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3 Observations

The ‘free ride’ is over, paradigm shift in HPCHPC:
physical barriers (heat, power consumption, leaking voltage)
memory wall (in particular for sparse Linear Algebra problems)
applications no longer run faster automatically on newer hardware

Heterogeneous hardware: commodity CPUs plus co-
processors

graphics cards (GPU)
CELL BE processor  
HPC accelerators (e.g. ClearSpeed)  
reconfigurable hardware (FPGA)

Finite Element Methods (FEM) and Multigrid solvers:   
most flexible, efficient and accurate simulation tools for 
PDEs nowadays. 



3

Aim of this Talk

High Performance High Performance ComputingComputing

meetsmeets

HardwareHardware--orientedoriented NumericsNumerics

onon

Unconventional HardwareUnconventional Hardware

forfor

Finite Element Finite Element MultigridMultigrid MethodsMethods
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Hardware-Oriented Numerics

What is ‘Hardware-Oriented Numerics’?

It is more than ‘good Numerics‘ and ‘good 
Implementation’ on High Performance Computers

Critical quantity: ‘Total Numerical Efficiency’
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Vision: Total Numerical Efficiency

‘High (guaranteed) accuracy for user-specific quantities 
with minimal #d.o.f. (~ N) via fast and robust solvers – for 
a wide class of parameter variations – with optimal
numerical complexity (~ O(N)) while exploiting a 
significant percentage of the available huge sequential/ 
parallel GFLOP/s rates at the same time’

Is it easy to achieve high ‘Total Numerical Efficiency’?

FEM Multigrid solvers with a posteriori error control for 
adaptive meshing are a candidate
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Example: Fast Poisson Solvers

‘Optimized’ Multigrid methods for scalar PDE problems 
(≈Poisson problems) on general meshes should require 
ca. 1000 FLOPs per unknown (in contrast to LAPACK for 
dense matrices with O(N3) FLOPs)

Problem size 106  : Much less than 1 sec on PC (???)
Problem size 1012: Less than 1 sec on PFLOP/s computer

More realistic (and much harder) ‘Criterion’ for  
Petascale Computing in Technical Simulations
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Main Component: ‘Sparse’ MV

Sparse Matrix-Vector techniques (‘indexed DAXPY’) on 
general unstructured grids

DO 10 IROW=1,N
DO 10 ICOL=KLD(IROW),KLD(IROW+1)-1

10 Y(IROW)=DA(ICOL)*X(KCOL(ICOL))+Y(IROW)

Sparse Banded MV techniques on generalized TP grids
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Generalized Tensorproduct Grids
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Generalized Tensorproduct Grids
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Generalized Tensorproduct Grids

…with appropriate Fictitious Boundary techniques in 
FEATFLOW…..
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Observation I: Sparse MV on TP Grid

Opteron X2 2214 (1MB C$, 2.2 GHz) 
vs. 

Xeon E5450 (6MB C$, 3 GHz, LiDO2)
One thread, 3 cores idle („best case“ test for memory bound FEM)
Production runs expected to be much slower, but not asymptotically
Banded-const: constant coefficients (stencil), fully in-cache
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Observation II: Sparse MV (again)

LiDO 2

241550945720Stencil (const)

68722193285Banded

418445536Hierarchical

95364500Stochastic

1M DOF66K DOF4K DOFNumbering

often poor, and  
problem size dependent

In realistic scenarios, MFLOP/s rates are
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Observation III: (Sparse) CFD

Speed-up of 100x for free in 10 years

Stagnation for standard simulation tools 
on conventional hardware
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Mesh partitioned into 32 subdomains

Problems due to communication

Numerical behavior 
vs. 

anisotropic meshes

Observation IV: Parallel Performance

56%
6.2

55%
5.7

47%
5.2

45%
4.9

36%
3.9

24%
3.0

10%
2.2

%Comm.
# PPP-IT

64 P.32 P.16 P.8 P.4 P.2 P.1 P.
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First Summary

It is (almost) impossible to come close to Single 
Processor Peak Performance with modern (= high 
numerical efficiency) simulation tools

Parallel Peak Performance with modern Numerics
even harder, already for moderate processor numbers

HardwareHardware--oriented oriented NumericsNumerics ((HwoNHwoN))
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Example for HwoN

Dramatic improvement (factor 1000) due to better
Numerics AND better data structures/ 

algorithms on 1 CPU

FEM for 8 Mill. 
unknowns on 
general domain, 
1 CPU, Poisson
Problem in 2D
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FEAST – Realization of HwoN

ScaRC solver: Combine advantages of (parallel) domain 
decomposition and multigrid methods
Cascaded multigrid scheme
Hide anisotropies locally to increase robustness
Globally unstructured – locally structured
Low communication overhead

FEAST applications:FEAST applications:
FEASTFLOW (CFD)FEASTFLOW (CFD)
FEASTSOLID (CSM)FEASTSOLID (CSM)
FEASTLBM (CFD)FEASTLBM (CFD)

SkaLBSkaLB ProjectProject
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SkaLB Project

BMBF-Initiative “HPC-Software für skalierbare Parallelrechner”
“SkaLB - Lattice-Boltzmann-Methoden für skalierbare Multi-
Physik-Anwendungen”
Partners: Braunschweig, Erlangen, Stuttgart, Dortmund (1.8 MEuro)

Lehrstuhl für Angewandte Mathematik und Numerik (LS3)
ITMC
IANUS

Industry: Intel, Cray, IBM, BASF, Sulzer, hhpberlin, HP
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(Preliminary) State-of-the-Art

Numerical efficiency?
OK

Parallel efficiency?
OK (tested up to 256 CPUs on NEC and commodity clusters)
More than 10.000 CPUs???

Single processor efficiency?
OK (for CPU)

‘Peak’ efficiency?
NO
Special unconventionalunconventional FEM Co-Processors
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UnConventional HPC

CELL multicore processor (PS3),        
7 synergistic processing units
@ 3.2 GHz, 218 GFLOP/s,              
Memory @ 3.2 GHz

GPU (NVIDIA GTX 285):              
240 cores @ 1.476 GHz,            
1.242 GHz memory bus (160 GB/s)                  
≈ 1.06 TFLOP/s

UUnnCConventionalonventional HHigh igh PPerformance erformance CComputing (omputing (UCHPCUCHPC))
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Why are GPUs and CELLs so fast?

CPUs minimise latency of 
individual operations (cache
hierarchy to combat memory

wall problem)

GPUs and CELLs maximise
throughput over latency and 

exploit data-parallelism (more
“ALU-efficient“ and parallel 

memory system)
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Bandwidth in a CPU/GPU Node
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Example: Sparse MV on TP Grid

40 GFLOP/s, 140 GB/s on GeForce GTX 280

0.7 (1.4) GFLOP/s on 1 core of LiDO2
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Example: Multigrid on TP Grid
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Example: Multigrid on TP Grid

Promising results, 
attempt to integrate GPUs as FEM Co-Processors

1M unknowns in less than 0.1 seconds!
27x faster than CPU

LiDO2 (double) GTX 280 (mixed)
Level time(s) MFLOP/s time(s) MFLOP/s speedup

7 0.021 1405 0.009 2788 2.3x
8 0.094 1114 0.012 8086 7.8x
9 0.453 886 0.026 15179 17.4x
10 1.962 805 0.073 21406 26.9x
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Design Goals

Include GPUs into FEAST

without 
changes to application codes FEASTFLOW / FEASTSOLID
fundamental re-design of FEAST
sacrificing either functionality or accuracy

but with
noteworthy speedups
a reasonable amount of generality w.r.t. other co-processors
and additional benefits in terms of space/power/etc.

But: no --march=gpu/cell compiler switch
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Integration Principles

Isolate suitable parts
Balance acceleration potential and acceleration effort

Diverge code paths as late as possible
Local MG solver
Same interface for several co-processors

Important benefit of minimally invasive approach:  
No changes to application code

Co-processor code can be developed and tuned on a single node
Entire MPI communication infrastructure remains unchanged
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Show-Case: FEASTSOLID

µ
A11 A12
A21 A22

¶µ
u1
u2

¶
= fµ

(2μ+ λ)∂xx + μ∂yy (μ+ λ)∂xy

(μ+ λ)∂yx μ∂xx + (2μ+ λ)∂yy

¶
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Mixed Precision Approach

Poisson problem with bilinear Finite Elements (Q1)
Mixed precision solver: double precision Richardson, 

preconditioned with single precision MG („gain one digit“)
Same results as entirely in double precision

single precision double precision
Level Error Reduction Error Reduction

2 2.391E-3 2.391E-3
3 5.950E-4 4.02 5.950E-4 4.02
4 1.493E-4 3.98 1.493E-4 3.99
5 3.750E-5 3.98 3.728E-5 4.00
6 1.021E-5 3.67 9.304E-6 4.01
7 6.691E-6 1.53 2.323E-6 4.01
8 2.012E-5 0.33 5.801E-7 4.00
9 7.904E-5 0.25 1.449E-7 4.00
10 3.593E-4 0.22 3.626E-8 4.00
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Resulting Accuracy

L2 error against reference solution

Same results for CPU and GPU
expected error reduction independent of refinement and 
subdomain distribution
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(Weak) Scalability

Outdated cluster, dual Xeon EM64T
1 NVIDIA Quadro FX 1400 per node

(one generation behind the Xeons, 20 GB/s BW)
Poisson problem (left): up to 1.3B DOF, 160 nodes
Elasticity (right): up to 1B DOF, 128 nodes
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Realistic Absolute Speedup

16 nodes, Opteron X2 2214 
NVIDIA Quadro FX 5600 (76 GB/s BW), OpenGL
Problem size 128 M DOF
Dualcore 1.6x faster than singlecore
GPU 2.6x faster than singlecore, 1.6x than dual
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Speedup Analysis

Speedups in 'time to solution' for one GPU: 
2.6x vs. Singlecore, 1.6x vs. Dualcore

Amdahl's Law is lurking
Local speedup of 9x and 5.5x by the GPU
2/3 of the solver accelerable => theoretical upper bound 3x

Future work
Three-way parallelism in our system: 

coarse-grained (MPI)
medium-grained (heterogeneous resources within the node)
fine-grained (compute cores in the GPU)

Better interplay of resources within the node
Adapt Hardware-oriented Numerics to increase accelerable part
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There is a Huge Potential for the
Future …

However:
High Performance Computing has to consider 
recent and future hardware trends, particularly for 
heterogeneous multicore architectures and massively 
parallel systems! 
The combination of ‘Hardware-oriented Numerics’
and special ‘Data Structures/Algorithms’ and 
‘Unconventional Hardware’ has to be used!

…or most of existing (academic/commercial) FEM 
software will be ‘worthless’ in a few years!

Let’s start with LIDOLIDO33 at the UAMR.....
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Generalized Tensorproduct
Meshes

….dynamic CFD problems…..
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Solver Structure

ScaRC -- Scalable Recursive Clustering

Minimal overlap by extended Dirichlet BCs
Hybrid multilevel domain decomposition method
Inspired by parallel MG (''best of both worlds'')

Multiplicative vertically (between levels), global coarse
grid problem (MG-like)

Additive horizontally: block-Jacobi / Schwarz smoother
(DD-like)

Hide local irregularities by MGs within the Schwarz 
smoother

Embed in Krylov to alleviate Block-Jacobi character
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Show-Case: FEASTSolid

Fundamental model problem:
solid body of elastic, compressible material (e.g. steel)
exposed to some external load
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Stationary Navier-Stokes

⎛⎝A11 A12 B1
A21 A22 B2
B1 B2 C

⎞⎠⎛⎝u1u2
p

⎞⎠ =
⎛⎝f1f2
g

⎞⎠
F 4-node cluster
F Opteron X2 2214
F GeForce 8800 GTX (90GB/s
BW), CUDA

F Driven cavity and channel flow
around a cylinder

fixed point iteration
solving linearised subproblems with
global BiCGStab (reduce initial residual by 1 digit)
Block-Schurcomplement preconditioner
1) approx. solve for velocities with
global MG (V1+0), additively smoothed by

for all Ωi: solve for u1 with
local MG

for all Ωi: solve for u2 with

local MG
2) update RHS: d3 =−d3+B(c1, c2)
3) scale c3 = (ML

p )d3
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Navier-Stokes results

Speedup analysis

Racc Slocal Stotal
L9 L10 L9 L10 L9 L10

DC Re100 41% 46% 6x 12x 1.4x 1.8x
DC Re250 56% 58% 5.5x 11.5x 1.9x 2.1x
Channel flow 60% — 6x — 1.9x —

Important consequence:
Ratio between assembly and linear solve changes significantly

DC Re100 DC Re250 Channel flow

plain accel. plain accel. plain accel.
29:71 50:48 11:89 25:75 13:87 26:74
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Acceleration analysis

Speedup analysis

F Addition of GPUs increases resources
F ⇒ Correct model: strong scalability inside each node
F Accelerable fraction of the elasticity solver: 2/3
F Remaining time spent in MPI and the outer solver

Accelerable fraction Racc: 66%
Local speedup Slocal: 9x
Total speedup Stotal: 2.6x
Theoretical limit Smax: 3x



42

Minimally invasive integration

All outer work: CPU, double
Local MGs: GPU, single
GPU is preconditioner
Applicable to many co-processors

global BiCGStab
preconditioned by
global multilevel (V 1+1) 
additively smoothed by
for all Ωi: local multigrid
coarse grid solver: UMFPACK
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Grid Structures

Fully adaptive grids

Maximum flexibility
‚Stochastic‘ numbering
Unstructured sparse matrices
Indirect addressing (very slow)

Locally structured grids

Logical tensor product
Fixed banded matrix structure
Direct addressing (fast) 
r-adaptivity

Unstructured macro mesh of tensorproduct subdomains


