
Universität Dortmund
Fakultät für Mathematik

IAM
technische universität
dortmund

UCHPCUCHPC

UUnnCConventionalonventional HHigh igh PPerformance erformance CComputing omputing
for PDEfor PDE

S. Turek
with support by the FEAST Group

Institut für Angewandte Mathematik, TU Dortmund
http://www.mathematik.uni-dortmund.de/LS3

http://www.featflow.de

218.02.2008

Motivation

The ‘free ride’ is over, HPCHPC faces a paradigm shift:
memory wall (in particular for sparse Linear Algebra problems)
physical barriers (heat, power consumption, leaking voltage)
applications no longer run faster automatically on newer
hardware

Special (heterogeneous) hardware has to be taken into
account:

multi-core commodity CPUs - Cell BE processor - graphics
cards (GPUs)
HPC accelerators (e.g. ClearSpeed) - reconfigurable hardware
(FPGAs)

Rethink the way we design algorithms for these
architectures when Virtual Labs for realistic applications
(Multiphase-CFD, CSM) shall be created!

318.02.2008

Why Multiphase Problems

Very flexible and efficient tools are required for a large
class of important applications in chemical engineering,
life science, medicine, biomechanics and more…..
However: Huge dynamical systems

Special HPC Special HPC TechniquesTechniques
requiredrequired

418.02.2008

Aim of this Talk

’’High Performance High Performance ComputingComputing’’

meetsmeets

’’HardwareHardware--OrientedOriented NumericsNumerics’’

onon

Unconventional HardwareUnconventional Hardware

518.02.2008

Hardware-Oriented Numerics

What is:
„Hardware-Oriented Numerics“ for PDE?

It is more than „good Numerics“ and „good
Implementation“ on High Performance
Computers

Critical quantity: „Total Numerical Efficiency”

618.02.2008

Total Numerical Efficiency for PDE

’High (guaranteed) accuracy for user-specific
quantities with minimal #d.o.f. (~ N) via fast and
robust solvers – for a wide class of parameter
variations – with optimal (~ O(N)) numerical
complexity while exploiting a significant
percentage of the available huge sequential/
parallel GFLOP/s rates at the same time’

Is it easy to achieve a high „Total Numerical
Efficiency“?

718.02.2008

Example: Fast PDE Solvers

Fast Multilevel Methods as general philosophy
’Optimized’ versions for scalar PDE problems (≈ Poisson
problems) on general meshes should require 100-1000
FLOPs per unknown (in contrast to LAPACK for dense
matrices)

Problem size 106: Much less than 1 sec on PC (???)
Problem size 1012: Less than 1 sec on PFLOP/s computer

’Criterion’ for HPC/Petascale Computing

818.02.2008

Main Component: ‘Sparse‘ MV Application

Sparse Matrix-Vector techniques (‚indexed DAXPY‘)
DO 10 IROW=1,N
DO 10 ICOL=KLD(IROW),KLD(IROW+1)-1
10 Y(IROW)=DA(ICOL)*X(KCOL(ICOL))+Y(IROW)

Sparse Banded MV techniques on generalized TP grids

918.02.2008

Generalized Tensorproduct Meshes

1018.02.2008

Generalized Tensorproduct Meshes

1118.02.2008

Generalized Tensorproduct Meshes

1218.02.2008

Generalized Tensorproduct Meshes

1318.02.2008

Single Processor Performance

Sparse MV multiplication in (sequential) FEATFLOW:
Computer # NEL Q1-CM Q1-TL Q1-STO Q2-CM Q2-TL Q2-STO

AMD Opteron
(2600 MHz)
‚Opt. 252‘

520
2,080
8,320
33,280
133,120
532,480

322
304
241
180
173
160

322
302
241
174
152
140

322
304
222
151
85
59

335
223
210
198
192
187

349
227
202
169
157
154

327
193
165
91
58
51

Only 50 MFLOP/s?!

1418.02.2008

Single Processor Performance
’Generalized Tensorproduct’ meshes
2D case NEQ ROW (STO) SBB-V SBB-C MGTRI-V MGTRI-C

AMD Opteron
(2600 MHz)
‚Opt. 252‘

652

2572

10252

2172 (633)
574 (150)
300 (64)

1806
627
570

3334
2353
1774

1541
751
538

2086
1423
943

IBM POWER4
(1700 MHz)

‚JUMP‘

652

2572

10252

1521 (845)
943 (244)
343 (51)

2064
896
456

3612
2896
1916

906
711
438

1071
962
718

Sparse MV techniques (ROW/STO)
MFLOP/s rates vs. ’Peak Performance’, problem size + numbering ???
Local Adaptivity !!!

Sparse Banded BLAS MV techniques (SBB) + MGTRI
’Supercomputing’ (up to 4 GFLOP/s) vs. FEM for complex domains ???

1518.02.2008

Single Processor Performance

Vectorization

Necessary: Development of ’new’ methods

„Cyclic Reduction“ preconditioner
„SPAI“ preconditioner (~ pure MV multiplication)

⇑

2D case NEQ ROW (STO) SBB-V SBB-C MGTRI-V MGTRI-C

NEC SX-8
(2000 MHz)

‚Vector‘

652

2572

10252

5070 (1521)
5283 (1321)
5603 (1293)

3611
6278
7977

3768
8363

15970

1112
1535
1918

1061
1543
2053

1618.02.2008

Summary

’It is non-trivial to reach Single Processor Peak
Performance with modern (= high numerical
efficiency) PDE tools’
’Memory-intensive data/matrix/solver
structures?’
’Parallel Peak Performance with modern
Numerics even harder …’

1718.02.2008

Partitioned mesh into 32 subdomains
’Problems due to communication’

’Numerical behaviour
vs.

anisotropic meshes’

Parallel Performance

1 P. 2 P. 4 P. 8 P. 16 P. 32 P. 64 P.

%Comm.
PPP-IT

10%
2.2

24%
3.0

36%
3.9

45%
4.9

47%
5.2

55%
5.7

56%
6.2

1818.02.2008

Summary

’Special requirements for numerical and
algorithmic approaches in correspondance to
modern hardware’

’Hardware-Oriented Numerics for PDE’

FEAST ProjectFEAST Project

⇓

⇓

1918.02.2008

Main Philosophy of FEAST

ScaRC solver: Combine advantages of (parallel) domain
decomposition and multigrid methods
Exploit structured subdomains for high efficiency
Hide anisotropies locally to increase robustness
Globally unstructured – locally structured
Recursive solution: Outer global multigrid smoother with local
multigrid on the
refined macros
Low communication
overhead

2018.02.2008

Open Algorithmic Problems

Adaptive remeshing?
degree of macro-refinement and/or deformation?
h-p-r-refinement? ’When to do what’ decision?

Load balancing?
due to ’total CPU time per accuracy per processor’?
dynamical a posteriori process?

(Recursive) solver expert system?
numerical + computational a priori knowledge?

Level #unknowns Computer. 63p 127p

sec MF/s sec MF/s

Power4 170,4 5.252 116,4 7.698

8 90.317.056 NEC 156,7 5.376 91,9 9.167

Opteron 65,2 13.412 40,5 21.586

Power4 - - 269,6 11.912

9 361.120.256 NEC 222,8 13.511 128,0 23.519

Opteron 192,6 16.299 104,7 29.974

Power4 - - - -

10 1.444.185.088 NEC 595,0 22.328 364,9 36.415

Opteron - - 615,6 25.637

2218.02.2008

(Preliminary) Conclusions

Numerical efficiency?
OK

Parallel efficiency?
(OK)

Single processor efficiency?
almost OK for CPU

„Peak“ efficiency?
NO
Special GPU/CELL/FPGA-based FEM Co-Processors

2318.02.2008

UnConventional HPC

Cell multicore processor (PS3), 7
synergetic processing units @ 3.2
GHz, 218 GFLOP/s Memory clocked
@ 3.2 GHz

CellGraphics Processor: 128
parallel Scalar processors @
1.35 GHz, 900 MHz GDDR3
memory (86.4 GB/s) ≈ 500
GFLOP/s

UUnnCConventionalonventional HHigh igh PPerformance erformance CComputing (omputing (UCHPCUCHPC))

2418.02.2008

Bandwidth, Bandwidth, Bandwidth…

FEM codes are 95% memory bounded,
bandwidth is the crucial factor for performance

GPUs offer superior bandwidth, are readily available,
fast, cheap, ..., in short, seem like an ideal candidate to
improve commodity based clusters

2518.02.2008

Benchmarks: FEM Building Blocks

Typical performance of FEM building blocks SAXPY_C, SAXPY_V
(variable coefficients), MV_V (9-point-stencil, Q1 elements), DOT on
Intel Core2Duo (SBBLAS) and GeForce 8800 GTX

2618.02.2008

Benchmarks: FEM Building Blocks

Typical performance of FEM building blocks SAXPY_C, SAXPY_V
(variable coefficients), MV_V (9-point-stencil, Q1 elements), DOT on
Intel Core2Duo (SBBLAS) and GeForce 8800 GTX

2718.02.2008

Benchmarks: FEM Building Blocks

Problems:
Basic linear algebra operations for sparse matrices are typically
memory-bounded
GPU: Superior to in-cache performance of CPU for large vectors
and matrices!

Open question:
How to use them?

2818.02.2008

Motivation

We want to solve large systems that arise from FEM
discretisations very efficiently on commodity clusters.
CPUs are general-purpose and only achieve close-to-
peak performance in-cache. CPUs devote most of the
area to memory (hierarchies) and not to processing
elements (PEs).
Emerging parallel specialised chips (GPUs, CELL) are
PE-dominated and provide potentially lots of FLOPS and
huge memory bandwidth.
Goal: Investigate how such designs can be used as
numerical co-processors in scientific computing.

Focus exemplarily on GPUs (and: CELL Processor)

2918.02.2008

Goals

Include GPUs into an existing FEM package

...without changes to application code built on top of the
package,
...without fundamental re-design of the package,
...without sacrificing either functionality or accuracy,
...but with noteworthy speedups,
...a reasonable amount of generality w.r.t. other co-processors,
...and additional benefits in terms of space/power/etc.

But: no –march=gpu, cell

3018.02.2008

Integration Overview

3118.02.2008

Integration Summary

Isolate suitable parts
Balance acceleration potential and acceleration effort

Diverge code paths as late as possible
Local MG solver
Same interface for several co-processors

Important benefit of this minimally invasive approach:
No changes to application code

Co-processor code can be developed and tuned on a single
node
Entire MPI communication infrastructure remains unchanged

3218.02.2008

Integration Challenges

The usual perils and pitfalls in parallel computing
Heterogeneity complicates load balancing
Heterogeneity complicates assigning jobs to specific resources
Don't want to leave the CPU idle while the co-processor
computes

GPU-specific issues
Building GPU clusters (density, power, cooling)
Maintenance slightly increased

Precision vs. accuracy
Double precision needed, but only at crucial stages of the
computation
Mixed precision iterative refinement approach
Accuracy not affected

3318.02.2008

Challenge: Reformulate algorithms to the data-stream based
programming paradigm!

PCIe bus between host system and GPU delivers up to 2 GB/s only
GPUs only provide quasi-IEEE 32-bit floating point storage and
arithmetics. No double precision! Tests for Poisson equation in 2D

in some domain with Dirichlet BCs Discretised with
bilinear conforming Finite Elements.

GPU Limitations

fu =Δ− 2R⊂Ω

single precision double precision

Cycles Error Reduction Cycles Error Reduction

2 1 2.391E-3 1 2.319E-3

3 2 5.950E-4 4.02 2 5.950E-4 4.02

4 2 1.493E-4 3.98 2 1.493E-4 3.99

5 2 3.750E-5 3.98 2 3.728E-5 4.00

6 2 1.021E-5 3.67 2 9.304E-6 4.01

7 2 6.691E-6 1.53 2 2.323E-6 4.01

8 2 2.012E-5 0.33 2 5.801E-7 4.00

9 2 7.904E-5 0.25 2 1.449E-7 4.00

10 2 3.593E-4 0.22 2 3.626E-8 4.00

Level

3418.02.2008

Mixed Precision Iterative Refinement

Single precision computation insufficient for required accuracy, but:
High precision only necessary at few, crucial stages!

Mixed precision iterative refinement approach to solve :
Compute in high precision.
Solve approximately in low precision.
Update in high precision and iterate.

Use arbitrary iterative inner solvers until “few” digits are gained
locally.
Fits naturally on target hardware: Few, high precision updates on
the CPU and expensive low precision iterative solution on the GPU.
Exhaustive experimental and theoretical foundation: very robust
w.r.t. solvers, degrees of anisotropy in the discretisation and matrix
condition.

bAx =
Axbd −=

dAc =
cxx +=

3518.02.2008

Show-Case: FEAST-Solid

Fundamental model problem:
solid body of elastic, compressible material (e.g. steel)
exposed to some external load

3618.02.2008

Test goals

Accuracy
Evaluate impact of reduced precision
Analytic reference solution

Scalability
Here: only weak scalability

Speedup
Exemplarily for some test scenarios
Detailed analysis and understanding of speedup components

3718.02.2008

Accuracy

L2 error against analytically known reference solution

Same results for CPU and GPU
expected error reduction independent of refinement and subdomain
distribution

3818.02.2008

Weak scalability

Good scalability
original and accelerated
CSM solver
Infiniband, Xeon EM64T,
3.4GHz, outdated
Quadro 1400 GPU

More results
Poisson problem for 1.3 billion unknowns in less than 50
seconds on 160 outdated GPUs (Quadro 1400)

Paper: Göddeke et al., Exploring weak scalability for FEM calculations on a
GPU-enhanced cluster, Parallel Computing 33(10-11), 685-699, 2007

3918.02.2008

Test configurations

Test system with 16 nodes: dualcore Santa Rosa
Opteron CPU, Quadro 5600 GPU, Infiniband

4018.02.2008

Speedup

4118.02.2008

Speedup Analysis

Speedups in 'time to solution' for one GPU
2.6x vs. singlecore, 1.6x vs. dualcore

Amdahl's Law is lurking
Profiling: Local speedup of 9x and 5.5x by the GPU
Observation: 2/3 of the entire solver can be accelerated, so the
theoretical upper bound for the speedup is 3x (2.6x is quite
good!)
For dualcores, we expect 2.2x but see only 1.6x
Explanation: Overlapping communication / memory access and
computation are giving the dualcore an 'unfair advantage'

Avenue for future work
Exploit available resources within the node better
Three-way parallelism in our system: coarse-grained (MPI) -
medium-grained (resources within the node) - fine-grained
(computecores in the GPU)

4218.02.2008

Summary

Goal: Include GPUs into an existing FEM package …
...without changes to application code built on top of the package,

ok

...without fundamental refactoring of the package,
only 1% of the code base has been touched

...without sacrificing either functionality or accuracy,
identical errors and convergence behaviour

...but with noteworthy speedups,
up to 4x for a reasonably challenging application

...with a reasonable amount of generality w.r.t. other co-processors,
in progress

...and with additional benefits in terms of space/power/etc.
promising preliminary results

4318.02.2008

Conclusions

There is a huge potential for the future …

But: Numerics has to consider recent and future
hardware trends!

But: Developing ’HPC-PDE software’ is more than
the implementation of existing Numerics for PDE!

Understanding the essentials of ’Total Numerical Efficiency’
Design, analysis and realization of hardware-oriented
Numerics
Identification and realization of hardware-optimized basic
components
Heterogeneous CPU-GPU clusters as ’building blocks’

4418.02.2008

	UCHPC ��UnConventional High Performance Computing for PDE
	Motivation
	Why Multiphase Problems
	Aim of this Talk
	Hardware-Oriented Numerics
	Total Numerical Efficiency for PDE
	Example: Fast PDE Solvers
	Main Component: ‘Sparse‘ MV Application
	Generalized Tensorproduct Meshes
	Generalized Tensorproduct Meshes
	Generalized Tensorproduct Meshes
	Generalized Tensorproduct Meshes
	Single Processor Performance
	Single Processor Performance
	Single Processor Performance
	Summary
	Parallel Performance
	Summary
	Main Philosophy of FEAST
	Open Algorithmic Problems
	Example with FEAST
	(Preliminary) Conclusions
	UnConventional HPC
	Bandwidth, Bandwidth, Bandwidth…
	Benchmarks: FEM Building Blocks
	Benchmarks: FEM Building Blocks
	Benchmarks: FEM Building Blocks
	Motivation
	Goals
	Integration Overview
	Integration Summary
	Integration Challenges
	GPU Limitations
	Mixed Precision Iterative Refinement
	Show-Case: FEAST-Solid
	Test goals
	Accuracy
	Weak scalability
	Test configurations
	Speedup
	Speedup Analysis
	Summary
	Conclusions
	UCHPC ��UnConventional High Performance Computing for PDE
	Motivation
	Why Multiphase Problems
	Aim of this Talk
	Hardware-Oriented Numerics
	Total Numerical Efficiency for PDE
	Example: Fast PDE Solvers
	Main Component: ‘Sparse‘ MV Application
	Generalized Tensorproduct Meshes
	Generalized Tensorproduct Meshes
	Generalized Tensorproduct Meshes
	Generalized Tensorproduct Meshes
	Single Processor Performance
	Single Processor Performance
	Single Processor Performance
	Summary
	Parallel Performance
	Summary
	Main Philosophy of FEAST
	Open Algorithmic Problems
	Example with FEAST
	(Preliminary) Conclusions
	UnConventional HPC
	Bandwidth, Bandwidth, Bandwidth…
	Benchmarks: FEM Building Blocks
	Benchmarks: FEM Building Blocks
	Benchmarks: FEM Building Blocks
	Motivation
	Goals
	Integration Overview
	Integration Summary
	Integration Challenges
	GPU Limitations
	Mixed Precision Iterative Refinement
	Show-Case: FEAST-Solid
	Test goals
	Accuracy
	Weak scalability
	Test configurations
	Speedup
	Speedup Analysis
	Summary
	Conclusions

