

Fakultät für Mathematik

IAM



### UCHPC

#### UnConventional High Performance Computing for PDE

# S. Turek with support by the FEAST Group

Institut für Angewandte Mathematik, TU Dortmund http://www.mathematik.uni-dortmund.de/LS3 http://www.featflow.de

## Motivation

- The 'free ride' is over, HPC faces a paradigm shift:
  - memory wall (in particular for sparse Linear Algebra problems)
  - physical barriers (heat, power consumption, leaking voltage)
  - applications no longer run faster automatically on newer hardware
- Special (heterogeneous) hardware has to be taken into account:
  - multi-core commodity CPUs Cell BE processor graphics cards (GPUs)
  - HPC accelerators (e.g. ClearSpeed) reconfigurable hardware (FPGAs)
- Rethink the way we design algorithms for these architectures when <u>Virtual Labs</u> for realistic applications (*Multiphase*-CFD, CSM) shall be created!

## Why Multiphase Problems

- Very <u>flexible</u> and <u>efficient tools</u> are required for a large class of important applications in chemical engineering, life science, medicine, biomechanics and more.....
- However: Huge dynamical systems

#### Special HPC Techniques required



### Aim of this Talk

'High Performance Comp

meets

'Hardware-Oriented Nume



on

Unconventional Hardware



#### **Hardware-Oriented Numerics**

What is:

#### "Hardware-Oriented Numerics" for PDE?

- It is more than *"good Numerics"* and *"good Implementation"* on High Performance Computers
- Critical quantity: "Total Numerical Efficiency"

## **Total Numerical Efficiency for PDE**

- 'High (guaranteed) accuracy for user-specific quantities with minimal #d.o.f. (~ N) via fast and robust solvers for a wide class of parameter variations with optimal (~ O(N)) numerical complexity while exploiting a significant percentage of the available huge sequential/ parallel GFLOP/s rates at the same time'
- Is it easy to achieve a high "Total Numerical Efficiency"?

### **Example: Fast PDE Solvers**

- Fast Multilevel Methods as general philosophy
  - 'Optimized' versions for scalar PDE problems (≈ Poisson problems) on general meshes should require 100-1000 FLOPs per unknown (in contrast to LAPACK for dense matrices)
- Problem size 10<sup>6</sup>: Much less than 1 sec on PC (???)
- Problem size 10<sup>12</sup>: Less than 1 sec on PFLOP/s computer

#### Criterion' for HPC/Petascale Computing

#### Main Component: 'Sparse' MV Application

- Sparse Matrix-Vector techniques (,indexed DAXPY')
  - DO 10 IROW=1,N
  - DO 10 ICOL=KLD(IROW),KLD(IROW+1)-1
  - 10 Y(IROW)=DA(ICOL)\*X(KCOL(ICOL))+Y(IROW)
- Sparse Banded MV techniques on generalized TP grids











### **Single Processor Performance**



#### Sparse MV multiplication in (sequential) FEATFLOW:

| Computer    | # NEL   | Q1-CM | Q1-TL | Q1-STO | Q2-CM | Q2-TL | Q2-STO |
|-------------|---------|-------|-------|--------|-------|-------|--------|
|             |         |       |       |        |       |       |        |
|             | 520     | 322   | 322   | 322    | 335   | 349   | 327    |
| AMD Opteron | 2,080   | 304   | 302   | 304    | 223   | 227   | 193    |
| (2600 MHz)  | 8,320   | 241   | 241   | 222    | 210   | 202   | 165    |
| ,Opt. 252'  | 33,280  | 180   | 174   | 151    | 198   | 169   | 91     |
|             | 133,120 | 173   | 152   | 85     | 192   | 157   | 58     |
|             | 532,480 | 160   | 140   | 59     | 187   | 154   | 51     |
|             |         |       |       |        |       |       |        |

#### Only 50 MFLOP/s?!

## **Single Processor Performance**

#### 'Generalized Tensorproduct' meshes

| 2D case         | NEQ               | ROW (STO)       | SBB-V      | SBB-C       | MGTRI-V    | MGTRI-C    |
|-----------------|-------------------|-----------------|------------|-------------|------------|------------|
| AMD Opteron     | 65 <sup>2</sup>   | 2172 (633)      | 1806       | 3334        | 1541       | 2086       |
| (2600 MHz)      | 257 <sup>2</sup>  | 574 (150)       | 627        | 2353        | 751        | 1423       |
| ,Opt. 252'      | 1025 <sup>2</sup> | <b>300 (64)</b> | <b>570</b> | <b>1774</b> | <b>538</b> | <b>943</b> |
| IBM POWER4      | 65 <sup>2</sup>   | 1521 (845)      | 2064       | 3612        | 906        | 1071       |
| (1700 MHz)      | 257 <sup>2</sup>  | 943 (244)       | 896        | 2896        | 711        | 962        |
| , <b>JUMP</b> ' | 1025 <sup>2</sup> | <b>343 (51)</b> | <b>456</b> | <b>1916</b> | <b>438</b> | <b>718</b> |

#### Sparse MV techniques (ROW/STO)

- MFLOP/s rates vs. 'Peak Performance', problem size + numbering ???
- Local Adaptivity !!!
- Sparse Banded BLAS MV techniques (SBB) + MGTRI
  - Supercomputing' (up to 4 GFLOP/s) vs. FEM for complex domains ???

### **Single Processor Performance**

#### Vectorization

| 1061 |
|------|
| 1543 |
| 2053 |
|      |

Necessary: Development of 'new' methods

#### "Cyclic Reduction" preconditioner

"SPAI" preconditioner (~ pure MV multiplication)

## Summary

- 'It is non-trivial to reach Single Processor Peak Performance with modern (= high numerical efficiency) PDE tools'
- 'Memory-intensive data/matrix/solver structures?'
- 'Parallel Peak Performance with modern Numerics even harder ...'

### **Parallel Performance**



|                    | 1 P.       | 2 P.       | 4 P.       | 8 P.       | 16 P.      | 32 P.      | 64 P.      |
|--------------------|------------|------------|------------|------------|------------|------------|------------|
| %Comm.<br># PPP-IT | 10%<br>2.2 | 24%<br>3.0 | 36%<br>3.9 | 45%<br>4.9 | 47%<br>5.2 | 55%<br>5.7 | 56%<br>6.2 |
|                    |            |            |            |            |            |            |            |

## Summary

 'Special requirements for numerical and algorithmic approaches in correspondance to modern hardware'

#### 'Hardware-Oriented Numerics for PDE'

#### **FEAST Project**

## Main Philosophy of FEAST

- ScaRC solver: Combine advantages of (parallel) domain decomposition and multigrid methods
- Exploit structured subdomains for high efficiency
- Hide anisotropies locally to increase robustness
- Globally unstructured locally structured
- Recursive solution: Outer global multigrid smoother with local multigrid on the
  - refined macros
- Low communication overhead



### **Open Algorithmic Problems**

#### Adaptive remeshing?

- degree of macro-refinement and/or deformation?
- h-p-r-refinement? 'When to do what' decision?

#### Load balancing?

- due to 'total CPU time per accuracy per processor'?
- dynamical a posteriori process?

#### (Recursive) solver expert system?

numerical + computational a priori knowledge?

| Level | #unknowns     | Computer. | 63p   |        | 127p  |        |
|-------|---------------|-----------|-------|--------|-------|--------|
|       |               |           | sec   | MF/s   | sec   | MF/s   |
| 8     | 90.317.056    | Power4    | 170,4 | 5.252  | 116,4 | 7.698  |
|       |               | NEC       | 156,7 | 5.376  | 91,9  | 9.167  |
|       |               | Opteron   | 65,2  | 13.412 | 40,5  | 21.586 |
| 9     | 361.120.256   | Power4    | -     | -      | 269,6 | 11.912 |
|       |               | NEC       | 222,8 | 13.511 | 128,0 | 23.519 |
|       |               | Opteron   | 192,6 | 16.299 | 104,7 | 29.974 |
| 10    | 1.444.185.088 | Power4    | -     | -      | -     | -      |
|       |               | NEC       | 595,0 | 22.328 | 364,9 | 36.415 |
|       |               | Opteron   | -     | -      | 615,6 | 25.637 |

## (Preliminary) Conclusions

- Numerical efficiency?
  → OK
- Parallel efficiency?
  → (OK)
- Single processor efficiency?
  - $\rightarrow$  almost OK for CPU

#### "Peak" efficiency?

- $\rightarrow$  NO
- → Special GPU/CELL/FPGA-based FEM Co-Processors

## **UnConventional HPC**



 Cell multicore processor (PS3), 7 synergetic processing units @ 3.2 GHz, 218 GFLOP/s Memory clocked @ 3.2 GHz

 CellGraphics Processor: 128 parallel Scalar processors @ 1.35 GHz, 900 MHz GDDR3 memory (86.4 GB/s) ≈ 500 GFLOP/s



#### **UnConventional High Performance Computing (UCHPC)**

### Bandwidth, Bandwidth, Bandwidth...

 FEM codes are 95% memory bounded, bandwidth is the crucial factor for performance



 GPUs offer superior bandwidth, are readily available, fast, cheap, ..., in short, seem like an ideal candidate to improve commodity based clusters

### **Benchmarks: FEM Building Blocks**

 Typical performance of FEM building blocks SAXPY\_C, SAXPY\_V (variable coefficients), MV\_V (9-point-stencil, Q1 elements), DOT on Intel Core2Duo (SBBLAS) and GeForce 8800 GTX



18.02.2008

### **Benchmarks: FEM Building Blocks**

 Typical performance of FEM building blocks SAXPY\_C, SAXPY\_V (variable coefficients), MV\_V (9-point-stencil, Q1 elements), DOT on Intel Core2Duo (SBBLAS) and GeForce 8800 GTX



18.02.2008

## **Benchmarks: FEM Building Blocks**

- Problems:
  - Basic linear algebra operations for sparse matrices are typically memory-bounded
  - GPU: Superior to in-cache performance of CPU for large vectors and matrices!
- Open question: How to use them?



## Motivation

- We want to solve large systems that arise from FEM discretisations very efficiently on commodity clusters.
- CPUs are general-purpose and only achieve close-topeak performance in-cache. CPUs devote most of the area to memory (hierarchies) and not to processing elements (PEs).
- Emerging parallel specialised chips (GPUs, CELL) are PE-dominated and provide potentially lots of FLOPS and huge memory bandwidth.
- Goal: Investigate how such designs can be used as numerical co-processors in scientific computing.

#### Focus exemplarily on GPUs (and: CELL Processor)

### Goals

#### Include GPUs into an existing FEM package

- ...without changes to application code built on top of the package,
- ...without fundamental re-design of the package,
- ...without sacrificing either functionality or accuracy,
- ...but with noteworthy speedups,
- ...a reasonable amount of generality w.r.t. other co-processors,
- ...and additional benefits in terms of space/power/etc.

#### But: no -march=gpu, cell

#### **Integration Overview**



18.02.2008

### **Integration Summary**

- Isolate suitable parts
  - Balance acceleration potential and acceleration effort
- Diverge code paths as late as possible
  - Local MG solver
  - Same interface for several co-processors
- Important benefit of this minimally invasive approach: No changes to application code
  - Co-processor code can be developed and tuned on a single node
  - Entire MPI communication infrastructure remains unchanged

## **Integration Challenges**

- The usual perils and pitfalls in parallel computing
  - Heterogeneity complicates load balancing
  - Heterogeneity complicates assigning jobs to specific resources
  - Don't want to leave the CPU idle while the co-processor computes
- GPU-specific issues
  - Building GPU clusters (density, power, cooling)
  - Maintenance slightly increased
- Precision vs. accuracy
  - Double precision needed, but only at crucial stages of the computation
  - Mixed precision iterative refinement approach
  - Accuracy not affected

### **GPU Limitations**

- Challenge: Reformulate algorithms to the data-stream based programming paradigm!
  - PCIe bus between host system and GPU delivers up to 2 GB/s only
  - GPUs only provide quasi-IEEE 32-bit floating point storage and arithmetics. No double precision! Tests for Poisson equation in 2D

 $-\Delta u = f$  in some domain  $\Omega \subset R^2$  with Dirichlet BCs Discretised with bilinear conforming Finite Elements.

| Level |        | single precision |           | double precision |          |           |
|-------|--------|------------------|-----------|------------------|----------|-----------|
|       | Cycles | Error            | Reduction | Cycles           | Error    | Reduction |
| 2     | 1      | 2.391E-3         |           | 1                | 2.319E-3 |           |
| 3     | 2      | 5.950E-4         | 4.02      | 2                | 5.950E-4 | 4.02      |
| 4     | 2      | 1.493E-4         | 3.98      | 2                | 1.493E-4 | 3.99      |
| 5     | 2      | 3.750E-5         | 3.98      | 2                | 3.728E-5 | 4.00      |
| 6     | 2      | 1.021E-5         | 3.67      | 2                | 9.304E-6 | 4.01      |
| 7     | 2      | 6.691E-6         | 1.53      | 2                | 2.323E-6 | 4.01      |
| 8     | 2      | 2.012E-5         | 0.33      | 2                | 5.801E-7 | 4.00      |
| 9     | 2      | 7.904E-5         | 0.25      | 2                | 1.449E-7 | 4.00      |
| 10    | 2      | 3.593E-4         | 0.22      | 2                | 3.626E-8 | 4.00      |

## **Mixed Precision Iterative Refinement**

- Single precision computation insufficient for required accuracy, but:
  - High precision only necessary at few, crucial stages!
- Mixed precision iterative refinement approach to solve Ax = b:
  - Compute d = b Ax in high precision.
  - Solve Ac = d approximately in low precision.
  - Update x = x + c in high precision and iterate.
- Use arbitrary iterative inner solvers until "few" digits are gained locally.
- Fits naturally on target hardware: Few, high precision updates on the CPU and expensive low precision iterative solution on the GPU.
- Exhaustive experimental and theoretical foundation: very robust w.r.t. solvers, degrees of anisotropy in the discretisation and matrix condition.

### Show-Case: FEAST-Solid

- Fundamental model problem:
  - solid body of elastic, compressible material (e.g. steel)
  - exposed to some external load



### **Test goals**

- Accuracy
  - Evaluate impact of reduced precision
  - Analytic reference solution
- Scalability
  - Here: only weak scalability
- Speedup
  - Exemplarily for some test scenarios
  - Detailed analysis and understanding of speedup components

### Accuracy





number of subdomains

#### Same results for CPU and GPU

 expected error reduction independent of refinement and subdomain distribution

### Weak scalability



Poisson problem for 1.3 billion unknowns in less than 50 seconds on 160 outdated GPUs (Quadro 1400)

Paper: Göddeke et al., Exploring weak scalability for FEM calculations on a GPU-enhanced cluster, Parallel Computing 33(10-11), 685-699, 2007

### **Test configurations**



Test system with 16 nodes: dualcore Santa Rosa Opteron CPU, Quadro 5600 GPU, Infiniband

#### Speedup



## **Speedup Analysis**

- Speedups in 'time to solution' for one GPU
  - 2.6x vs. singlecore, 1.6x vs. dualcore
- Amdahl's Law is lurking
  - Profiling: Local speedup of 9x and 5.5x by the GPU
  - Observation: 2/3 of the entire solver can be accelerated, so the theoretical upper bound for the speedup is 3x (2.6x is quite good!)
  - For dualcores, we expect 2.2x but see only 1.6x
  - Explanation: Overlapping communication / memory access and computation are giving the dualcore an 'unfair advantage'
- Avenue for future work
  - Exploit available resources within the node better
  - Three-way parallelism in our system: coarse-grained (MPI) medium-grained (resources within the node) - fine-grained (compute cores in the GPU)

## Summary

#### Goal: Include GPUs into an existing FEM package ...

- ...without changes to application code built on top of the package,
  → ok
- ...without fundamental refactoring of the package,
  > only 1% of the code base has been touched
- ...without sacrificing either functionality or accuracy,
  → identical errors and convergence behaviour
- ...but with noteworthy speedups,
  → up to 4x for a reasonably challenging application
- ...with a reasonable amount of generality w.r.t. other co-processors,
  → in progress
- ...and with additional benefits in terms of space/power/etc.
- 18.02.2008 → promising preliminary results

### Conclusions

#### There is a huge potential for the future ...

- But: Numerics has to consider recent and future hardware trends!
- But: Developing 'HPC-PDE software' is more than the implementation of existing Numerics for PDE!
  - Understanding the essentials of 'Total Numerical Efficiency'
  - Design, analysis and realization of hardware-oriented Numerics
  - Identification and realization of hardware-optimized basic components
  - Heterogeneous CPU-GPU clusters as 'building blocks'

#### 18.02.2008