Fictitious Boundary and Moving Mesh Methods for the Numerical Simulation of Particulate Flow

Stefan Turek, Dan Anca, Decheng Wan

Institut für Angewandte Mathematik, Univ. Dortmund http://www.mathematik.uni-dortmund.de/LS3 http://www.featflow.de

Numerical techniques

Fluid – (Rigid) Solid Interfaces

Consider flow of N solid particles in a fluid with density ρ and viscosity μ . Denote by $\Omega_f(t)$ the domain occupied by the fluid at time t, and by $\Omega_p(t)$ domain occupied by the particle P at time t:

Fluid flow is modelled by the **Navier-Stokes equations** in $\Omega_{f}(t)$:

$$\rho\left(\frac{\partial u}{\partial t} + u \cdot \nabla u\right) - \nabla \cdot \sigma = f, \quad \nabla \cdot u = 0$$

where σ is the total stress tensor in the fluid phase, which is defined as :

$$\sigma(X,t) = -pI + \mu[\nabla u + (\nabla u)^T]$$

Model for Particle Motion (I)

Motion of particles is described by the Newton-Euler equations, i.e., the translational velocities U_p and angular velocities \mathcal{O}_p of the p-th particle satisfy:

$$M_{p}\frac{dU_{p}}{dt} = F_{p} + F_{p}' + (\Delta M_{p})g, \quad I_{p}\frac{d\omega_{p}}{dt} + \omega_{p} \times (I_{p}\omega_{p}) = T_{p}.$$

with M_p the mass of the p-th particle (p =1,...,N);

 I_p the moment of inertia tensor of the p-th particle;

 ΔM_p the mass difference between the mass M_p and the mass of the fluid occupying the same volume.

Model for Particle Motion (II)

 F_p and T_p are the **hydrodynamical forces** and the **torque** at mass center acting on the p-th particle:

$$F_{p} = -\int_{\Gamma_{p}} \sigma \cdot n_{p} d\Gamma_{p}, \quad T_{p} = -\int_{\Gamma_{p}} (X - X_{p}) \times (\sigma \cdot n_{p}) d\Gamma_{p}$$

and F'_p are the collision or agglomeration forces (later).

 X_p is the position of the center of gravity of the p-th particle; $\Gamma_p = \partial \Omega_p$ the boundary of the p-th particle; n_p is the unit normal vector on the boundary Γ_p .

Interaction between Particle and Fluid

No slip boundary conditions at interface Γ_p between particles and fluid i.e., for any $X \in \Gamma_p$, the velocity $\mathbf{u}(X)$ is defined by:

$$u(X) = U_p + \omega_p \times (X - X_p)$$

The **position** X_p of the p-th particle and its **angle** θ_p are obtained by integration of the kinematic equations:

$$\frac{dX_{p}}{dt} = U_{p}, \qquad \frac{d\theta_{p}}{dt} = \omega_{p}$$

Explicit coupling

$$t^{n}$$
 fluid \rightarrow t^{n} force on solid \rightarrow t^{n+1} solid \rightarrow t^{n+1} fluid

Eulerian approach: fixed meshes!

Use a **fixed** mesh that covers the whole domain where the fluid may be present.

FEM-fictitious boundary methods

Computational mesh (can be) independent of 'internal objects'

Grid Deformation Method

- idea : construct transformation ϕ , $x = \phi(\xi, t)$ with det $\nabla \phi = f$ \implies local mesh area $\approx f$
- 1. Compute monitor function $f(x,t) > 0, f \in C^1$ and

$$\int_{\Omega} f^{-1}(x,t) dx = |\Omega|, \quad \forall t \in [0,1]$$

2. Solve
$$(t \in [0,1])$$

 $\Delta v(\xi, t) = -\frac{\partial}{\partial t} \left(\frac{1}{f(\xi, t)} \right), \quad \frac{\partial v}{\partial n} \Big|_{\partial \Omega} = 0$

3. Solve the ODE system

$$\frac{\partial}{\partial t}\phi(\xi,t) = f(\phi(\xi,t),t)\nabla v(\phi(\xi,t),t)$$

new grid points:
$$x_i = \phi(\xi_i, 1)$$

Grid deformation preserves the (local) logical structure of the grid

How to Calculate Forces with FBM?

Hydrodynamic forces and torque acting on the i-th particle

$$F_{i} = -\int_{\partial P_{i}} \sigma \cdot n_{i} d\Gamma_{i}, \qquad T_{i} = -\int_{\partial P_{i}} (X - X_{i}) \times (\sigma \cdot n_{i}) d\Gamma_{i}$$

▶ FBM: 0/1 - reconstruction of the shape is only 1st order accurate
 → local grid adaptivity or alignment near interface
 → "only" averaged/integral quantities are required

But: The FBM can only decide "INSIDE" or "OUTSIDE"

Idea: 'Replace the surface integral by a volume integral'

Calculation of Hydrodynamic Forces

Define auxiliary function α as

$$\alpha_{p}(X) = \begin{cases} 1 & \text{for} & X \in \Omega_{p} \\ 0 & \text{for} & X \in \Omega_{f} \end{cases}$$

Remark: $\nabla \alpha_p = 0$ everywhere except at wall surface of the particles, and equal to the normal vector n_p defined on the global grid.

$$n_p = \nabla \alpha_p$$

Force acting on the wall surface of the particles can be computed by

$$F_{p} = -\int_{\Gamma_{p}} \sigma \cdot n_{p} d\Gamma_{p} = -\int_{\Omega_{T}} \sigma \cdot \nabla \alpha_{p} d\Omega_{T}$$

with $\overline{\Omega}_T = \overline{\Omega}_f \cup \overline{\Omega}_p$ (analogously for the torque)

(Explicit) Operator-Splitting Approach

The algorithm for $t^n \rightarrow t^{n+1}$ consists of the following 4 substeps

- 1. Fluid velocity and pressure : $NSE(u_f^{n+1}, p^{n+1}) = BC(\Omega_n^n, u_n^n)$
- 2. Calculate hydrodynamic forces: F_n^{n+1}
- 3. Calculate velocity of particles: $u_p^{n+1} = g\left(F_p^{n+1}\right)$ 4. Update position of particles: $\Omega_p^{n+1} = f\left(u_p^{n+1}\right)$
- 5. Align new mesh
 - \rightarrow Required: efficient calculation of hydrodynamic forces
 - \rightarrow Required: efficient treatment of particle interaction (?)
 - \rightarrow Required: fast (nonstationary) Navier-Stokes solvers (!)

Numerical Examples

'Viscous flow around a moving airfoil' (Glowinski)

Lift-Off for Circle

Velocity $(d_w = 0.1)$

Velocity $(d_w = 1.0)$

Lift-Off for Ellipse

Velocity $(d_w = 0.4)$

Velocity $(d_w = 1.8)$

Numerical Examples

'Kissing, Drafting, Thumbling'

Numerical Examples

'Impact of heavy balls on 2000 small particles'

Collision Models

- Theoretically, it is impossible that smooth particle-particle collisions take place in finite time in the continuous system since there are repulsive forces to prevent these collisions in the case of viscous fluids.
- In practice, however, particles can contact or even overlap each other in **numerical simulations** since the gap can become arbitrarily small due to unavoidable numerical errors.

Repulsive Force Collision Model

- Handling of small gaps and contact between particles
- Dealing with overlapping in numerical simulations

For the particle-particle collisions (analogous for the particle-wall collisions), the repulsive forces between particles read:

$$F_{ij}^{P} = \begin{cases} 0 & \text{for} & d_{i,j} > R_{i} + R_{j} + \rho \\ \frac{1}{\varepsilon_{P}} (X_{i} - X_{j}) (R_{i} + R_{j} + \rho - d_{i,j})^{2} & \text{for} & R_{i} + R_{j} \le d_{i,j} \le R_{i} + R_{j} + \rho \\ \frac{1}{\varepsilon_{P}} (X_{i} - X_{j}) (R_{i} + R_{j} - d_{i,j}) & \text{for} & d_{i,j} < R_{i} + R_{j} \end{cases}$$

The total repulsive forces exerted on the i-th particle by the other particles and the walls can be expressed as follows:

$$F_{i}' = \sum_{j=1, j \neq i}^{N} F_{i,j}^{P} + F_{i}^{W}$$

Examples

Particle Agglomeration

Examples

Challenges

Adaptive time stepping + dynamical adaptive grid alignment/ALE

- (Better) collision models/Repulsive forces.
- Coupling with turbulence models.
- Modelling of Break-up/Coalescence phenomena.
- Deformable particles/fluid-structure interaction.
 - Analysis of viscoelastic effects.
- Benchmarking and experimental validation for many particles.
- Why tensorproduct-like meshes and r-adaptivity???.

Mathematics on Special Hardware

Typical performance for CPUs and GPUs:

Sony PlayStation 3

Cell multicore processor, 7 synergetic processing units @ 3.2 GHz, **218 GFLOP/s** RSX graphics processor, 6+24 parallel pipelines, **1.8 TFLOP/s** Memory interface @ 3.2 GHz

Goal: Improve performance by increasing numerical intensity:

Numerical Examples

Efficient Data Structures

 $L3 \approx 220.000 \ elements \approx 1.100.000 \ d.o.f.s$ $L4 \approx 880.000 \ elements \approx 4.400.000 \ d.o.f.s$ $L5 \approx 3.530.000 \ elements \approx 17.600.000 \ d.o.f.s$

CPU (s)	'brute force'					'improved'						
#PART	= 10			= 1000			= 10			= 1000		
items	L=3	L=4	L=5	L=3	L=4	L=5	L=3	L=4	L=5	L=3	L=4	L=5
NSE	17	88	440	16	80	403	17	95	423	17	83	435
Force	5	20	79	443	1771	7092	0	0	1	0	0	1
Particle	1	5	25	20	82	331	0	3	14	1	5	21
Total	24	114	546	480	1934	7827	18	98	439	18	89	468

DEC/COMPAQ EV6, 833 MHz

Next: Efficient flow solver (for small Δt)???

Evaluation of Force Calculations

LEVEL $6 \approx 280.000$ elements LEVEL $6 \approx 150.000$ elements

LEVEL	ch. mesh I	ch. mesh II	ch. mesh I	ch. mesh II	
3	0.5529+01	0.5569+01	0.1216-01	0.2443-03	
4	0.5353+01	0.5575 ± 01	0.1074-01	0.0014-01	
5	0.5427+01	0.5572+01	0.6145-02	0.0812-01	
6	0.5501+01	0.5578+01	0.9902-02	0.1020-01	
	$C_d = 0.5$	55795+01	$C_l = 0.10618-01$		

LEVEL	C_d	C_l
2	0.55201+01	0.1057-01
3	0.55759+01	0.1036-01
4	0.55805+01	0.1041-01

LEVEL $4 \approx 150.000$ elements

Complete Algorithm

The complete algorithm $(t_n \rightarrow t_{n+1})$ for the coupled fluid-solid system can be summarized as follows:

- 1. Given the position and velocity of the particles at time t_n
- 2. Set the fictitious boundary and its boundary condition for the fluid.
- 3. Solve the fluid equations to get the fluid velocity and the pressure.
- 4. Calculate the hydrodynamic forces acting on every particle.
- 5. Calculate the motion of the solid particles.
- 6. Check if the collision happens and calculate collision forces.
- 7. Update the particle position and velocity by the collision forces.
- 8. Return to the first step $(n \rightarrow n+1)$ and advance to the next time step.

Induced Rotation of an Airfoil Wing

