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Motivation

The ‘free ride’ is over, paradigm shift in HPC:
memory wall (in particular for sparse Linear Algebra problems)
physical barriers (heat, power consumption, leaking voltage)
applications no longer run faster automatically on newer hardware

Heterogeneous hardware: commodity CPUs plus co-
Processors

graphics cards (GPU)

Cell BE processor

HPC accelerators (e.g. ClearSpeed)

reconfigurable hardware (FPGA)

Finite Element Methods (FEM) and Multigrid solvers:

most flexible, efficient and accurate simulation tools for
CFD and CSM.



Aim of this Talk

High Performance Computing

meets

Hardware-oriented Numerics

on

Unconventional Hardware

for

Finite Element Methods




) Hardware-Oriented Numerics

What is ‘Hardware-Oriented Numerics’?

It is more than ‘good Numerics' and ‘good
Implementation’ on High Performance Computers

Critical quantity: ‘Total Numerical Efficiency’



Total Numerical Efficiency

‘High (guaranteed) accuracy for user-specific quantities
with minimal #d.o.f. (~ N) via fast and robust solvers — for
a wide class of parameter variations — with optimal
numerical complexity (~ O(N)) while exploiting a
significant percentage of the available huge sequential/
parallel GFLOP/s rates at the same time’

FEM Multigrid solvers with a posteriori error control for
adaptive meshing are a candidate

Is it easy to achieve high ‘Total Numerical Efficiency’?



Example: Fast Poisson Solvers

Fast Multigrid Methods as general philosophy

‘Optimized’ versions for scalar PDE problems
(=Poisson problems) on general meshes should
require ca. 1000 FLOPs per unknown (in contrast to
LAPACK for dense matrices with O(N3) FLOPSs)

Problem size 10° : Much less than 1 sec on PC (??7?)
Problem size 10'2; Less than 1 sec on PFLOP/s computer

More realistic (and much harder) ‘Criterion’ for
Petascale Computing in Technical Simulations



Main Component: ‘Sparse’ MV Application

Sparse Matrix-Vector techniques (‘indexed DAXPY?)
DO 10 IROW=1,N
DO 10 ICOL=KLD(IROW),KLD(IROW+1)-1
10 Y (IROW)=DA(1COL)*X(KCOL (1COL))+Y (1ROW)

Sparse Banded MV techniques on generalized TP grids

K*M




Generalized Tensorproduct Meshes
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Generalized Tensorproduct Meshes
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Generalized Tensorproduct Meshes

...with appropriate Fictitious Boundary techniques in
FEATFLOW.....
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d Tensorproduct Meshes

Generalize

000000&+00

0

....dynamic CFD problems.....
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Observation |: Sparse MV Multiplication

Numbering 4K DOF | 66K DOF 1M DOF

Stochastic 127 116 50
Hierarchical 251 159 154
Banded 1445 627 550
Stencil (const) 2709 2091 1597

In realistic scenarios, MFLOP/s rates are

poor, and

problem size dependent
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Observation ll: Full CFD Simulations
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Speed-up of 100x for free in 10 years

Stagnation for standard simulation tools
on conventional hardware 13



Observation lll: Parallel Performance

= Problems due to communication

= Numerical behavior

anisotropic meshes §

VS.

= Mesh partitioned into 32 subdomains

1P. 2P. 4P. 8 P. 16 P. 32 P. 64 P.
%Comm. | 10% | 24% 36% 45% 47% 55% 56%
# PPP-IT | 2.2 3.0 3.9 4.9 5.2 5.7 6.2
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Summary

It is (almost) impossible to reach Single Processor
Peak Performance with modern (= high numerical
efficiency) FEM simulation tools

Memory-intensive data/matrix/solver structures?

Parallel Peak Performance with modern Numerics
even harder, already for moderate processor numbers

15



Hardware-oriented Numerics (HwoN)

HEl Stochastic
1000 | mmm Hierarchical
| H Tensor product

FEM for 8 Mill.
unknowns on So
general domain, §
1 CPU, Poisson &
Problem in 2D
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CG (simple) CG (advanced) MG (simple) MG (advanced)

Dramatic improvement (factor 1000) due to better
Numerics AND better data structures/ algorithms
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FEAST — Realization of HwoN

ScaRC solver: Combine advantages of (parallel) domain
decomposition and multigrid methods

Cascaded multigrid scheme
Hide anisotropies locally to increase robustness
Globally unstructured — locally structured

Low communication overhead

FEAST applications:
FEASTFlow (CFD)
FEASTSolid (CSM)
FEASTLBM (SKALB =
Project)




(Preliminary) State-of-the-Art

Numerical efficiency?
-> OK

Parallel efficiency?
- OK (tested up to 256 CPUs on NEC SX-8, commodity clusters)

Single processor efficiency?
- OK (for CPU)

‘Peak’ efficiency?
-> NO
- Special unconventional FEM Co-Processors

18



II) UnConventional HPC

= Cell multicore processor (PS3),
7 synergistic processing units
@ 3.2 GHz, 218 GFLOP/s,
Memory @ 3.2 GHz

= Graphics Processor (GPU):
128 parallel scalar processors
@ 1.35 GHz, 900 MHz GDDR3
memory (86.4 GB/s)
~ 350 GFLOP/s

UnConventional High Performance Computing (UCHPC)

19



Why are GPUs and Cells so fast?

AMD Daainotnd Gore (K8L-Rev.H)

8kb! ECC.fo
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Unit 2

www.chip-architect.com

CPUs devote most of the
transistors to caches and
data movement for general
purpose applications

GPUs and Cells are more
“transistor-efficient” w.r.t.
floating point operations
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Benchmarks: FEM Building Blocks

= Typical performance of FEM building blocks SAXPY_C, SAXPY _V (variable
coefficients), MV_V (9-point-stencil, Q1 elements), DOT
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Benchmarks: Complete Multigrid Solver
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Promising results,

attempt to integrate GPUs as FEM Co-Processors



Design Goals

Include GPUs into FEAST

without
changes to application codes FEASTFLOW / FEASTSolid

fundamental re-design of FEAST
sacrificing either functionality or accuracy

but with

noteworthy speedups
a reasonable amount of generality w.r.t. other co-processors

and additional benefits in terms of space/power/etc.

But: no --march=gpu/cell compiler switch

23



Integration Principles

Isolate suitable parts
Balance acceleration potential and acceleration effort

Diverge code paths as late as possible
Local MG solver
Same interface for several co-processors

Important benefit of minimally invasive approach:
No changes to application code

Co-processor code can be developed and tuned on a single node
Entire MPl communication infrastructure remains unchanged
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Integration Overview
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Show-Case: FEASTSolid

Fundamental model problem:
= solid body of elastic, compressible material (e.g. steel)
= exposed to some external load
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Accuracy

= L, error against reference solution
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Same results for CPU and GPU

256

= expected error reduction independent of refinement and
subdomain distribution



(Weak) Scalability
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More results

Poisson problem for 1.3 billion unknowns in less than 50 seconds
on 160 outdated GPUs (Quadro 1400)



Speedup
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Speedup Analysis

Speedups in 'time to solution' for one GPU:
2.6x vs. Singlecore, 1.6x vs. Dualcore

Amdahl's Law is lurking
Local speedup of 9x and 5.5x by the GPU
2/3 of the solver accelerable => theoretical upper bound 3x

Future work

Three-way parallelism in our system:

coarse-grained (MPI)
medium-grained (heterogeneous resources within the node)

fine-grained (compute cores in the GPU)
Better interplay of resources within the node
Adapt Hardware-oriented Numerics to increase accelerable part



There Is a Huge Potential for the Future ...

But:

High Performance Computing has to consider
recent and future hardware trends, particularly for
heterogeneous multicore architectures and massively
parallel systems!

The combination of ‘Hardware-oriented Numerics’
and special ‘Data Structures/Algorithms’ and
‘Unconventional Hardware’ has to be used!

...or most of existing (academic/commercial) FEM

software will be ‘worthless’ in a few years!
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