For research: DIFFPACK, UG, DEAL, FEMLAB, FEAT, etc.

= open for numerical and algorithmic changes
= flexible, but robust data structuresgusablecomponents
= ‘iIndependent of user interface’

For "real life” applications: 7?77

= ‘optimal play—together of numeri@nd implementation’
= PC/Workstation/LINUX-Cluster/Supercomputer

= robustness andfficiency
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Hardware-Oriented Numerics

What Is:

Hardware-Oriented Numerics for PDE’s ?
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Answer (I)

It IS more than "better Numerics” and "better
Implementation” on High Performance Computer

Critical quantity: ‘Total Efficiency !’




Answer (II)

What Is the "Total Efficiency” ?

‘High (guaranteed) accuracy for user-specific
guantities with minimal #d.o.f.s{( N) via fast and
robust solvers - for a wide class of parameter
variations - with ‘optimal’ ~ O(N)) numerical
complexity while exploiting a significant percenta
of the available huge sequential/parallel GFLOP
rates at the same time’

How to measure "Total Efficiency” ?




Corresponding Key Technologies

‘A posteriori error control/adaptive meshing’
‘Iterative (parallel) solution strategies’
‘Operator-splitting for coupled problems’

0

Recent Trends in Processor Technology:

‘Enormous improvements in Processing Data’
‘Much lower advances in Moving Data’

1 PCin 10 years~ 1 JUMP/IBM today !!!

Parallel PFLOP/s computers in 5 years !!!
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Questions:

‘Can we use this enormous computing power ?’

OK for LINPACK, etc.

‘How to achieve a high "Total Efficiency” for
Numerics for PDE’'s ?’

For iterative solvers, etc.???

—-p.72?



Sequential Performance (0)

Linpack Test (MFlop/s for TOP500 list)

AMD Athlon XP 1500+ with 1,333 MHz core frequency

& Case 1: self compiled BLAS/LAPACK libraries (F77)
# Case 2: vendor delivered BLAS/LAPACK, partially assembler (SUSE)
# Case 3: tuned BLAS/LAPACK with CPU extensions like SSE (ATLAS)

H#unknowns | case 1 | case 2 | case 3
500 323 477 940

1,000 275 481 1,119

3,000 116 152 1,362

OK!




Main component: ‘Sparse’ MV Application

SPARSEMatrix-Vector technigues (‘indexed DAXPY”)
DO 10 | ROML, N

DO 10 | COL=KLD(| ROW , KLD( | ROM1) - 1
10 Y( 1 ROW =DA( | COL) * X( KCOL( | COL) ) +Y( | ROW

SPARSEBANDED Matrix-Vector techniques
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Sequential Performance (I)

Sparse MV multiplication in (sequential) FEATFLOW :

Computer | #Unknowns || CM | TL | STO || ILU-CM | ILU-TL | ILU-STO
8,320 147 | 136 | 116 90 76 72
DEC 21264 33,280 125 | 105 | 100 86 73 63
(667 MHz) 133,120 81 | 71 58 81 52 95
‘EVG7’ 532,480 60 | 51 21 40 35 22
2,129,920 58 | 47 13 38 30 14
8,519,680 58 | 45 10 36 30 11
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Sequential Performance (Il)

1 . ]
Generalized Tensorproduct’ meshes
2D case NEQ STO (ROW) SBB-V | SBB-C MGTRI-V | MGTRI-C
Sun V40z 652 1521 (422) 1111 1605 943 1178
(1800 MHz) 2572 264 (106) 380 1214 446 769
‘Opteron’ 10252 197 (54) 362 1140 333 570
IBM POWER4 652 1521 (845) 2064 3612 1386 1813
(1700 MHz) 2572 1100 (227) 1140 3422 1048 1645
‘Power 10252 390 (56) 550 2177 622 1138

SPARSEMYV techniques (STO/ROW

MFLOP/s rates vs. ‘Peak Performance’, problem size + numbering ???
Local Adaptivity !

SPARSEBANDED MYV techniques (SBB)

‘Supercomputing’ (up to 1 GFLOP/s) vs. FEM for complex domains ?7??
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Sequential Performance (lll)

Vectorization (preliminary):

2D NEQ || STO/TL SBB-V/C | MGTRI-V/C | TRI-V/C

NEC SX 652 423/845 || 1203/1313 4471372 85/62
(500 MHz) || 257 || 440/777 || 1397/2351 479/462 85/84
‘SX-61 1025% || 442/801 || 1778/3186 491/527 87/87

Development of ‘new’ methods

i

"SPAI” preconditioner ( ~ pure MV multiplication)
"Cyclic Reduction” preconditioner

—p.12P?



Summary (I)

‘It IS non-trivial to reach the Sequential Peak
Performance with modern (= high numerical
efficiency) PDE tools !’

‘Local adaptivity with unstructured meshes ?’
‘Sparse matrix-vector applications ?’

‘Memory-intensive data/matrix/solver structures




Parallel Performance (l)

[

‘Complex (anisotropic) ASMO3D configuration’
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‘(Moderate) mesh anisotropies (AR = 20)’
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Parallel Performance (ll)

FEATFLOwW (F77) vs. parallel versionPP3D++

Implementation architecture d.o.f. Cpu time
space time [min]

sequential (F77) Alpha ES40 5,375,872 | 1,455 2086

parallel (1 node) Alpha ES40 5,375,872 | 1,446 6921
parallel (4 nodes) Alpha ES40 5,375,872 | 1,466 2151

parallel (4 nodes) Cray T3E-1200 | 5,375,872 | 1,466 4620

parallel (32 nodes) | Cray T3E-1200 | 5,375,872 | 1,522 831
parallel (70 nodes) | Cray T3E-1200 | 5,375,872 | 1,502 615
parallel (130 nodes) | Cray T3E-1200 | 5,375,872 | 1,514 688

‘Problems due to F77 vs. C++’

‘Problems due to communication’
‘Problems due to Pressure Poisson multigrid solver’
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Parallel Performance (llI)

Il Alphacluster
[ Cray T3E-1200

1 | I Linuxcluster _
B Sun Enterprise 3500
684 '™ '®BR &=
06 ' 'mERRERE
Ll
Q
[
w04
&
0.2
0—
8 16 32 64
#Prozesse
1P. | 2P. | 4P. | 8P. | 16 P. | 32P. | 64 P.
%Comm. | 10% | 24% | 36% | 45% | 47% | 55% | 56%
#PPP-IT 2,2 3,0 39| 49 5,2 2,7 6,2
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Summary (1)

‘It IS non-trivial to reach the Parallel Peak
Performance with modern (= high numerical

efficiency) PDE tools !V’
‘Communication behaviour of (LINUX) clusters
'(Only) Blockwise smoothers in parallel ?’

‘Mesh anisotropies ?’




Summary (1)

‘Special requirements for numerical
and algorithmic approaches in
correspondance to existing hardware !!!’

|

‘Hardware-Oriented Numerics for PDEs (?)’

J
FEAST Project




Special Techniques

1) Patch- onented adaptmty

‘Many’ tensorproduct grids (SBB)
‘Few’ unstructured grids (SPARSE)

Il) Generalized MG-DD solverScaRC

Exploit locally ‘regular’ structures (efficiency)
Recursive ‘clustering’ of anisotropies (robustness)

‘Strong local solvers improve global convergence !’

‘Exploit locally regular structures !V’
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Concepts for Adaptive Meshing

1) macro-oriented adaptivity

2) patchwise ‘deformation’ adaptivity
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3) (patchwise) ‘local’ adaptivity
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Patchwise ‘deformation’ adaptivity

Il
I

Il
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Patchwise ‘deformation’ adaptivity
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Patchwise ‘deformation’ adaptivity

—p.23R?



Concepts for Iterative Solvers

1) MG: too few arithmetic work vs. data exchange
& parallelization of ‘recursive’ smoothers (only blockwise) ?
& complicated geometric structures with local anisotropies ?

2) DD: bad convergence behaviour compared with MG
& good ratio for communication/arithmetic work !

& implementation (overlap, coarse grid problem, 3D) ?

|

1) + 2) = SCARC

Hide recursively all anisotropies in ‘local’ unitgrobustness$
Perform all Linear Algebra tasks on ‘local’ units onlygfficiency)
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Summary for Adaptive ScARC (I)

Parallel convergence rates for SCARC-CG (2 global smoothing, V-cycle; 2
local ‘MG-TriGS’, F-cycle) with direct coarse mesh solver

MESH #NEQ | AR | p(#IT)
25-3 1,704 | 3 0.03 (5)

25-4 6,608 | 3 0.03 (4)

25-5 26,016 | 3 0.03 (4)
25-5-1 44544 | 3 0.03 (5)
25-6-1 177,152 | 3 0.04 (5)
25-6-1-an 177,152 | 10° | 0.09 (6)
105-6 431,317 | 10 | 0.09 (6)
105-7 | 1,722,773 | 10 | 0.08 (6)
105-7-1 | 4,034,581 | 10 | 0.09 ()
105-7-2 | 9,344,533 | 10 | 0.09 (6)
105-7-2-an | 9,344,533 | 10° | 0.09 (6)
105-8-2-an | 37,366,805 | 107 | 0.09 (6)

(Parallel) Global convergence

Mesh types



Summary for Adaptive ScARC (ll)

#NVT MV-V/C | MGTRI-V/C
652 788/1301 558/706
2572 || 396/1255 4341672

10252 158/542 163/357

DEC 21264 (833 MHz) ‘ES40’

H#NVT MV-V/C | MGTRI-V/C
652 258/1275 299/706
2572 187/638 173/382

10252 || 179/630 146/288

AMD K7 (1333 MHz) ‘XP+’

Local MFLOP/s rates

Cells
lhmin

0.000848
I:CI 000763

—0.000678

=—0.000593

—0.000509

0.000424

—0.000339

—0.000259

0.00017

8.48e-05

29e-12

Local behaviour for 105-8-2-an

Cells
Icappaay

0.23
I:CI.ECIB

—0.186

—0.164

—0.142

0.01




Open (Numerical) Problems

& ‘Optimality’ of the mesh ?
— W.I.t. number of unknowns or total CPU time ?

& Error estimators ?
— degree of macro-refinement 2./p-refinement ?
— anisotropic deformation ? ‘When to do what’ decisio

® Load balancing ?
— due to ‘total CPU time per accuracy per processor’ 7
— dynamical a posteriori process ?

—p.27P7°



(Preliminary) Conclusion

Numerical efficiency ?
— OK

Parallel efficiency ?
— (OK)

Sequential efficiency ?
— almost OK for CPU

"Peak” efficiency ?
— NO
— GPU-based FEM preprocessors

—p.28R7?



New: GPU Computing (D. Goeddeke)

& Techniques and data layouts
& Performance of basic numerical linear algebra components
# Efficiency vs. accuracy using 16bit floating point arithmetics

& Towards "numerical GFLOP/s”
« Discussion

—p.29R?



Hardware

All tests have been implemented in OpenGL + Cg on a Windows box.
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Hardware

All tests have been implemented in OpenGL + Cg on a Windows box.

Four different systems have been evaluated:

&£

£
£
£

AMD Opteron (1800 MHz) as CPU reference with SBBLAS benchmark
linked to GOTO BLAS

NVIDIA 5950Ultra (NV30, 450 MHz, 4 vertex—, 8 fragment pipelines,
256bit memory interface, 425 MHz GDDR)

NVIDIA 6800 (NV40, 350 MHz, 5 vertex—, 12 fragment pipelines,
256bit memory interface, 500 MHz GDDR?2)

NVIDIA 6800GT (NV40, 350 MHz, 6 vertex—, 16 fragment pipelines,
256bit memory interface, 500 MHz GDDR?2)

— p.30°7?



Technigues

All GPU implementations are based on the following techniques. Visit our
homepage for detailed tutorials and code examples.

& Render-to-texture and "ping-ponging” between double-sided offscreen
surfaces for fast iteration-type algorithms with data reuse.

« All calculations are performed in the fragment pipeline, the vertex
pipeline is used to generate data which is uniformly interpolated by the
rasterizer (e.g. array indices).

& Multitexturing and multipass partitioning for maximum efficiency.

—p.31P?



Data layouts

Current NVIDIA GPUs support the following three major render target
formats:

—p.32P?



Data layouts

Current NVIDIA GPUs support the following three major render target
formats:

& one 32 bit floating point value (LUMINANCE, s23e8 IEEE-like, memory
Imprint 32 bits), used to store a single vector

& four 32 bit floating point values (RGBA32, s23e8, memory imprint 128
bits), used to "solve four systems simultaneously” (no dependencies
between different channels, but different data in each channel).

& four 16 bit floating point values (RGBA16, s10e5, memory imprint 64
bits), again to "solve four systems simultaneously”.

Remark: ATI only supports one to four 24 bit channels.

—p.32P?



Numerical linear algebra (1)

The following low-level building blocks for FEM codes have been mapped to
the GPU:

&£
£
K Y

& 6

BLAS SAXPY C: 2N flops: y; =yi +ax;, i=1...N
SAXPY V: 2N flops: y; =y, +a;x;, i=1...N

WV _V for a 9-banded FEM (@) matrix with variable coefficients: 18N
flops, iImplemented as a series of 9 SAXPY _V operations with
appropriate zero padding: y =y + Ax

DOT: 2N flops, implemented as a logarithmic reduction: y = Zﬁil a;b;

NORM 2N flops, implemented as a logarithmic reduction:

Yy = \/Zf\il a;a;

—p.33P7?



Numerical linear algebra (Il)

MFLOP/s rates for LUMINANCE data structure:

—p.34P?



Numerical linear algebra (Il)

MFLOP/s rates for LUMINANCE data structure:

00000

3
00000

9
00000

1000 /
0
1024

g—

" GF 5950

SAXPY C

S
00000

9
00000

/

/

1000 /
0
1024

" GF 6800

—p.34P?



Numerical linear algebra (Il)

MFLOP/s rates for LUMINANCE data structure:
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Numerical linear algebra (Il)

MFLOP/s rates for LUMINANCE data structure:
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Numerical linear algebra (Il)

MFLOP/s rates for LUMINANCE data structure:

00000

3
00000

9
00000

_—

—

o /
0 j
1024

S
00000

" GF 5950

SAXPY C

MWV DOT

" GF 6800

—p.34P?



Numerical linear algebra (Il)

MFLOP/s rates for LUMINANCE data structure:
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Numerical linear algebra (lI)

MFLOP/s rates for RGBA32 data structure:

—p.35P7?



Numerical linear algebra (lI)

MFLOP/s rates for RGBA32 data structure:
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Numerical linear algebra (lI)

MFLOP/s rates for RGBA32 data structure:

©
Z 4000
g
& 3000
-

2000

MFLOP/s 5950

4000

3000

2000

PN

N

" GF 5950

SAXPY C

8
® 4000

9
T 3000

L ——— e
1000 /
0 . 1
1024

" GF 6800

—p.35P7



Numerical linear algebra (lI)

MFLOP/s rates for RGBA32 data structure:
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Numerical linear algebra (lI)

MFLOP/s rates for RGBA32 data structure:
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Numerical linear algebra (lI)

MFLOP/s rates for RGBA32 data structure:
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Numerical linear algebra (lI)

MFLOP/s rates for RGBA32 data structure:
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Numerical linear algebra (1V)

MFLOP/s rates for RGBA16 data structure:
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Numerical linear algebra (1V)

MFLOP/s rates for RGBA16 data structure:
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Numerical linear algebra (1V)

MFLOP/s rates for RGBA16 data structure:
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Numerical linear algebra (1V)

MFLOP/s rates for RGBA16 data structure:
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Numerical linear algebra (1V)

MFLOP/s rates for RGBA16 data structure:
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Numerical linear algebra (1V)

MFLOP/s rates for RGBA16 data structure:
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Conclusions and Questions

&

&

&

GPUs outperform recent CPUs up to a factor of 5 for single precision
arithmetics.

GPUs only show their true potential for interesting problem sizes that
crash the CPU cache.

Different GPUs behave differently for solving single and quadruple
tasks. Appropriate data layouts must be chosen independently for each
GPU.

GPU performance doubles to quadruples for 16 bit floating point
arithmetics compared to 32 bit arithmetics.

—p.37P?



Conclusions and Questions

&

GPUs outperform recent CPUs up to a factor of 5 for single precision
arithmetics.

GPUs only show their true potential for interesting problem sizes that
crash the CPU cache.

Different GPUs behave differently for solving single and quadruple
tasks. Appropriate data layouts must be chosen independently for each
GPU.

& GPU performance doubles to quadruples for 16 bit floating point
arithmetics compared to 32 bit arithmetics.

&

&

Questions:

& How can the 16bit performance be achieved while maintaining 32bit
accuracy?

& What about the 40 GFLOP/s that are announced?
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Accuracy Issues with 16 bits

Test case: Solve Ax = 0 with 9-band-stencil matrix A and random input x.
Use Jacobi scheme based on MWV_V operator (as prototype for

preconditioner and smoother in Krylov space methods) and RGBA ("four
Independent systems simultaneously”).

—p.38R7?



Accuracy Issues with 16 bits

Test case: Solve Ax = 0 with 9-band-stencil matrix A and random input x.
Use Jacobi scheme based on W _V operator (as prototype for
preconditioner and smoother in Krylov space methods) and RGBA ("four
Independent systems simultaneously”).

32bit Residual e
32bit Error

f Residuals /

1le-06

1 1
000000000000000000000000000000000000
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Accuracy Issues with 16 bits

Test case: Solve Ax = 0 with 9-band-stencil matrix A and random input x.
Use Jacobi scheme based on W _V operator (as prototype for
preconditioner and smoother in Krylov space methods) and RGBA ("four
Independent systems simultaneously”).

100

32bit Error

16bit Residual e
16bit Error e
1

le-04

Norm of Residuals / Errors

1le-06

1le-08

1 1 1 1 1 1
0 10000 20000 30000 40000 50000 60000 70000
Jacobi Iterations
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Accuracy Issues with 16 bits

Test case: Solve Ax = 0 with 9-band-stencil matrix A and random input x.
Use Jacobi scheme based on W _V operator (as prototype for
preconditioner and smoother in Krylov space methods) and RGBA ("four
Independent systems simultaneously”).

100

32bit Error

16bit Residual e
16bit Error e
1

le-04

Norm of Residuals / Errors

1le-06

1le-08

1 1 1 1 1 1
0 10000 20000 30000 40000 50000 60000 70000
Jacobi Iterations

"Half precision” floats are insufficient for applications beyond visual
accuracy. But: Gaining at least one or two decimals is possible, making the
use as preconditioner feasible!
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Proof of concept

Use fast 16bit processing as preconditioner, update result "occasionally” with
single or double precision. All GPUs tested so far show identical floating
point accuracy.

—p.39P7?



Proof of concept

Use fast 16bit processing as preconditioner, update result "occasionally” with
single or double precision. All GPUs tested so far show identical floating
point accuracy.

1. Calculate defect: d(32) = AB2x(32) _p32) o = [|dB?)]].
2. Check some convergence criterion.

4. Shift solution: b6 = d®32), x(16) — ¢,
5. Perform m Jacobi steps to "solve” A(16)x(16) — [ (16)

6. Shift corrected solution back: x(32) = x(32) _ x(16)

—p.39P7?



Proof of concept

Use fast 16bit processing as preconditioner, update result "occasionally” with
single or double precision. All GPUs tested so far show identical floating
point accuracy.

1. Calculate defect: d©®?) = AB2)x(32) _p32) o = ||d3?)||. CPU or GPU

2. Check some convergence criterion.
CPU

4. Shift solution; b(16) = d(32) x(16) — @,
GPU or AGP transfer

5. Perform m Jacobi steps to "solve” A(16)x(16) — [ (16)
GPU

6. Shift corrected solution back: x(32) = x(32) _ x(16)
GPU or AGP transfer

—p.39P7?



Proof of concept

Use fast 16bit processing as preconditioner, update result "occasionally” with
single or double precision. All GPUs tested so far show identical floating
point accuracy.

Calculate defect: d©®?) = AB2x(32) _ pB2) o =||dB)|].
Check some convergence criterion.

Apply scaling by defect: d®?) =1/ * d3?).

Shift solution: b(16) = d32), x(16) =,

Perform m Jacobi steps to "solve” A16)x(16) — K (16)

o g bk W D PF

Shift corrected solution back: x(32) = x(32) — ) x axx(16),

Apply damping by w and scaling by norm of defect for better convergence
and to keep well within the dynamic range of the 16bit "half precision” data

type.
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Proof of concept

Results:

100

32bit Residual
32bit Error
16bit Residual e
16bit Error e
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Proof of concept

Results:

100

32bit Residual
32bit Error
16bit Residual
16bit Error
Mix Residual e
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Proof of concept

Results:

6 6666

32 bit Jacobi iteration: ~ 1100 MFLOPs, 70K iterations
16 bit Jacobi iteration: ~ 3800 MFLOPSs, oo Iterations

Norm: ~ 2000 MFLOPs

Combined scheme with correction on CPU: ~ 800 — 1200 MFLOPs
(depending on problem size), 40K iterations

Combined scheme running completely on GPU: ~ 3500 MFLOPs
(independent of problem size), 40K iterations

— p.40P?



Proof of concept

Results:

32 bit Jacobi iteration: ~ 1100 MFLOPs, 70K iterations
16 bit Jacobi iteration: ~ 3800 MFLOPSs, oo Iterations

Norm: ~ 2000 MFLOPs

Combined scheme with correction on CPU: ~ 800 — 1200 MFLOPs
(depending on problem size), 40K iterations

6 6666

Combined scheme running completely on GPU: ~ 3500 MFLOPs
(independent of problem size), 40K iterations

Questions:
& When should the update be performed?

« Can this be predicted a priori to avoid heavy data transfer to CPU?

— p.40P?



How to get closer to peak performance?

"Data moving Is expensive, not data processing” is valid for GPUs as well!
On GPUs, this can be quantified with the arithmetic intensity (number of
flops per texture lookup) of implementations.
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How to get closer to peak performance?

"Data moving Is expensive, not data processing” is valid for GPUs as well!
On GPUs, this can be quantified with the arithmetic intensity (number of
flops per texture lookup) of implementations.

Test case:
& Fetch value z; from long vector / texture x, i = 1, ..., 10242.

£ Compute:cz-:xi%—x?%—x?%—x?%—...%—x;ﬂ.

& Rewrite Horner-style: degree m yields 2m — 1 flops.

—p.41pr?



MFLOP/s 5950

How to get closer to peak performance?

"Data moving Is expensive, not data processing” is valid for GPUs as well!
On GPUs, this can be quantified with the arithmetic intensity (number of
flops per texture lookup) of implementations.
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MFLOP/s 5950

How to get closer to peak performance?

"Data moving Is expensive, not data processing” is valid for GPUs as well!
On GPUs, this can be quantified with the arithmetic intensity (number of

flops per texture lookup) of implementations.
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MFLOP/s 5950

How to get closer to peak performance?

"Data moving Is expensive, not data processing” is valid for GPUs as well!
On GPUs, this can be quantified with the arithmetic intensity (number of

flops per texture lookup) of implementations.
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How to get closer to peak performance?

Realistic goal: 50% peak performance at a moderate intensity.
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How to get closer to peak performance?

Realistic goal: 50% peak performance at a moderate intensity.

MFLOP/s 5950
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Intensity of all examples presented so far is =~ 1! GFLOP/s rate for W_V and
JACQOBI is within 90% of the measured peak for this intensity.
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owards numerical GFLOP/s

Short term goal: Investigate further into using fast 16 bit preconditioning, this
way working around the "intensity barrier”.
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way working around the "intensity barrier”.

Long term goal: Try to reformulate core FEM-multigrid components to
Increase their intensity: Assemble on-the-fly? Smart, complex
preconditioners like ILU, ADI and SPAI?
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owards numerical GFLOP/s

Short term goal: Investigate further into using fast 16 bit preconditioning, this
way working around the "intensity barrier”.

Long term goal: Try to reformulate core FEM-multigrid components to
Increase their intensity: Assemble on-the-fly? Smart, complex
preconditioners like ILU, ADI and SPAI?

Software goal: Don’t implement a full solver on the GPU, instead include the
GPU as a fast preconditioner into the FEAST framework.

—p.43p?



Conclusions

There Is a huge potential for the future...

But: Modern Numerics has to consider recent and future hardware
trends!

But: Developing ‘HPC-PDE software’ is more than the
Implementation of existing Numerics for PDES!

Compromise between ‘flexible/reusable/abstract’ and
‘machine-dependent/hardware-oriented’ implementation style'!

But: Developing "production codes" requires lots of support and
cooperation!

Therefore: There is much to do...:-)

— p.44p?
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