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Motivation

The ‘free ride’ is over, paradigm shift in HPCHPC:
memory wall (in particular for sparse Linear Algebra problems)
physical barriers (heat, power consumption, leaking voltage)
applications no longer run faster automatically on newer hardware

Heterogeneous hardware: commodity CPUs plus co-
processors

graphics cards (GPU)
Cell BE processor  
HPC accelerators (e.g. ClearSpeed)  
reconfigurable hardware (FPGA)

Finite Element Methods (FEM) and Multigrid solvers:   
most flexible, efficient and accurate simulation tools for 
CFD and CSM. 
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Aim of this Talk

High Performance High Performance ComputingComputing

meetsmeets

HardwareHardware--orientedoriented NumericsNumerics

onon

Unconventional HardwareUnconventional Hardware

forfor

Finite Element MethodsFinite Element Methods
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I) Hardware-Oriented Numerics

What is ‘Hardware-Oriented Numerics’?

It is more than ‘good Numerics‘ and ‘good 
Implementation’ on High Performance Computers

Critical quantity: ‘Total Numerical Efficiency’
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Total Numerical Efficiency

‘High (guaranteed) accuracy for user-specific quantities 
with minimal #d.o.f. (~ N) via fast and robust solvers – for 
a wide class of parameter variations – with optimal
numerical complexity (~ O(N)) while exploiting a 
significant percentage of the available huge sequential/ 
parallel GFLOP/s rates at the same time’

FEM Multigrid solvers with a posteriori error control for 
adaptive meshing are a candidate

Is it easy to achieve high ‘Total Numerical Efficiency’?
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Example: Fast Poisson Solvers

Fast Multigrid Methods as general philosophy
‘Optimized’ versions for scalar PDE problems 
(≈Poisson problems) on general meshes should 
require ca. 1000 FLOPs per unknown (in contrast to 
LAPACK for dense matrices with O(N3) FLOPs)

Problem size 106  : Much less than 1 sec on PC (???)
Problem size 1012: Less than 1 sec on PFLOP/s computer

More realistic (and much harder) ‘Criterion’ for  
Petascale Computing in Technical Simulations
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Main Component: ‘Sparse’ MV Application

Sparse Matrix-Vector techniques (‘indexed DAXPY’)
DO 10 IROW=1,N

DO 10 ICOL=KLD(IROW),KLD(IROW+1)-1
10 Y(IROW)=DA(ICOL)*X(KCOL(ICOL))+Y(IROW)

Sparse Banded MV techniques on generalized TP grids
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Generalized Tensorproduct Meshes
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Generalized Tensorproduct Meshes
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Generalized Tensorproduct Meshes

…with appropriate Fictitious Boundary techniques in 
FEATFLOW…..
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Generalized Tensorproduct Meshes

….dynamic CFD problems…..
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Observation I: Sparse MV Multiplication

159720912709Stencil (const)

5506271445Banded

154159251Hierarchical

50116127Stochastic

1M DOF66K DOF4K DOFNumbering

poor, and  
problem size dependent

In realistic scenarios, MFLOP/s rates are
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Observation II: Full CFD Simulations

Speed-up of 100x for free in 10 years

Stagnation for standard simulation tools 
on conventional hardware
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Mesh partitioned into 32 subdomains

Problems due to communication

Numerical behavior 
vs. 

anisotropic meshes

Observation III: Parallel Performance
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15

Summary

It is (almost) impossible to reach Single Processor 
Peak Performance with modern (= high numerical 
efficiency) FEM simulation tools

Memory-intensive data/matrix/solver structures?

Parallel Peak Performance with modern Numerics
even harder, already for moderate processor numbers
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Hardware-oriented Numerics (HwoN)

Dramatic improvement (factor 1000) due to better
Numerics AND better data structures/ algorithms

FEM for 8 Mill. 
unknowns on 
general domain, 
1 CPU, Poisson
Problem in 2D
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FEAST – Realization of HwoN

ScaRC solver: Combine advantages of (parallel) domain 
decomposition and multigrid methods
Cascaded multigrid scheme
Hide anisotropies locally to increase robustness
Globally unstructured – locally structured
Low communication overhead

FEAST applications:FEAST applications:
FEASTFlowFEASTFlow (CFD)(CFD)
FEASTSolidFEASTSolid (CSM)(CSM)
FEASTLBM (SKALB FEASTLBM (SKALB 
Project)Project)
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(Preliminary) State-of-the-Art

Numerical efficiency?
OK

Parallel efficiency?
OK (tested up to 256 CPUs on NEC SX-8, commodity clusters)

Single processor efficiency?
OK (for CPU)

‘Peak’ efficiency?
NO
Special unconventionalunconventional FEM Co-Processors
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II) UnConventional HPC

Cell multicore processor (PS3),        
7 synergistic processing units
@ 3.2 GHz, 218 GFLOP/s,              
Memory @ 3.2 GHz

Graphics Processor (GPU):   
128 parallel scalar processors
@ 1.35 GHz, 900 MHz GDDR3 
memory (86.4 GB/s)                  
≈ 350 GFLOP/s

UUnnCConventionalonventional HHigh igh PPerformance erformance CComputing (omputing (UCHPCUCHPC))
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Why are GPUs and Cells so fast?

CPUs devote most of the
transistors to caches and 

data movement for general
purpose applications

GPUs and Cells are more
“transistor-efficient“ w.r.t. 
floating point operations
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Benchmarks: FEM Building Blocks

Typical performance of FEM building blocks SAXPY_C, SAXPY_V (variable 
coefficients), MV_V (9-point-stencil, Q1 elements), DOT
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Benchmarks: Complete Multigrid Solver

Promising results, 
attempt to integrate GPUs as FEM Co-Processors
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Design Goals

Include GPUs into FEAST

without 
changes to application codes FEASTFLOW / FEASTSolid
fundamental re-design of FEAST
sacrificing either functionality or accuracy

but with
noteworthy speedups
a reasonable amount of generality w.r.t. other co-processors
and additional benefits in terms of space/power/etc.

But: no --march=gpu/cell compiler switch
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Integration Principles

Isolate suitable parts
Balance acceleration potential and acceleration effort

Diverge code paths as late as possible
Local MG solver
Same interface for several co-processors

Important benefit of minimally invasive approach:  
No changes to application code

Co-processor code can be developed and tuned on a single node
Entire MPI communication infrastructure remains unchanged
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Integration Overview
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Show-Case: FEASTSolid

Fundamental model problem:
solid body of elastic, compressible material (e.g. steel)
exposed to some external load
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Accuracy

L2 error against reference solution

Same results for CPU and GPU
expected error reduction independent of refinement and 
subdomain distribution
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(Weak) Scalability

More results
Poisson problem for 1.3 billion unknowns in less than 50 seconds
on 160 outdated GPUs (Quadro 1400)

64 nodes, 
2x Xeon EM64T 
3.4 GHz, 
1x outdated
Quadro 1400 GPU, 
Infiniband
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Speedup

16 nodes, 
2x Santa Rosa 
dualcore CPUs, 
1x Quadro
5600 GPU, 
Infiniband
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Speedup Analysis

Speedups in 'time to solution' for one GPU: 
2.6x vs. Singlecore, 1.6x vs. Dualcore

Amdahl's Law is lurking
Local speedup of 9x and 5.5x by the GPU
2/3 of the solver accelerable => theoretical upper bound 3x

Future work
Three-way parallelism in our system: 

coarse-grained (MPI)
medium-grained (heterogeneous resources within the node)
fine-grained (compute cores in the GPU)

Better interplay of resources within the node
Adapt Hardware-oriented Numerics to increase accelerable part
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There is a Huge Potential for the Future …

But:
High Performance Computing has to consider 
recent and future hardware trends, particularly for 
heterogeneous multicore architectures and massively 
parallel systems!

The combination of ‘Hardware-oriented Numerics’
and special ‘Data Structures/Algorithms’ and 
‘Unconventional Hardware’ has to be used!

…or most of existing (academic/commercial) FEM 
software will be ‘worthless’ in a few years!
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