technische universität dortmund

fakultät für mathematik LS III (IAM)

UnConventional High Performance Computing (UCHPC) for Finite Element Simulations

- Towards LIDO³ -

S. Turek, Chr. Becker, S. Buijssen, D. Göddeke, M. Köster, H.Wobker (FEAST Group)

Institut für Angewandte Mathematik, TU Dortmund

http://www.mathematik.tu-dortmund.de/LS3 http://www.featflow.de http://www.feast.tu-dortmund.de

- The 'free ride' is over, paradigm shift in HPC:
 - physical barriers (heat, power consumption, leaking voltage)
 - memory wall (in particular for sparse Linear Algebra problems)
 - applications no longer run faster automatically on newer hardware
- Heterogeneous hardware: commodity CPUs plus coprocessors
 - graphics cards (GPU)
 - CELL BE processor
 - HPC accelerators (e.g. ClearSpeed)
 - reconfigurable hardware (FPGA)
- Finite Element Methods (FEM) and Multigrid solvers: most flexible, efficient and accurate simulation tools for PDEs nowadays.

Aim of this Talk

High Performance Computing

meets

Hardware-oriented Numerics

on

Unconventional Hardware

for

Finite Element Multigrid Methods

Hardware-Oriented Numerics

What is 'Hardware-Oriented Numerics'?

- It is more than 'good Numerics' and 'good Implementation' on High Performance Computers
- Critical quantity: 'Total Numerical Efficiency'

Vision: Total Numerical Efficiency technische universität dortmund

- 'High (guaranteed) accuracy for user-specific quantities with minimal #d.o.f. (~ N) via fast and robust solvers – for a wide class of parameter variations – with optimal numerical complexity (~ O(N)) while exploiting a significant percentage of the available huge sequential/ parallel GFLOP/s rates at the same time'
- Is it easy to achieve high 'Total Numerical Efficiency'?
- FEM Multigrid solvers with a posteriori error control for adaptive meshing are a candidate

Example: Fast Poisson Solvers to dortmund

- 'Optimized' Multigrid methods for scalar PDE problems (≈Poisson problems) on general meshes should require ca. 1000 FLOPs per unknown (in contrast to LAPACK for dense matrices with O(N³) FLOPs)
- Problem size 10⁶ : Much less than 1 sec on PC (???)
- Problem size 10¹²: Less than 1 sec on PFLOP/s computer
- More realistic (and much harder) 'Criterion' for Petascale Computing in Technical Simulations

Main Component: 'Sparse' MV technische universität dortmund

- Sparse Matrix-Vector techniques ('indexed DAXPY') on general unstructured grids
 - DO 10 IROW=1,N
 - DO 10 ICOL=KLD(IROW),KLD(IROW+1)-1
 - 10 Y(IROW)=DA(ICOL)*X(KCOL(ICOL))+Y(IROW)
- Sparse Banded MV techniques on generalized TP grids

...with appropriate Fictitious Boundary techniques in FEATFLOW.....

Observation I: Sparse MV on TP Grid U technische universität dortmund

- Opteron X2 2214 (1MB C\$, 2.2 GHz) vs.
- Xeon E5450 (6MB C\$, 3 GHz, LiDO2)
- One thread, 3 cores idle ("best case" test for memory bound FEM)
- Production runs expected to be much slower, but not asymptotically
- Banded-const: constant coefficients (stencil), fully in-cache

LiDO 2			
Numbering	4K DOF	66K DOF	1M DOF
Stochastic	500	364	95
Hierarchical	536	445	418
Banded	3285	2219	687
Stencil (const)	5720	5094	2415

In realistic scenarios, MFLOP/s rates are

- often poor, and
- problem size dependent

Speed-up of 100x for free in 10 years Stagnation for standard simulation tools on conventional hardware

	1 P.	2 P.	4 P.	8 P.	16 P.	32 P.	64 P.
%Comm.	10%	24%	36%	45%	47%	55%	56%
# PPP-IT	2.2	3.0	3.9	4.9	5.2	5.7	6.2

- It is (almost) impossible to come close to Single
 Processor Peak Performance with modern (= high numerical efficiency) simulation tools
- Parallel Peak Performance with modern Numerics even harder, already for moderate processor numbers

Hardware-oriented Numerics (HwoN)

Dramatic improvement (factor 1000) due to better Numerics AND better data structures/ algorithms on 1 CPU FEAST – Realization of HwoN

- ScaRC solver: Combine advantages of (parallel) domain decomposition and multigrid methods
- Cascaded multigrid scheme
- Hide anisotropies locally to increase robustness
- Globally unstructured locally structured
- Low communication overhead

SkaLB Project

- BMBF-Initiative "HPC-Software für skalierbare Parallelrechner"
- "SkaLB Lattice-Boltzmann-Methoden f
 ür skalierbare Multi-Physik-Anwendungen"
- Partners: Braunschweig, Erlangen, Stuttgart, Dortmund (1.8 MEuro)
 - Lehrstuhl f
 ür Angewandte Mathematik und Numerik (LS3)
 - ITMC
 - IANUS
- Industry: Intel, Cray, IBM, BASF, Sulzer, hhpberlin, HP

(Preliminary) State-of-the-Art

Numerical efficiency?
 → OK

Parallel efficiency?

→ OK (tested up to 256 CPUs on NEC and commodity clusters)
→ More than 10.000 CPUs???

Single processor efficiency?

 \rightarrow OK (for CPU)

• 'Peak' efficiency?

 $\rightarrow NO$

→ Special *unconventional* FEM Co-Processors

GPU (NVIDIA GTX 285):

 CELL multicore processor (PS3), 7 synergistic processing units @ 3.2 GHz, 218 GFLOP/s, Memory @ 3.2 GHz

240 cores @ 1.476 GHz, 1.242 GHz memory bus (160 GB/s) ≈ 1.06 TFLOP/s

UnConventional High Performance Computing (UCHPC)

CPUs minimise latency of individual operations (cache hierarchy to combat memory wall problem)

GPUs and CELLs maximise throughput over latency and exploit data-parallelism (more "ALU-efficient" and parallel memory system)

40 GFLOP/s, 140 GB/s on GeForce GTX 280 0.7 (1.4) GFLOP/s on 1 core of LiDO2

	LiDO2 (double)		GTX 280 (mixed)			
Level	$\operatorname{time}(s)$	MFLOP/s	$\operatorname{time}(s)$	MFLOP/s	speedup	
7	0.021	1405	0.009	2788	2.3x	
8	0.094	1114	0.012	8086	$7.8 \mathrm{x}$	
9	0.453	886	0.026	15179	17.4x	
10	1.962	805	0.073	21406	26.9x	

- 1M unknowns in less than 0.1 seconds!
- 27x faster than CPU

Promising results, attempt to integrate GPUs as FEM Co-Processors

Include GPUs into FEAST

- without
 - changes to application codes FEASTFLOW / FEASTSOLID
 - fundamental re-design of FEAST
 - sacrificing either functionality or accuracy
- but with
 - noteworthy speedups
 - a reasonable amount of generality w.r.t. other co-processors
 - and additional benefits in terms of space/power/etc.

But: no --march=gpu/cell compiler switch

Isolate suitable parts

- Balance acceleration potential and acceleration effort
- Diverge code paths as late as possible
 - Local MG solver
 - Same interface for several co-processors
- Important benefit of minimally invasive approach: No changes to application code
 - Co-processor code can be developed and tuned on a single node
 - Entire MPI communication infrastructure remains unchanged

$$\begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = f$$
$$\begin{pmatrix} (2\mu + \lambda)\partial_{xx} + \mu \partial_{yy} & (\mu + \lambda)\partial_{xy} \\ (\mu + \lambda)\partial_{yx} & \mu \partial_{xx} + (2\mu + \lambda)\partial_{yy} \end{pmatrix}$$

Mixed Precision Approach

	single j	orecision	double precision		
Level	Error	Reduction	Error	Reduction	
2	2.391E-3		2.391E-3		
3	5.950E-4	4.02	5.950E-4	4.02	
4	1.493E-4	3.98	1.493E-4	3.99	
5	3.750E-5	3.98	3.728E-5	4.00	
6	1.021E-5	3.67	9.304E-6	4.01	
7	6.691E-6	1.53	2.323E-6	4.01	
8	2.012E-5	0.33	5.801E-7	4.00	
9	7.904E-5	0.25	1.449E-7	4.00	
10	3.593E-4	0.22	3.626E-8	4.00	

- Poisson problem with bilinear Finite Elements (Q1)
- Mixed precision solver: double precision Richardson, preconditioned with single precision MG ("gain one digit")
- Same results as entirely in double precision

L₂ error against reference solution

number of subdomains

- Same results for CPU and GPU
 - expected error reduction independent of refinement and subdomain distribution

- Outdated cluster, dual Xeon EM64T
- 1 NVIDIA Quadro FX 1400 per node
- (one generation behind the Xeons, 20 GB/s BW)
- Poisson problem (left): up to 1.3B DOF, 160 nodes
- Elasticity (right): up to 1B DOF, 128 nodes

- 16 nodes, Opteron X2 2214
- NVIDIA Quadro FX 5600 (76 GB/s BW), OpenGL
- Problem size 128 M DOF
- Dualcore 1.6x faster than singlecore
- GPU 2.6x faster than singlecore, 1.6x than dual

- Speedups in 'time to solution' for one GPU:
 2.6x vs. Singlecore, 1.6x vs. Dualcore
- Amdahl's Law is lurking
 - Local speedup of 9x and 5.5x by the GPU
 - 2/3 of the solver accelerable => theoretical upper bound 3x
- Future work
 - Three-way parallelism in our system:
 - coarse-grained (MPI)
 - medium-grained (heterogeneous resources within the node)
 - fine-grained (compute cores in the GPU)
 - Better interplay of resources within the node
 - Adapt Hardware-oriented Numerics to increase accelerable part

There is a Huge Potential for the technische universität Future ...

However:

- High Performance Computing has to consider recent and future hardware trends, particularly for heterogeneous multicore architectures and massively parallel systems!
- The combination of 'Hardware-oriented Numerics' and special 'Data Structures/Algorithms' and 'Unconventional Hardware' has to be used!

...or most of existing (academic/commercial) FEM software will be 'worthless' in a few years!

Let's start with LIDO³ at the UAMR.....

Acknowledgements

 FEAST Group + LIDO Team (TU Dortmund)

- Robert Strzodka (Max Planck Center, Max Planck Institut Informatik)
- Jamaludin Mohd-Yusof, Patrick McCormick (Los Alamos National Laboratories)

<u>Generalized Tensorproduct</u> <u>Meshes</u>

0.000000e+00

....dynamic CFD problems.....

ScaRC -- Scalable Recursive Clustering

- Minimal overlap by extended Dirichlet BCs
- Hybrid multilevel domain decomposition method
- Inspired by parallel MG ("best of both worlds")
 - Multiplicative vertically (between levels), global coarse grid problem (MG-like)
 - Additive horizontally: block-Jacobi / Schwarz smoother (DD-like)
- Hide local irregularities by MGs within the Schwarz smoother
- Embed in Krylov to alleviate Block-Jacobi character

Show-Case: FEASTSolid

- Fundamental model problem:
 - solid body of elastic, compressible material (e.g. steel)
 - exposed to some external load

Stationary Navier-Stokes

$$\begin{pmatrix} A_{11} & A_{12} & B_1 \\ A_{21} & A_{22} & B_2 \\ B_1 & B_2 & C \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \\ p \end{pmatrix} = \begin{pmatrix} f_1 \\ f_2 \\ g \end{pmatrix}$$

- \star 4-node cluster
- \star Opteron X2 2214
- ★ GeForce 8800 GTX (90 GB/s BW), CUDA
- \star Driven cavity and channel flow around a cylinder

fixed point iteration solving linearised subproblems with global BiCGStab (reduce initial residual by 1 digit) Block-Schurcomplement preconditioner 1) approx. solve for velocities with global MG (V1+0), additively smoothed by for all Ω_i : solve for u_1 with local MG for all Ω_i : solve for u_2 with local MG 2) update RHS: $d_3 = -d_3 + B(c_1, c_2)$

pressure + isolines

(elevation plot)

technische universität

dortmund

3) scale $c_3 = (M_p^{\rm L})d_3$

Speedup analysis

	R_{acc}		${ m S}_{local}$		S_{total}	
	L9	L10	L9	L10	L9	L10
DC Re100	41%	46%	6x	12x	1.4x	1.8x
DC Re250	56%	58%	$5.5 \mathrm{x}$	11.5x	$1.9 \mathrm{x}$	$2.1 \mathrm{x}$
Channel flow	60%	—	6x	—	1.9x	—

Important consequence:

Ratio between assembly and linear solve changes significantly

DC Re100		DC Re250		Channel flow	
plain	accel.	plain	accel.	plain	accel.
29:71	50:48	11:89	25:75	13:87	26:74

Speedup analysis

★ Addition of GPUs increases resources
 ★ ⇒ Correct model: strong scalability inside each node
 ★ Accelerable fraction of the elasticity solver: 2/3
 ★ Remaining time spent in MPI and the outer solver

Accelerable fraction R_{acc} : Local speedup S_{local} : Total speedup S_{total} : Theoretical limit S_{max} :

Minimally invasive integration

global BiCGStab

preconditioned by **global multilevel** (V 1+1) additively smoothed by for all Ω_i : **local multigrid** coarse grid solver: UMFPACK

- All outer work: CPU, double
- Local MGs: GPU, single
- GPU is preconditioner
- Applicable to many co-processors

Grid Structures

Fully adaptive grids

Maximum flexibility ,Stochastic' numbering Unstructured sparse matrices Indirect addressing (very slow)

Locally structured grids

Logical tensor product Fixed banded matrix structure Direct addressing (fast) r-adaptivity

Unstructured macro mesh of tensorproduct subdomains

