
Universität Dortmund
fakultät für mathematik

LS III (IAM)
technische universität
dortmund

UCHPCUCHPC

UUnnCConventionalonventional HHigh igh PPerformance erformance CComputing omputing
for Finite Element Simulationsfor Finite Element Simulations

S. Turek, Chr. Becker, S. Buijssen, D. Göddeke, H.Wobker
(FEAST Group)

Institut für Angewandte Mathematik, TU Dortmund

http://www.mathematik.tu-dortmund.de/LS3
http://www.featflow.de

http://www.feast.tu-dortmund.de

2

Motivation

The ‘free ride’ is over, paradigm shift in HPCHPC:
memory wall (in particular for sparse Linear Algebra problems)
physical barriers (heat, power consumption, leaking voltage)
applications no longer run faster automatically on newer hardware

Heterogeneous hardware: commodity CPUs plus co-
processors

graphics cards (GPU)
Cell BE processor
HPC accelerators (e.g. ClearSpeed)
reconfigurable hardware (FPGA)

Finite Element Methods (FEM) and Multigrid solvers:
most flexible, efficient and accurate simulation tools for
PDEs.

3

Aim of this Talk

High Performance High Performance ComputingComputing

meetsmeets

HardwareHardware--orientedoriented NumericsNumerics

onon

Unconventional HardwareUnconventional Hardware

forfor

Finite Element MethodsFinite Element Methods

4

1) Hardware-Oriented Numerics

What is ‘Hardware-Oriented Numerics’?

It is more than ‘good Numerics‘ and ‘good
Implementation’ on High Performance Computers

Critical quantity: ‘Total Numerical Efficiency’

5

Total Numerical Efficiency

‘High (guaranteed) accuracy for user-specific quantities
with minimal #d.o.f. (~ N) via fast and robust solvers – for
a wide class of parameter variations – with optimal
numerical complexity (~ O(N)) while exploiting a
significant percentage of the available huge sequential/
parallel GFLOP/s rates at the same time’

FEM Multigrid solvers with a posteriori error control for
adaptive meshing are a candidate

Is it easy to achieve high ‘Total Numerical Efficiency’?

6

Example: Fast Poisson Solvers

Fast Multigrid Methods as general philosophy
‘Optimized’ versions for scalar PDE problems
(≈Poisson problems) on general meshes should
require ca. 1000 FLOPs per unknown (in contrast to
LAPACK for dense matrices with O(N3) FLOPs)

Problem size 106 : Much less than 1 sec on PC (???)
Problem size 1012: Less than 1 sec on PFLOP/s computer

More realistic (and much harder) ‘Criterion’ for
Petascale Computing in Technical Simulations

7

Main Component: ‘Sparse’ MV
Application

Sparse Matrix-Vector techniques (‘indexed DAXPY’)
DO 10 IROW=1,N

DO 10 ICOL=KLD(IROW),KLD(IROW+1)-1
10 Y(IROW)=DA(ICOL)*X(KCOL(ICOL))+Y(IROW)

Sparse Banded MV techniques on generalized TP grids

8

Grid Structure

Fully adaptive grids
Maximum flexibility
‘Stochastic’ numbering
Unstructured sparse matrices
Indirect addressing, very slow.

Locally structured grids
Logical tensor product
Fixed banded matrix structure
Direct addressing (⇒ fast)
r-adaptivity

Unstructured macro mesh of tensor product subdomains

9

Generalized Tensorproduct
Meshes

10

Generalized Tensorproduct
Meshes

11

Generalized Tensorproduct
Meshes

…with appropriate Fictitious Boundary techniques in
FEATFLOW…..

12

Generalized Tensorproduct
Meshes

….dynamic CFD problems…..

13

Example: SpMV on TP Grid

F Opteron X2 2214, 2.2GHz, 2x1MB L2 cache, one thread
F 50 vs. 550MFLOP/s for interesting large problem size
F Caching of coefficient vector, full streaming bandwidth for A
F const: constant coefficients ⇒ stencil

14

Observation I: Sparse MV
Multiplication

Numbering 4K DOF 66K DOF 1M DOF

Stochastic 127 116 50

Hierarchical 251 159 154

Banded 1445 627 550

Stencil (const) 2709 2091 1597

poor, and
problem size dependent

In realistic scenarios, MFLOP/s rates are

15

Observation II: Full CFD
Simulations

Speed-up of 100x for free in 10 years

Stagnation for standard simulation tools
on conventional hardware

S
pe

ed
-u

p
(lo

gs
ca

le
)

16

Mesh partitioned into 32 subdomains

Problems due to communication

Numerical behavior
vs.

anisotropic meshes

Observation III: Parallel
Performance

1 P. 2 P. 4 P. 8 P. 16 P. 32 P. 64 P.
%Comm.
PPP-IT

10%
2.2

24%
3.0

36%
3.9

45%
4.9

47%
5.2

55%
5.7

56%
6.2

17

Summary

It is (almost) impossible to reach Single Processor
Peak Performance with modern (= high numerical
efficiency) FEM simulation tools

Memory-intensive data/matrix/solver structures?

Parallel Peak Performance with modern Numerics
even harder, already for moderate processor numbers

18

Hardware-oriented Numerics
(HwoN)

Dramatic improvement (factor 1000) due to better
Numerics AND better data structures/ algorithms

FEM for 8 Mill.
unknowns on
general domain,
1 CPU, Poisson
Problem in 2D

S
pe

ed
-u

p
(lo

gs
ca

le
)

19

FEAST – Realization of HwoN

ScaRC solver: Combine advantages of (parallel) domain
decomposition and multigrid methods
Cascaded multigrid scheme
Hide anisotropies locally to increase robustness
Globally unstructured – locally structured
Low communication overhead

FEAST applications:FEAST applications:
FEASTFlowFEASTFlow (CFD)(CFD)
FEASTSolidFEASTSolid (CSM)(CSM)
FEASTLBM (SKALB FEASTLBM (SKALB
Project)Project)

20

Solver Structure

ScaRC — Scalable Recursive Clustering

F Minimal overlap by extended Dirichlet BCs

F Hybrid multilevel domain decomposition method

F Inspired by parallel MG (”best of both worlds”)

I Multiplicative vertically (between levels), global coarse grid problem
(MG-like)

I Additive horizontally: block-Jacobi / Schwarz smoother (DD-like)

F Hide local irregularities by MGs within the Schwarz smoother

F Embed in Krylov to alleviate Block-Jacobi character

21

(Preliminary) State-of-the-Art

Numerical efficiency?
OK

Parallel efficiency?
OK (tested up to 256 CPUs on NEC SX-8, commodity clusters)

Single processor efficiency?
OK (for CPU)

‘Peak’ efficiency?
NO
Special unconventionalunconventional FEM Co-Processors

22

2) UnConventional HPC

Cell multicore processor (PS3),
7 synergistic processing units
@ 3.2 GHz, 218 GFLOP/s,
Memory @ 3.2 GHz

GPU (NVIDIA GTX 285):
240 cores @ 1.476 GHz,
1.242 GHz memory bus (160 GB/s)
≈ 1.06 TFLOP/s

UUnnCConventionalonventional HHigh igh PPerformance erformance CComputing (omputing (UCHPCUCHPC))

23

Why are GPUs and Cells so fast?

CPUs devote most of the
transistors to caches and

data movement for general
purpose applications

GPUs and Cells are more
“transistor-efficient“ w.r.t.
floating point operations

24

Bandwidth in a CPU/GPU Node

25

Benchmarks: FEM Building
Blocks

Typical performance of FEM building blocks SAXPY_C, SAXPY_V
(variable coefficients), MV_V (9-point-stencil, Q1 elements), DOT

26

Example: SpMV on TP Grid

40GFLOP/s, 140GB/s with CUDA on GeForce GTX 280
‘only’ 13GFLOP/s on 8800 GTX (90GB/s peak)

27

Benchmarks: Complete Multigrid
Solver

Promising results,
attempt to integrate GPUs as FEM Co-Processors

28

Multigrid on TP Grid

Core2Duo (double) GTX 280 (mixed)
Level time(s) MFLOP/s time(s) MFLOP/s speedup
7 0.021 1405 0.009 2788 2.3x
8 0.094 1114 0.012 8086 7.8x
9 0.453 886 0.026 15179 17.4x
10 1.962 805 0.073 21406 26.9x

F Poisson on unitsquare, Dirichlet BCs, not only a matrix stencil
F 1M DOF, multigrid, FE-accurate in less than 0.1 seconds!
F 27x faster than CPU
F 1.7x faster than pure double on GPU
F 8800 GTX (correction loop on CPU): 0.44 seconds on level 10

29

Design Goals

Include GPUs into FEAST

without
changes to application codes FEASTFLOW / FEASTSolid
fundamental re-design of FEAST
sacrificing either functionality or accuracy

but with
noteworthy speedups
a reasonable amount of generality w.r.t. other co-processors
and additional benefits in terms of space/power/etc.

But: no --march=gpu/cell compiler switch

30

Integration Principles

Isolate suitable parts
Balance acceleration potential and acceleration effort

Diverge code paths as late as possible
Local MG solver
Same interface for several co-processors

Important benefit of minimally invasive approach:
No changes to application code

Co-processor code can be developed and tuned on a single node
Entire MPI communication infrastructure remains unchanged

31

Minimally invasive integration

global BiCGStab
preconditioned by
global multilevel (V 1+1)
additively smoothed by
for all Ωi: local multigrid

coarse grid solver: UMFPACK

All outer work: CPU, double
Local MGs: GPU, single

GPU is preconditioner

Applicable to many co-processors

32

Show-Case: FEASTSolid

Fundamental model problem:
solid body of elastic, compressible material (e.g. steel)
exposed to some external load

33

Linearised elasticity

global multivariate BiCGStab
block-preconditioned by
Global multivariate multilevel (V 1+1)
additively smoothed (block GS) by
for all Ωi: solve A11c1 = d1 by
local scalar multigrid

update RHS: d2 = d2 − A21c1
for all Ωi: solve A22c2 = d2 by
local scalar multigrid

coarse grid solver: UMFPACK

µ
A11 A12
A21 A22

¶µ
u1
u2

¶
= fµ

(2μ+λ)∂xx+μ∂yy (μ+λ)∂xy
(μ+λ)∂yx μ∂xx+(2μ+λ)∂yy

¶

34

Mixed precision approach

single precision double precision
Level Error Reduction Error Reduction

2 2.391E-3 2.391E-3
3 5.950E-4 4.02 5.950E-4 4.02
4 1.493E-4 3.98 1.493E-4 3.99
5 3.750E-5 3.98 3.728E-5 4.00
6 1.021E-5 3.67 9.304E-6 4.01
7 6.691E-6 1.53 2.323E-6 4.01
8 2.012E-5 0.33 5.801E-7 4.00
9 7.904E-5 0.25 1.449E-7 4.00
10 3.593E-4 0.22 3.626E-8 4.00

F Poisson −∆u = f on [0, 1]2 with Dirichlet BCs, MG solver
F Bilinear conforming Finite Elements (Q1) on cartesian mesh
F Mixed precision solver: double precision Richardson, preconditioned
with single precision MG (‘gain one digit’)

F Same results as entirely in double precision

35

Accuracy

L2 error against reference solution

Same results for CPU and GPU
expected error reduction independent of refinement and
subdomain distribution

36

(Weak) Scalability

F Outdated cluster, dual Xeon EM64T,
F one NVIDIA Quadro FX 1400 per node (one generation behind the
Xeons, 20GB/s BW)

F Poisson problem (left): up to 1.3B DOF, 160 nodes
F Elasticity (right): up to 1B DOF, 128 nodes

37

Absolute Speedup

F 16 nodes, Opteron X2 2214,
F NVIDIA Quadro FX 5600 (76GB/s BW), OpenGL
F Problem size 128M DOF
F Dualcore 1.6x faster than singlecore
F GPU 2.6x faster than singlecore, 1.6x than dual

38

Speedup Analysis

Speedups in 'time to solution' for one GPU:
2.6x vs. Singlecore, 1.6x vs. Dualcore

Amdahl's Law is lurking
Local speedup of 9x and 5.5x by the GPU
2/3 of the solver accelerable => theoretical upper bound 3x

Future work
Three-way parallelism in our system:

coarse-grained (MPI)
medium-grained (heterogeneous resources within the node)
fine-grained (compute cores in the GPU)

Better interplay of resources within the node
Adapt Hardware-oriented Numerics to increase accelerable part

39

Stationary Navier-Stokes

⎛⎝A11 A12 B1
A21 A22 B2
B1 B2 C

⎞⎠⎛⎝u1u2
p

⎞⎠ =
⎛⎝f1f2
g

⎞⎠
F 4-node cluster
F Opteron X2 2214
F GeForce 8800 GTX (90GB/s
BW), CUDA

F Driven cavity and channel flow
around a cylinder

fixed point iteration
solving linearised subproblems with
global BiCGStab (reduce initial residual by 1 digit)
Block-Schurcomplement preconditioner
1) approx. solve for velocities with
global MG (V1+0), additively smoothed by

for all Ωi: solve for u1 with
local MG

for all Ωi: solve for u2 with

local MG
2) update RHS: d3 =−d3+B(c1, c2)
3) scale c3 = (ML

p)d3

40

Navier-Stokes results

Speedup analysis

Racc Slocal Stotal
L9 L10 L9 L10 L9 L10

DC Re100 41% 46% 6x 12x 1.4x 1.8x
DC Re250 56% 58% 5.5x 11.5x 1.9x 2.1x
Channel flow 60% — 6x — 1.9x —

Important consequence:
Ratio between assembly and linear solve changes significantly

DC Re100 DC Re250 Channel flow

plain accel. plain accel. plain accel.
29:71 50:48 11:89 25:75 13:87 26:74

41

Acceleration analysis

Speedup analysis

F Addition of GPUs increases resources
F ⇒ Correct model: strong scalability inside each node
F Accelerable fraction of the elasticity solver: 2/3
F Remaining time spent in MPI and the outer solver

Accelerable fraction Racc: 66%
Local speedup Slocal: 9x
Total speedup Stotal: 2.6x
Theoretical limit Smax: 3x

42

There is a Huge Potential for the
Future …

But:
High Performance Computing has to consider
recent and future hardware trends, particularly for
heterogeneous multicore architectures and massively
parallel systems!

The combination of ‘Hardware-oriented Numerics’
and special ‘Data Structures/Algorithms’ and
‘Unconventional Hardware’ has to be used!

…or most of existing (academic/commercial) FEM
software will be ‘worthless’ in a few years!

43

Acknowledgements

FEAST Group
(TU Dortmund)

Robert Strzodka
(Max Planck Center, Max Planck Institut Informatik)

Jamaludin Mohd-Yusof, Patrick McCormick
(Los Alamos National Laboratories)

	UCHPC ��UnConventional High Performance Computing for Finite Element Simulations
	Motivation
	Aim of this Talk
	1) Hardware-Oriented Numerics
	Total Numerical Efficiency
	Example: Fast Poisson Solvers
	Main Component: ‘Sparse’ MV Application
	Grid Structure
	Generalized Tensorproduct Meshes
	Generalized Tensorproduct Meshes
	Generalized Tensorproduct Meshes
	Generalized Tensorproduct Meshes
	Example: SpMV on TP Grid
	Observation I: Sparse MV Multiplication
	Observation II: Full CFD Simulations
	Observation III: Parallel Performance
	Summary
	Hardware-oriented Numerics (HwoN)
	FEAST – Realization of HwoN
	Solver Structure
	(Preliminary) State-of-the-Art
	2) UnConventional HPC
	Why are GPUs and Cells so fast?
	Bandwidth in a CPU/GPU Node
	Benchmarks: FEM Building Blocks
	Example: SpMV on TP Grid
	Benchmarks: Complete Multigrid Solver
	Multigrid on TP Grid
	Design Goals
	Integration Principles
	Minimally invasive integration
	Show-Case: FEASTSolid
	Linearised elasticity
	Mixed precision approach
	Accuracy
	(Weak) Scalability
	Absolute Speedup
	Speedup Analysis
	Stationary Navier-Stokes
	Navier-Stokes results
	Acceleration analysis
	There is a Huge Potential for the Future …
	Acknowledgements

