- 3 — %\
H . PEL - l{ "_‘
technische universitat fakultat fir mathematik o @ | (‘ . J

) dortmund LS (AM) & yis

UCHPC

UnConventional High Performance Computing
for Finite Element Simulations

S. Turek, Chr. Becker, S. Buijssen, D. Goddeke, H.Wobker
(FEAST Group)

Institut fur Angewandte Mathematik, TU Dortmund

http://www.mathematik.tu-dortmund.de/LS3
http://www.featflow.de
http://www.feast.tu-dortmund.de

Motivation

The ‘free ride’ is over, paradigm shift in HPC:
memory wall (in particular for sparse Linear Algebra problems)
physical barriers (heat, power consumption, leaking voltage)
applications no longer run faster automatically on newer hardware

Heterogeneous hardware: commodity CPUs plus co-
Processors

graphics cards (GPU)

Cell BE processor

HPC accelerators (e.g. ClearSpeed)

reconfigurable hardware (FPGA)

Finite Element Methods (FEM) and Multigrid solvers:

most flexible, efficient and accurate simulation tools for
CFD and CSM.

Aim of this Talk

High Performance Computing

meets

Hardware-oriented Numerics

on

Unconventional Hardware

for

Finite Element Methods

) Hardware-Oriented Numerics

What is ‘Hardware-Oriented Numerics’?

It is more than ‘good Numerics' and ‘good
Implementation’ on High Performance Computers

Critical quantity: ‘Total Numerical Efficiency’

Total Numerical Efficiency

‘High (guaranteed) accuracy for user-specific quantities
with minimal #d.o.f. (~ N) via fast and robust solvers — for
a wide class of parameter variations — with optimal
numerical complexity (~ O(N)) while exploiting a
significant percentage of the available huge sequential/
parallel GFLOP/s rates at the same time’

FEM Multigrid solvers with a posteriori error control for
adaptive meshing are a candidate

Is it easy to achieve high ‘Total Numerical Efficiency’?

Example: Fast Poisson Solvers

Fast Multigrid Methods as general philosophy

‘Optimized’ versions for scalar PDE problems
(=Poisson problems) on general meshes should
require ca. 1000 FLOPs per unknown (in contrast to
LAPACK for dense matrices with O(N3) FLOPSs)

Problem size 10° : Much less than 1 sec on PC (??7?)
Problem size 10'2; Less than 1 sec on PFLOP/s computer

More realistic (and much harder) ‘Criterion’ for
Petascale Computing in Technical Simulations

Main Component: ‘Sparse’ MV Application

Sparse Matrix-Vector techniques (‘indexed DAXPY?)
DO 10 IROW=1,N
DO 10 ICOL=KLD(IROW),KLD(IROW+1)-1
10 Y (IROW)=DA(1COL)*X(KCOL (1COL))+Y (1ROW)

Sparse Banded MV techniques on generalized TP grids

K*M

Generalized Tensorproduct Meshes

it

I

i

T

LI

AR

T

Il

(0

Generalized Tensorproduct Meshes

yiH i 0

R T

iiﬁ\\ﬂmmm\\\\\wmn il ;,,,!%%%%ﬁ*"i’i’ﬁiﬁ:

mazavsutawuti i b

SEEE et aE= s

E=“.\\:\\\\\\\\\\\\\§\\\\\\\\‘\\\|||l|||||||“‘||ll\\\\\\\\\\\\\\\\llll\l ||llllllllﬂ’,,llll’%llf’r’t’lt”’r’t"n‘ii-’é
=~ A =====-.-‘\\e\\“‘m‘ee\e\\ee\\‘.\.\'a'.v.m.....,,;;;;::@,,W%Zzzg:t;ﬁ’;ff;

%%%Wﬁ%%’iﬁiinﬂﬂﬂlﬂmm %ﬁ%ﬁ%ﬁﬁﬁ,ﬁiﬁﬂﬁﬁ{@@“§;§§§§§§
EHEH:,’l[[;’:’:’//’,”//IIIIII’IIIII’,’,’,’,',','WIIIIlllllllll'l’,l”lllll’l’l’l’l’l’l,l’l"’””’,”"’,’,',','lllll ||||||ii{{\l\\eee\\e\\\\\\\\\\\\\\;\\;:\§\\:\:§\:§§§
H R N
T it R R
e T R
T SRR
wait T 1 R
s
H ’H T

Generalized Tensorproduct Meshes

...with appropriate Fictitious Boundary techniques in
FEATFLOW.....

10

d Tensorproduct Meshes

Generalize

000000&+00

0

....dynamic CFD problems.....

11

it

i

Observation |: Sparse MV Multiplication

Numbering 4K DOF | 66K DOF 1M DOF

Stochastic 127 116 50
Hierarchical 251 159 154
Banded 1445 627 550
Stencil (const) 2709 2091 1597

In realistic scenarios, MFLOP/s rates are

poor, and

problem size dependent

12

Observation ll: Full CFD Simulations

I Best
Il Average

100 |

Speed-up
(logscale)

19931994 19951996 19971998199920002001200220032004 20052006

Speed-up of 100x for free in 10 years

Stagnation for standard simulation tools
on conventional hardware 13

Observation lll: Parallel Performance

= Problems due to communication

= Numerical behavior

anisotropic meshes §

VS.

= Mesh partitioned into 32 subdomains

1P. 2P. 4P. 8 P. 16 P. 32 P. 64 P.
%Comm. | 10% | 24% 36% 45% 47% 55% 56%
PPP-IT | 2.2 3.0 3.9 4.9 5.2 5.7 6.2

14

Summary

It is (almost) impossible to reach Single Processor
Peak Performance with modern (= high numerical
efficiency) FEM simulation tools

Memory-intensive data/matrix/solver structures?

Parallel Peak Performance with modern Numerics
even harder, already for moderate processor numbers

15

Hardware-oriented Numerics (HwoN)

HEl Stochastic
1000 | mmm Hierarchical
| H Tensor product

FEM for 8 Mill.
unknowns on So
general domain, §
1 CPU, Poisson &
Problem in 2D

100

(Iogscale

10

CG (simple) CG (advanced) MG (simple) MG (advanced)

Dramatic improvement (factor 1000) due to better
Numerics AND better data structures/ algorithms

16

FEAST — Realization of HwoN

ScaRC solver: Combine advantages of (parallel) domain
decomposition and multigrid methods

Cascaded multigrid scheme
Hide anisotropies locally to increase robustness
Globally unstructured — locally structured

Low communication overhead

FEAST applications:
FEASTFlow (CFD)
FEASTSolid (CSM)
FEASTLBM (SKALB =
Project)

(Preliminary) State-of-the-Art

Numerical efficiency?
-> OK

Parallel efficiency?
- OK (tested up to 256 CPUs on NEC SX-8, commodity clusters)

Single processor efficiency?
- OK (for CPU)

‘Peak’ efficiency?
-> NO
- Special unconventional FEM Co-Processors

18

II) UnConventional HPC

= Cell multicore processor (PS3),
7 synergistic processing units
@ 3.2 GHz, 218 GFLOP/s,
Memory @ 3.2 GHz

= Graphics Processor (GPU):
128 parallel scalar processors
@ 1.35 GHz, 900 MHz GDDR3
memory (86.4 GB/s)
~ 350 GFLOP/s

UnConventional High Performance Computing (UCHPC)

19

Why are GPUs and Cells so fast?

AMD Daainotnd Gore (K8L-Rev.H)

8kb! ECC.fo

8 " - r—p—r——m—
_ » i e

Unit 2

www.chip-architect.com

CPUs devote most of the
transistors to caches and
data movement for general
purpose applications

GPUs and Cells are more
“transistor-efficient” w.r.t.
floating point operations

20

Benchmarks: FEM Building Blocks

= Typical performance of FEM building blocks SAXPY_C, SAXPY _V (variable
coefficients), MV_V (9-point-stencil, Q1 elements), DOT

i ' | —— U : 7] | I
T el =
e e —
10000 |- 4 10000
8900 |- - a0 -
a0 |- < 000]
4000 |- = 4000
ol m il “1 1 ™[

: W . o .am

ok 4dEn fE840 2100 1060024 1ML 4uED 18841 BEOAY IR3I00 106002Y

Intel Coro2Duo 2800 NYIDIA @oFsree A0S QTR

Benchmarks: Complete Multigrid Solver

4200

g%—

MH OF/s raies

1200

N I
200

16641 0049 203109 1050623

Promising results,

attempt to integrate GPUs as FEM Co-Processors

Design Goals

Include GPUs into FEAST

without
changes to application codes FEASTFLOW / FEASTSolid

fundamental re-design of FEAST
sacrificing either functionality or accuracy

but with

noteworthy speedups
a reasonable amount of generality w.r.t. other co-processors

and additional benefits in terms of space/power/etc.

But: no --march=gpu/cell compiler switch

23

Integration Principles

Isolate suitable parts
Balance acceleration potential and acceleration effort

Diverge code paths as late as possible
Local MG solver
Same interface for several co-processors

Important benefit of minimally invasive approach:
No changes to application code

Co-processor code can be developed and tuned on a single node
Entire MPl communication infrastructure remains unchanged

24

Integration Overview

Applicati .
vk FEASTSolid (CSM)

|
|
' User FEASTFLOW (CFD)
I
!
|

Scheduling

I

[
I
I Generalized ?n;o:fther Local CPU :
| MG/DD . Smoother ,
| Solver 2B an [BEILE (MG) |
I

|

|
|
| Cg APIs
| Graphics
|
|

Driver

Show-Case: FEASTSolid

Fundamental model problem:
= solid body of elastic, compressible material (e.g. steel)
= exposed to some external load

26

Accuracy

= L, error against reference solution

- g mdller iz batler <
L= armor

1e-5

1e-2

L7(CPLYy —
L7{@PLL)

Le|CPU) —#—

LalaPLI)
LajCPLI

La(GPU) —&—
L10[CPLl) —®

L1a{GPL)

1e-10
16

G54

number of subdomains

Same results for CPU and GPU

256

= expected error reduction independent of refinement and
subdomain distribution

(Weak) Scalability

150
140 F— S
64 nodes, LoooEer
2x Xeon EM64T g
E‘_“ 120
3.4 GHz, ol
1x outdated %E 110 |
Quadro 1400 GPU, 7
Infiniband oo
2o
CPUL10) ——
GPU(L10)]
BEE‘H DOF E-dh'liIEII:IF 1zaMi DOF ESEM; COF s12Mi DOF

More results

Poisson problem for 1.3 billion unknowns in less than 50 seconds
on 160 outdated GPUs (Quadro 1400)

Speedup

2al

CPU-dual ===

CPU-single
EPLU-single s

200 F

16 nodes,

2x Santa Rosa
dualcore CPUs,
1x Quadro
5600 GPU,
Infiniband

150 |

fime [zac)

100 |

c— gmaller iz batlar c—

a0

BLOCK CRACK FIFE STEELFRAME

Speedup Analysis

Speedups in 'time to solution' for one GPU:
2.6x vs. Singlecore, 1.6x vs. Dualcore

Amdahl's Law is lurking
Local speedup of 9x and 5.5x by the GPU
2/3 of the solver accelerable => theoretical upper bound 3x

Future work

Three-way parallelism in our system:

coarse-grained (MPI)
medium-grained (heterogeneous resources within the node)

fine-grained (compute cores in the GPU)
Better interplay of resources within the node
Adapt Hardware-oriented Numerics to increase accelerable part

There Is a Huge Potential for the Future ...

But:

High Performance Computing has to consider
recent and future hardware trends, particularly for
heterogeneous multicore architectures and massively
parallel systems!

The combination of ‘Hardware-oriented Numerics’
and special ‘Data Structures/Algorithms’ and
‘Unconventional Hardware’ has to be used!

...or most of existing (academic/commercial) FEM

software will be ‘worthless’ in a few years!
31

Acknowledgements

FEAST Group
(TU Dortmund)

Robert Strzodka
(Max Planck Center, Max Planck Institut Informatik)

Jamaludin Mohd-Yusof, Patrick McCormick
(Los Alamos National Laboratories)

[e
“J .f"{_' ' Max Planck Center

)
:-: e for visual computing and cemmunication g Lﬂs Ala mos

o 'l|.
- L ':I MATIONAL LABORATORY
' EST.1943

32

