
Universität Dortmund
fakultät für mathematik

LS III (IAM)
technische universität
dortmund

UCHPCUCHPC

UUnnCConventionalonventional HHigh igh PPerformance erformance CComputing omputing
for Finite Element Simulationsfor Finite Element Simulations

S. Turek, Chr. Becker, S. Buijssen, D. Göddeke, H.Wobker
(FEAST Group)

Institut für Angewandte Mathematik, TU Dortmund

http://www.mathematik.tu-dortmund.de/LS3
http://www.featflow.de

http://www.feast.tu-dortmund.de

2

Motivation

The ‘free ride’ is over, paradigm shift in HPCHPC:
memory wall (in particular for sparse Linear Algebra problems)
physical barriers (heat, power consumption, leaking voltage)
applications no longer run faster automatically on newer hardware

Heterogeneous hardware: commodity CPUs plus co-
processors

graphics cards (GPU)
Cell BE processor
HPC accelerators (e.g. ClearSpeed)
reconfigurable hardware (FPGA)

Finite Element Methods (FEM) and Multigrid solvers:
most flexible, efficient and accurate simulation tools for
CFD and CSM.

3

Aim of this Talk

High Performance High Performance ComputingComputing

meetsmeets

HardwareHardware--orientedoriented NumericsNumerics

onon

Unconventional HardwareUnconventional Hardware

forfor

Finite Element MethodsFinite Element Methods

4

I) Hardware-Oriented Numerics

What is ‘Hardware-Oriented Numerics’?

It is more than ‘good Numerics‘ and ‘good
Implementation’ on High Performance Computers

Critical quantity: ‘Total Numerical Efficiency’

5

Total Numerical Efficiency

‘High (guaranteed) accuracy for user-specific quantities
with minimal #d.o.f. (~ N) via fast and robust solvers – for
a wide class of parameter variations – with optimal
numerical complexity (~ O(N)) while exploiting a
significant percentage of the available huge sequential/
parallel GFLOP/s rates at the same time’

FEM Multigrid solvers with a posteriori error control for
adaptive meshing are a candidate

Is it easy to achieve high ‘Total Numerical Efficiency’?

6

Example: Fast Poisson Solvers

Fast Multigrid Methods as general philosophy
‘Optimized’ versions for scalar PDE problems
(≈Poisson problems) on general meshes should
require ca. 1000 FLOPs per unknown (in contrast to
LAPACK for dense matrices with O(N3) FLOPs)

Problem size 106 : Much less than 1 sec on PC (???)
Problem size 1012: Less than 1 sec on PFLOP/s computer

More realistic (and much harder) ‘Criterion’ for
Petascale Computing in Technical Simulations

7

Main Component: ‘Sparse’ MV Application

Sparse Matrix-Vector techniques (‘indexed DAXPY’)
DO 10 IROW=1,N

DO 10 ICOL=KLD(IROW),KLD(IROW+1)-1
10 Y(IROW)=DA(ICOL)*X(KCOL(ICOL))+Y(IROW)

Sparse Banded MV techniques on generalized TP grids

8

Generalized Tensorproduct Meshes

9

Generalized Tensorproduct Meshes

10

Generalized Tensorproduct Meshes

…with appropriate Fictitious Boundary techniques in
FEATFLOW…..

11

Generalized Tensorproduct Meshes

….dynamic CFD problems…..

12

Observation I: Sparse MV Multiplication

159720912709Stencil (const)

5506271445Banded

154159251Hierarchical

50116127Stochastic

1M DOF66K DOF4K DOFNumbering

poor, and
problem size dependent

In realistic scenarios, MFLOP/s rates are

13

Observation II: Full CFD Simulations

Speed-up of 100x for free in 10 years

Stagnation for standard simulation tools
on conventional hardware

S
pe

ed
-u

p
(lo

gs
ca

le
)

14

Mesh partitioned into 32 subdomains

Problems due to communication

Numerical behavior
vs.

anisotropic meshes

Observation III: Parallel Performance

56%
6.2

55%
5.7

47%
5.2

45%
4.9

36%
3.9

24%
3.0

10%
2.2

%Comm.
PPP-IT

64 P.32 P.16 P.8 P.4 P.2 P.1 P.

15

Summary

It is (almost) impossible to reach Single Processor
Peak Performance with modern (= high numerical
efficiency) FEM simulation tools

Memory-intensive data/matrix/solver structures?

Parallel Peak Performance with modern Numerics
even harder, already for moderate processor numbers

16

Hardware-oriented Numerics (HwoN)

Dramatic improvement (factor 1000) due to better
Numerics AND better data structures/ algorithms

FEM for 8 Mill.
unknowns on
general domain,
1 CPU, Poisson
Problem in 2D

S
pe

ed
-u

p
(lo

gs
ca

le
)

17

FEAST – Realization of HwoN

ScaRC solver: Combine advantages of (parallel) domain
decomposition and multigrid methods
Cascaded multigrid scheme
Hide anisotropies locally to increase robustness
Globally unstructured – locally structured
Low communication overhead

FEAST applications:FEAST applications:
FEASTFlowFEASTFlow (CFD)(CFD)
FEASTSolidFEASTSolid (CSM)(CSM)
FEASTLBM (SKALB FEASTLBM (SKALB
Project)Project)

18

(Preliminary) State-of-the-Art

Numerical efficiency?
OK

Parallel efficiency?
OK (tested up to 256 CPUs on NEC SX-8, commodity clusters)

Single processor efficiency?
OK (for CPU)

‘Peak’ efficiency?
NO
Special unconventionalunconventional FEM Co-Processors

19

II) UnConventional HPC

Cell multicore processor (PS3),
7 synergistic processing units
@ 3.2 GHz, 218 GFLOP/s,
Memory @ 3.2 GHz

Graphics Processor (GPU):
128 parallel scalar processors
@ 1.35 GHz, 900 MHz GDDR3
memory (86.4 GB/s)
≈ 350 GFLOP/s

UUnnCConventionalonventional HHigh igh PPerformance erformance CComputing (omputing (UCHPCUCHPC))

20

Why are GPUs and Cells so fast?

CPUs devote most of the
transistors to caches and

data movement for general
purpose applications

GPUs and Cells are more
“transistor-efficient“ w.r.t.
floating point operations

21

Benchmarks: FEM Building Blocks

Typical performance of FEM building blocks SAXPY_C, SAXPY_V (variable
coefficients), MV_V (9-point-stencil, Q1 elements), DOT

22

Benchmarks: Complete Multigrid Solver

Promising results,
attempt to integrate GPUs as FEM Co-Processors

23

Design Goals

Include GPUs into FEAST

without
changes to application codes FEASTFLOW / FEASTSolid
fundamental re-design of FEAST
sacrificing either functionality or accuracy

but with
noteworthy speedups
a reasonable amount of generality w.r.t. other co-processors
and additional benefits in terms of space/power/etc.

But: no --march=gpu/cell compiler switch

24

Integration Principles

Isolate suitable parts
Balance acceleration potential and acceleration effort

Diverge code paths as late as possible
Local MG solver
Same interface for several co-processors

Important benefit of minimally invasive approach:
No changes to application code

Co-processor code can be developed and tuned on a single node
Entire MPI communication infrastructure remains unchanged

25

Integration Overview

26

Show-Case: FEASTSolid

Fundamental model problem:
solid body of elastic, compressible material (e.g. steel)
exposed to some external load

27

Accuracy

L2 error against reference solution

Same results for CPU and GPU
expected error reduction independent of refinement and
subdomain distribution

28

(Weak) Scalability

More results
Poisson problem for 1.3 billion unknowns in less than 50 seconds
on 160 outdated GPUs (Quadro 1400)

64 nodes,
2x Xeon EM64T
3.4 GHz,
1x outdated
Quadro 1400 GPU,
Infiniband

29

Speedup

16 nodes,
2x Santa Rosa
dualcore CPUs,
1x Quadro
5600 GPU,
Infiniband

30

Speedup Analysis

Speedups in 'time to solution' for one GPU:
2.6x vs. Singlecore, 1.6x vs. Dualcore

Amdahl's Law is lurking
Local speedup of 9x and 5.5x by the GPU
2/3 of the solver accelerable => theoretical upper bound 3x

Future work
Three-way parallelism in our system:

coarse-grained (MPI)
medium-grained (heterogeneous resources within the node)
fine-grained (compute cores in the GPU)

Better interplay of resources within the node
Adapt Hardware-oriented Numerics to increase accelerable part

31

There is a Huge Potential for the Future …

But:
High Performance Computing has to consider
recent and future hardware trends, particularly for
heterogeneous multicore architectures and massively
parallel systems!

The combination of ‘Hardware-oriented Numerics’
and special ‘Data Structures/Algorithms’ and
‘Unconventional Hardware’ has to be used!

…or most of existing (academic/commercial) FEM
software will be ‘worthless’ in a few years!

32

Acknowledgements

FEAST Group
(TU Dortmund)

Robert Strzodka
(Max Planck Center, Max Planck Institut Informatik)

Jamaludin Mohd-Yusof, Patrick McCormick
(Los Alamos National Laboratories)

