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Multiphase Flow Problems
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Fluid – (Rigid) Solid Interfaces
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Consider flow of N solid particles in a fluid with density     and viscosity .  

ρρ
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Denote by              the domain occupied  by the fluid at time t , and by­ f (t) ­ p(t)
domain occupied by the particle    at time t:p

Fluid flow is modelled by the Navier-Stokes equations in ­ f (t)

¾(X ; t) = ¡ pI + ¹
h
r u + (r u)T

i
where is the total stress tensor in the fluid phase, which is defined as :¾



Model for Particle Motion (I)

M p
dUp

dt
= Fp + F 0

p + (¢ M p) g ; I p
d ! p

dt
+ ! p £ (I p ! p) = Tp

Motion of particles is described by the Newton-Euler equations, i.e., the
translational velocities and angular velocities of the    -th particle 
satisfy

Up ! p p

with        the mass of the    -th particle (   =1,…,N);p pM p

the moment of inertia tensor of the    -th particle;I p
p

¢ M p the mass difference between the mass       and the mass of the fluidM p

occupying the same volume.



Model for Particle Motion (II)
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and       are the hydrodynamical forces and the torque at mass 
center acting on the   -th particle

Fp Tp
p

and       are the collision forces (later).

is the position of the center of gravity of the    -th particle;                             
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the boundary of the    -th particle;¡ p = @­ p
p

np is the unit normal vector on the boundary ¡ p



Interaction between Particle and Fluid
No slip boundary conditions at interface       between particles and fluid 
i.e., for any              , the velocity u(X) is defined by:

The position   of the    -th particle and its angle are obtained 
by integration of the kinematic equations:
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Coupling between Fluid and Particle

tn ° uid ! tn force on solid ! tn+ 1 solid ! tn+ 1 ° uid .......

Implicit coupling (``Distributed Lagrange Multiplier/Fictitious Domains``)1.

Idea: Calculate the fluid on the complete fluid-solid domain; the
solid domain is constrained to move with the rigid motion; 
mutual forces between solid and fluid are cancelled.

Body-force-DLM (Glowinski,Pan,Hesla,Joseph and Periaux (1999)): 
the constraint of rigid body motion is represented by u=U+     x r!

Stress-DLM (Patankar,Singh,Joseph,Glowinski and Pan (2000)): 
the constraint of the rigid body motion is represented by a  stress 
field just as there is pressure in fluid.

Explicit Coupling2.

FVM-fictitious domain methods (Duchanoy and Jongen(2003))

FEM-fictitious boundary methods (Turek,Wan and Rivkind)



Further Classification

Eulerian approach: fixed meshes!1.
Use a fixed mesh that covers the whole domain where the fluid may 
be present.

The distributed Lagrange multiplier/fictitious domain method

FEM-fictitious boundary method

FVM-fictitious domain method

Lagrangian approach: moving meshes!2.
Based on a moving mesh which follows the motion of the fluid boundary.

Arbitrary Lagrangian Eulerian (Hu,Joseph and Crochet (1992), 
Johnson and Tezduyar (1996))

Fat boundary method (Maury (2001))



The ‘Fictitious Boundary Method’

1. Describe fine-scale geometrical structures and time-dependent objects via 
(level-dependent) inner ”boundary points”!

2. Use projectors onto the ”right” b.c.’s in iterative components!

Computational mesh (can be) independent of ‘internal objects’



How to Calculate (Surface) Forces?

Reconstruction of the shape is only first order accurate
è local grid adaptivity or alignment
è ”only” averaged/integral quantities are required

But: The FBM can only decide ”INSIDE” or ”OUTSIDE”

‘Replace the surface integral by a
volume integral’

F i = ¡
Z

@Pi

¾¢n i d¡ i ; Ti = ¡
Z

@Pi

(X ¡ X i ) £ (¾¢n i ) d ¡ i

Hydrodynamic forces and torque acting on the  i-th particle



Calculation of Hydrodynamic Forces

®p(X ) =
½

1 for X 2 ­ p
0 for X 2 ­ f

np = r ®p

Fp = ¡
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with ¹­ T = ¹­ f [ ¹­ p (analogously for the torque)

Define auxiliary function     as®

Remark: everywhere except at wall surface of the particles, and 
equal to the normal vector      defined on the global grid.

r ®p = 0
np

Force acting on the wall surface of the particles can be computed by



Evaluation of Force Calculations

LEVEL 6 ¼ 280.000 elements LEVEL 6 ¼ 150.000 elements

LEVEL 4 ¼ 150.000 elements



(Explicit) Operator-Splitting Approach

? Required: efficient calculation of hydrodynamic forces
? Required: efficient treatment of particle interaction (?)
? Required: fast (nonstationary) Navier-Stokes solvers (!)

1.

2.

4.

3.

N SE(un+ 1
f ; pn+ 1) = B C(­ n

p ; un
p )Fluid velocity and pressure :

Fp
n+ 1Calculate hydrodynamic forces:

un+ 1
p = g(Fp

n+ 1)Calculate velocity of particles:

­ n+ 1
p = f (un+ 1

p )Update position of particles:

tn ! tn+ 1The algorithm for consists of the following 4 substeps



Numerical Examples

‘One particle in a rotating circular container’



Numerical Examples
‘One particle in a rotating circular container’



Numerical Examples

‘One ellipse falling in an (infinite) channel’



Numerical Examples

‘Viscous flow around a moving airfoil’ (Glowinski)



Numerical Examples

‘(Prototypical) Heart Valve’

Inlet velocity U = 9:828(A0 + sin( 1:85 t
¼ ))

Velcoity (A0 = 0:925) Velocity (A0 = 1:250)

(a) angle (b) angular velocity



Numerical Examples

‘Kissing, Drafting, Thumbling’



Numerical Examples
‘Impact of heavy balls on 2000 small particles’

½f = 1, ½bd = 2, ½sp = 1:1

½f = 1, ½bd = 2, ½sp = 2

½f = 1, ½bd = 2, ½sp = 20



Collision Models

Ri + Rj Ri + Rj + ½ di j
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Theoretically, it is impossible that smooth particle-particle collisions take 
place in finite time in the continuous system since there are repulsive 
forces to prevent these collisions in the case of viscous fluids.

In practice, however, particles can contact or even overlap each other
in numerical simulations since the gap can become arbitrarily small 
due to unavoidable numerical errors.



Repulsive Force Collision Model

For the particle-particle collisions (analogous for the particle-wall collisions), the 
repulsive forces between particles read:

FP
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8
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Handling of small gaps and contact between particles

Dealing with overlapping in numerical simulations

The total repulsive forces exerted on the   -th particle by the other particles 
and the walls can be expressed as follows:

i



Numerical Examples

‘Fluidization/Sedimentation of many particles’



Lift-Off for Circle

Velocity (dw = 0:1) Velocity (dw = 1:0)

y of center of ball



Lift-Off for Ellipse

Velocity (dw = 0:4) Velocity (dw = 1:8)

y of center of ellipse



Complete Algorithm

The complete algorithm for the coupled fluid-solid system
can be summarized as follows:

1. Given the position and velocity of the particles at time t n

2. Set the fictitious boundary and its boundary condition for the fluid.

3. Solve the fluid equations to get the fluid velocity and the pressure.

4. Calculate the hydrodynamic forces acting on every particle.

5. Calculate the motion of the solid particles.

6. Check if the collision happens and calculate collision forces.

7. Update the particle position and velocity by the collision forces.

8. Return to the ¯rst step (n ! n + 1) and advance to the next t ime step.

(tn ! tn + 1)



Efficient Data Structures
L3 ¼ 220:000elements ¼ 1:100:000d:o:f :s

L4 ¼ 880:000elements ¼ 4:400:000d:o:f :s

L5 ¼ 3:530:000elements ¼ 17:600:000d:o:f :s

DEC/ COMPAQ EV6, 833 MHz

Next: E ± cient °ow solver (for small ¢ t) ???



Challenges
Adaptive time stepping + dynamical adaptive grid alignment/ALE

(Better) collision models/Repulsive forces.
Coupling with turbulence models.
Modelling of Break-up/Coalescence phenomena.

Deformable particles/fluid-structure interaction.
Analysis of viscoelastic effects.
Benchmarking and experimental validation for many particles.
1.000.000 particles.



R-Adaptivity

1. location based methods:
Winslow’s method
Brackbill’s and Saltzman’s method
Harmonic mapping

disadvantages:
(a) non-linear problems (demanding)
(b) interaction of monitor function and grid not clear

2. velocity based methods:
MMPDE/GCL (Cao, Huang, Russell)
Deformation method (Liao et al.)

advantages:
(a) (several) Laplace problems on fixed mesh (fast)
(b) monitor function “directly” from error distribution
(c) mesh tangling prevented



Deformation Method (Moser/Liao)
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idea : construct transformation Á; x = Á(»; t) with det r Á = f

local mesh area ¼ f

1. Compute monitor function f (x; t) > 0; f 2 C1 and

3. Solve the ODE system

new grid points: x i = Á(»i ; 1)

2. Solve (t 2 (0; 1])



Example for Deformed Meshes

Grid deformation preserves the (local) logical structure of the grid



Example for Deformed Meshes

Exact control and smooth transitions



Last Example



(Really) Last Example


