

UCHPC

UnConventional High Performance Computing for Finite Element Simulations

S. Turek, Chr. Becker, S. Buijssen, D. Göddeke, H.Wobker (FEAST Group)

Institut für Angewandte Mathematik, TU Dortmund

http://www.mathematik.tu-dortmund.de/LS3 http://www.featflow.de http://www.feast.tu-dortmund.de

Motivation

- The 'free ride' is over, paradigm shift in HPC:
 - memory wall (in particular for sparse Linear Algebra problems)
 - physical barriers (heat, power consumption, leaking voltage)
 - applications no longer run faster automatically on newer hardware
- Heterogeneous hardware: commodity CPUs plus coprocessors
 - graphics cards (GPU)
 - Cell BE processor
 - HPC accelerators (e.g. ClearSpeed)
 - reconfigurable hardware (FPGA)
- Finite Element Methods (FEM) and Multigrid solvers: most flexible, efficient and accurate simulation tools for PDEs.

Aim of this Talk

High Performance Computing

meets

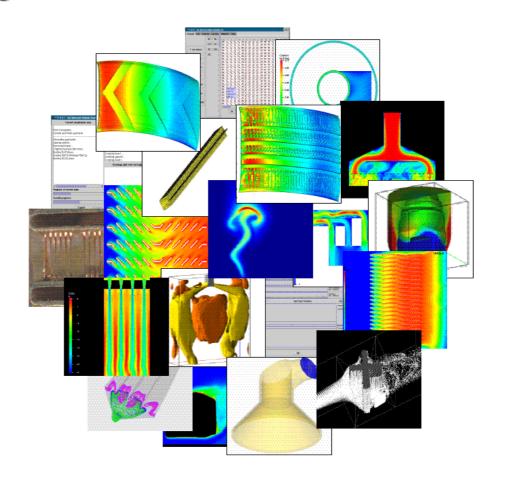
Hardware-oriented Numerics

on

Unconventional Hardware

for

Finite Element Methods



1) Hardware-Oriented Numerics

What is 'Hardware-Oriented Numerics'?

- It is more than 'good Numerics' and 'good Implementation' on High Performance Computers
- Critical quantity: 'Total Numerical Efficiency'

Total Numerical Efficiency

- 'High (guaranteed) accuracy for user-specific quantities with minimal #d.o.f. (~ N) via fast and robust solvers – for a wide class of parameter variations – with optimal numerical complexity (~ O(N)) while exploiting a significant percentage of the available huge sequential/ parallel GFLOP/s rates at the same time'
- FEM Multigrid solvers with a posteriori error control for adaptive meshing are a candidate
- Is it easy to achieve high 'Total Numerical Efficiency'?

Example: Fast Poisson Solvers

- Fast Multigrid Methods as general philosophy
 - 'Optimized' versions for scalar PDE problems
 (≈Poisson problems) on general meshes should
 require ca. 1000 FLOPs per unknown (in contrast to
 LAPACK for dense matrices with O(N³) FLOPs)
- Problem size 10⁶: Much less than 1 sec on PC (???)
- Problem size 10¹²: Less than 1 sec on PFLOP/s computer
- More realistic (and much harder) 'Criterion' for Petascale Computing in Technical Simulations

Main Component: 'Sparse' MV Application

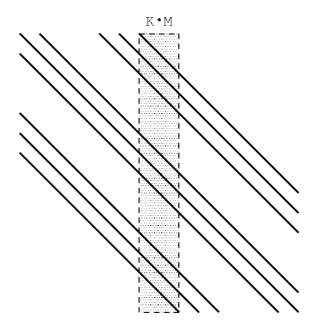
Sparse Matrix-Vector techniques ('indexed DAXPY')

```
DO 10 IROW=1,N

DO 10 ICOL=KLD(IROW), KLD(IROW+1)-1

Y(IROW)=DA(ICOL)*X(KCOL(ICOL))+Y(IROW)
```

Sparse Banded MV techniques on generalized TP grids



Grid Structure

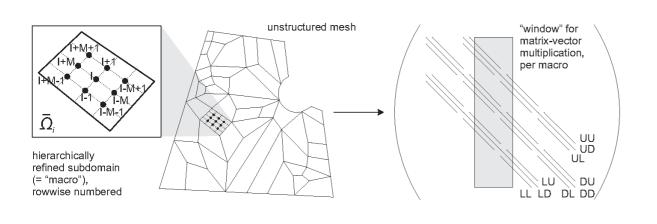
Fully adaptive grids

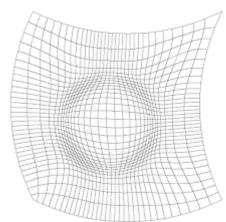
Maximum flexibility
'Stochastic' numbering
Unstructured sparse matrices
Indirect addressing, very slow.

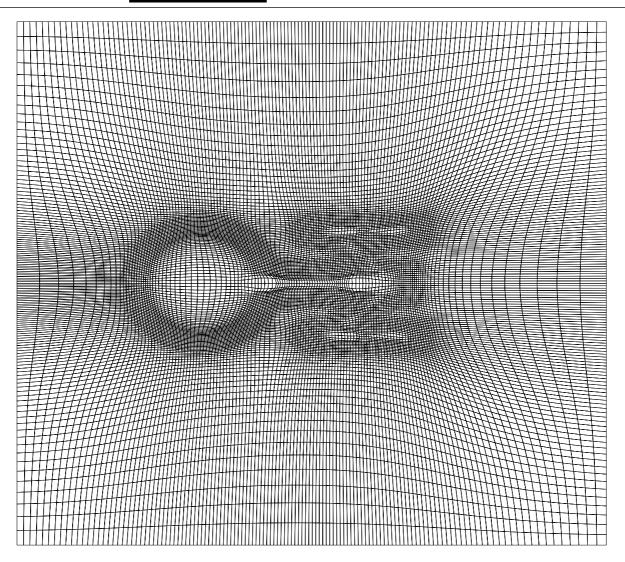
Locally structured grids

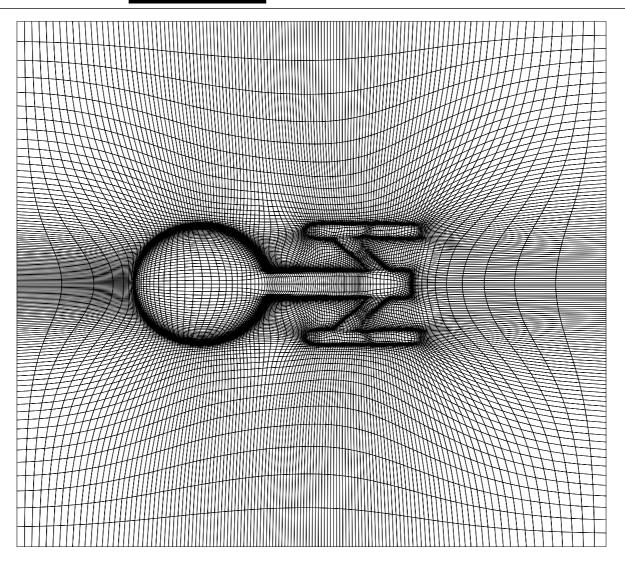
Logical tensor product Fixed banded matrix structure Direct addressing (\Rightarrow fast) r-adaptivity

Unstructured macro mesh of tensor product subdomains





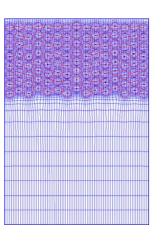


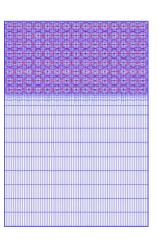


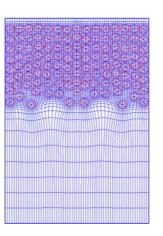


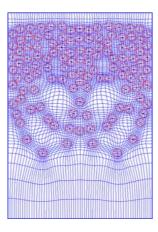
...with appropriate Fictitious Boundary techniques in FEATFLOW.....

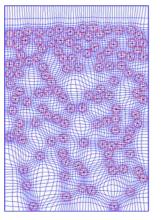
....dynamic CFD problems.....

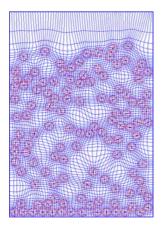


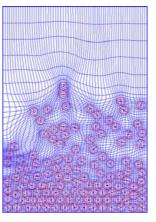


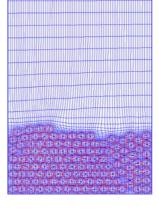


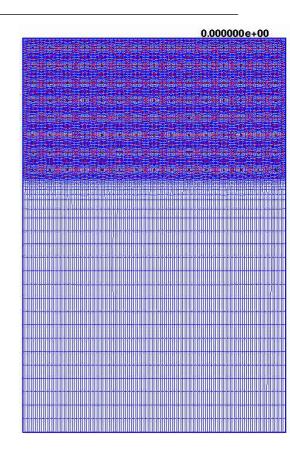




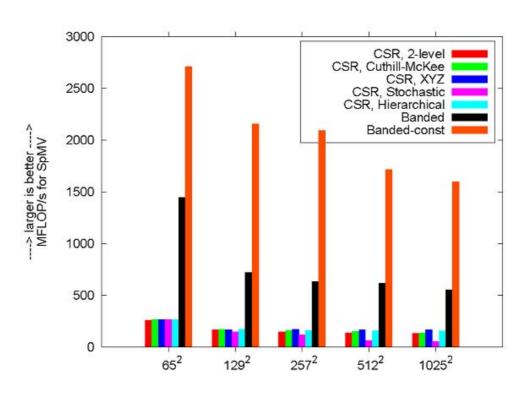








Example: SpMV on TP Grid



- ★ Opteron X2 2214, 2.2 GHz, 2x1 MB L2 cache, one thread
- ★ 50 vs. 550 MFLOP/s for interesting large problem size
- \star Caching of coefficient vector, full streaming bandwidth for A
- \star const: constant coefficients \Rightarrow stencil

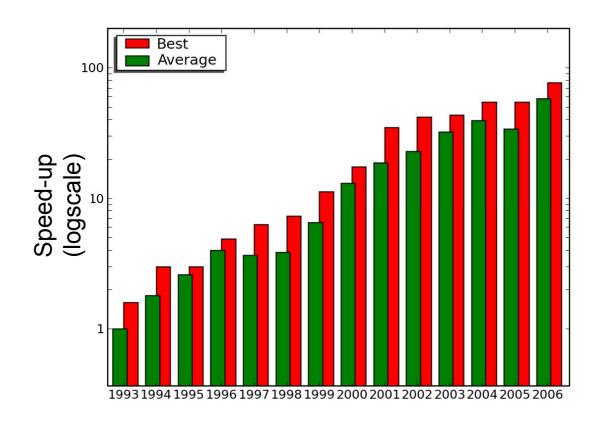
Observation I: Sparse MV Multiplication

Numbering	4K DOF	66K DOF	1M DOF
Stochastic	127	116	50
Hierarchical	251	159	154
Banded	1445	627	550
Stencil (const)	2709	2091	1597

In realistic scenarios, MFLOP/s rates are

- poor, and
- problem size dependent

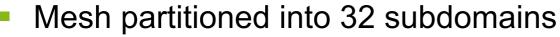
Observation II: Full CFD Simulations



Speed-up of 100x for free in 10 years

Stagnation for standard simulation tools on conventional hardware

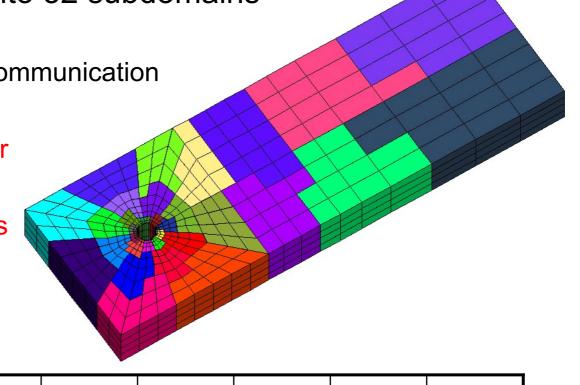
Observation III: Parallel Performance



Problems due to communication

Numerical behavior vs.

anisotropic meshes



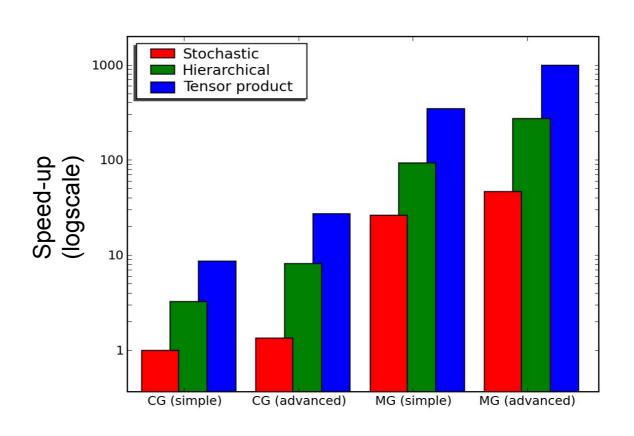
	1 P.	2 P.	4 P.	8 P.	16 P.	32 P.	64 P.
%Comm.	10%	24%	36%	45%	47%	55%	56%
# PPP-IT	2.2	3.0	3.9	4.9	5.2	5.7	6.2

Summary

- It is (almost) impossible to reach Single Processor
 Peak Performance with modern (= high numerical efficiency) FEM simulation tools
- Memory-intensive data/matrix/solver structures?
- Parallel Peak Performance with modern Numerics even harder, already for moderate processor numbers

Hardware-oriented Numerics (HwoN)

FEM for 8 Mill. unknowns on general domain, 1 CPU, Poisson Problem in 2D



Dramatic improvement (factor 1000) due to better Numerics AND better data structures/ algorithms

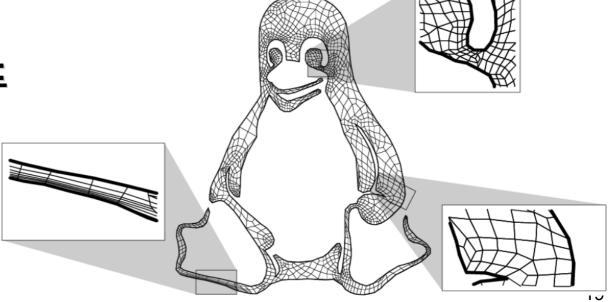
FEAST – Realization of HwoN

- ScaRC solver: Combine advantages of (parallel) domain decomposition and multigrid methods
- Cascaded multigrid scheme
- Hide anisotropies locally to increase robustness
- Globally unstructured locally structured

Low communication overhead

FEAST applications:

FEASTFlow (CFD)
FEASTSolid (CSM)
FEASTLBM (SKALB
Project)



Solver Structure

ScaRC – Scalable Recursive Clustering

- ★ Minimal overlap by extended Dirichlet BCs
- ★ Hybrid multilevel domain decomposition method
- ★ Inspired by parallel MG ("best of both worlds")
 - ► Multiplicative vertically (between levels), global coarse grid problem (MG-like)
 - ► Additive horizontally: block-Jacobi / Schwarz smoother (DD-like)
- ★ Hide local irregularities by MGs within the Schwarz smoother
- ★ Embed in Krylov to alleviate Block-Jacobi character

(Preliminary) State-of-the-Art

- Numerical efficiency?
 - \rightarrow OK
- Parallel efficiency?
 - → OK (tested up to 256 CPUs on NEC SX-8, commodity clusters)
- Single processor efficiency?
 - → OK (for CPU)
- 'Peak' efficiency?
 - \rightarrow NO
 - → Special *unconventional* FEM Co-Processors

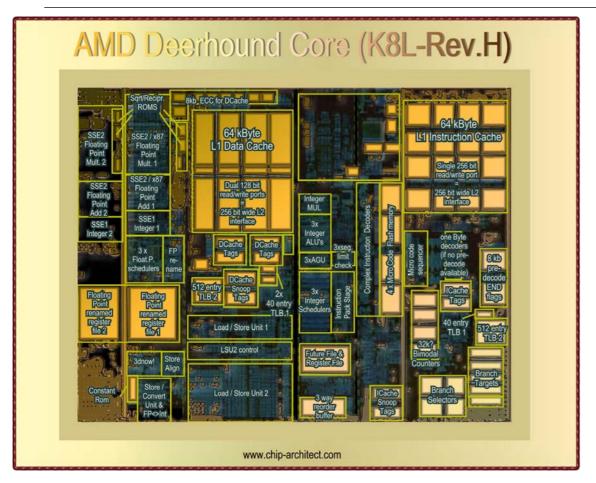
2) UnConventional HPC

Cell multicore processor (PS3),
 7 synergistic processing units
 @ 3.2 GHz, 218 GFLOP/s,
 Memory @ 3.2 GHz

GPU (NVIDIA GTX 285):
 240 cores @ 1.476 GHz,
 1.242 GHz memory bus (160 GB/s)
 ≈ 1.06 TFLOP/s

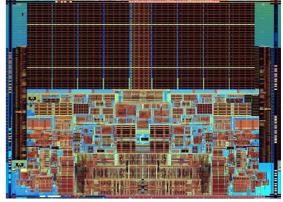
UnConventional High Performance Computing (UCHPC)

Why are GPUs and Cells so fast? TU

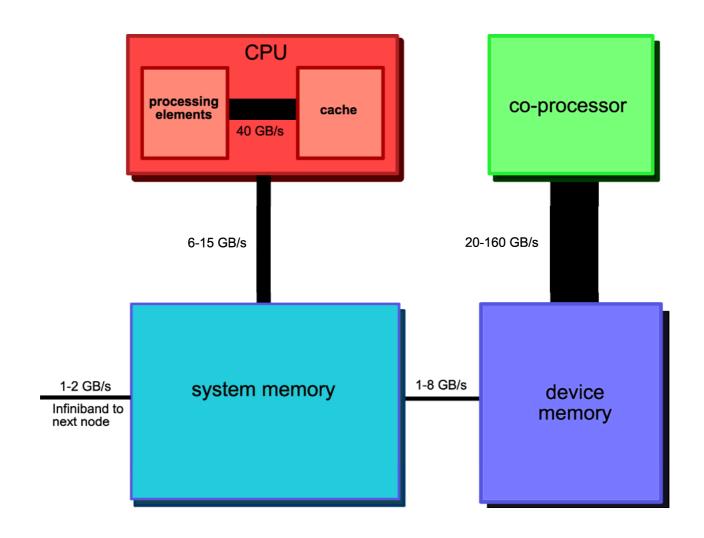


CPUs devote most of the transistors to caches and data movement for general purpose applications

GPUs and **Cells** are more "transistor-efficient" w.r.t. floating point operations

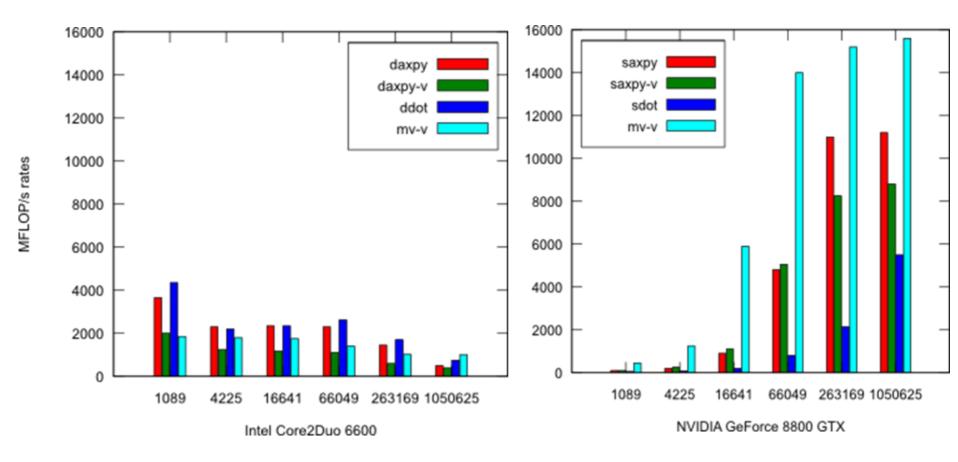


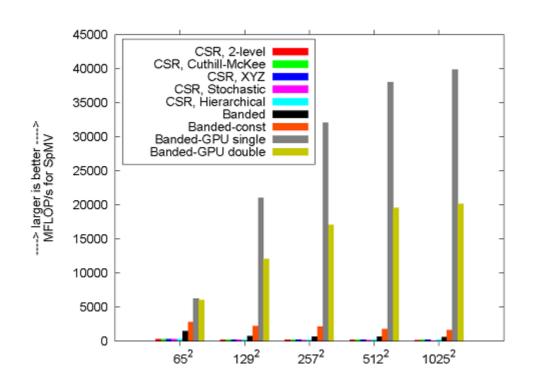
Bandwidth in a CPU/GPU Node technische universität dortmund



Benchmarks: FEM Building Blocks

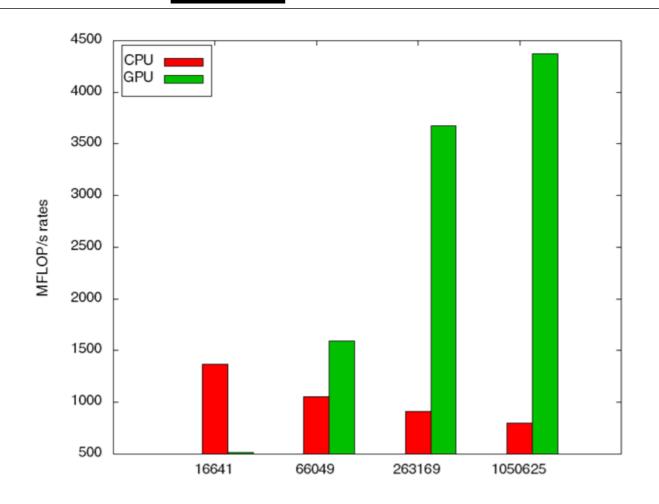
 Typical performance of FEM building blocks SAXPY_C, SAXPY_V (variable coefficients), MV_V (9-point-stencil, Q1 elements), DOT





40 GFLOP/s, 140 GB/s with CUDA on GeForce GTX 280 'only' 13 GFLOP/s on 8800 GTX (90 GB/s peak)

Benchmarks: Complete Multigrid Solver



Promising results, attempt to integrate GPUs as FEM Co-Processors

	Core2Duo (double)		GTX 280 (mixed)			
Level	time(s)	MFLOP/s	time(s)	MFLOP/s	speedup	
$\overline{7}$	0.021	1405	0.009	2788	2.3x	
8	0.094	1114	0.012	8086	7.8x	
9	0.453	886	0.026	15179	17.4x	
10	1.962	805	0.073	21406	26.9x	

- ★ Poisson on unitsquare, Dirichlet BCs, not only a matrix stencil
- ★ 1M DOF, multigrid, FE-accurate in less than 0.1 seconds!
- ★ 27x faster than CPU
- \star 1.7x faster than pure double on GPU
- ★ 8800 GTX (correction loop on CPU): 0.44 seconds on level 10

Design Goals

Include GPUs into FEAST

- without
 - changes to application codes FEASTFLOW / FEASTSolid
 - fundamental re-design of FEAST
 - sacrificing either functionality or accuracy
- but with
 - noteworthy speedups
 - a reasonable amount of generality w.r.t. other co-processors
 - and additional benefits in terms of space/power/etc.

But: no --march=gpu/cell compiler switch

Integration Principles

- Isolate suitable parts
 - Balance acceleration potential and acceleration effort
- Diverge code paths as late as possible
 - Local MG solver
 - Same interface for several co-processors
- Important benefit of minimally invasive approach:
 No changes to application code
 - Co-processor code can be developed and tuned on a single node
 - Entire MPI communication infrastructure remains unchanged

Minimally invasive integration

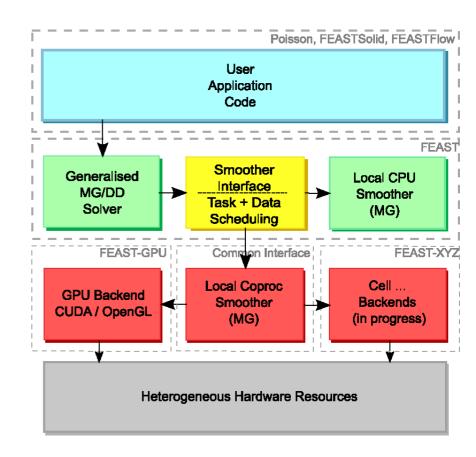
global BiCGStab
preconditioned by
global multilevel (V 1+1)
additively smoothed by
for all Ω_i : local multigrid
coarse grid solver: UMFPACK

All outer work: CPU, double

Local MGs: GPU, single

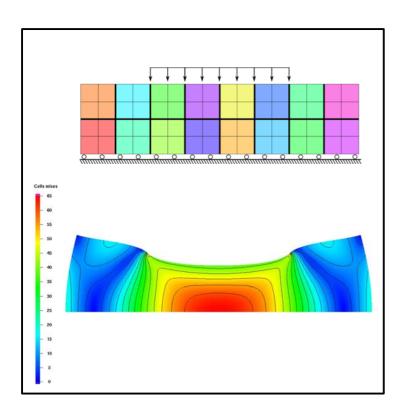
GPU is preconditioner

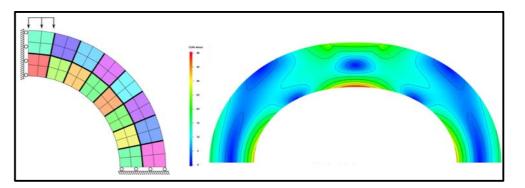
Applicable to many co-processors

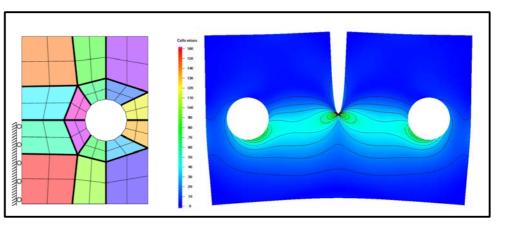


Show-Case: FEASTSolid

- Fundamental model problem:
 - solid body of elastic, compressible material (e.g. steel)
 - exposed to some external load





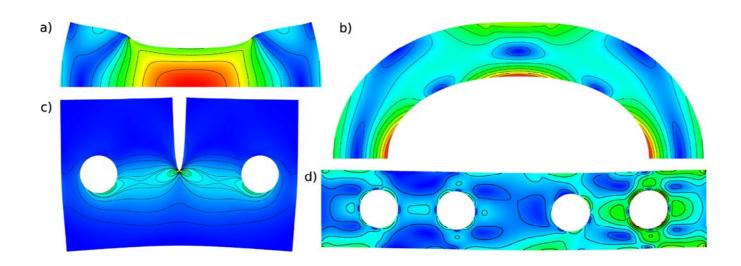


Linearised elasticity

$$\begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = f$$

$$\begin{pmatrix} (2\mu + \lambda)\partial_{xx} + \mu\partial_{yy} & (\mu + \lambda)\partial_{xy} \\ (\mu + \lambda)\partial_{yx} & \mu\partial_{xx} + (2\mu + \lambda)\partial_{yy} \end{pmatrix}$$

global multivariate BiCGStab
block-preconditioned by
Global multivariate multilevel (V 1+1)
additively smoothed (block GS) by
for all Ω_i : solve $A_{11}c_1 = d_1$ by
local scalar multigrid
update RHS: $d_2 = d_2 - A_{21}c_1$ for all Ω_i : solve $A_{22}c_2 = d_2$ by
local scalar multigrid
coarse grid solver: UMFPACK



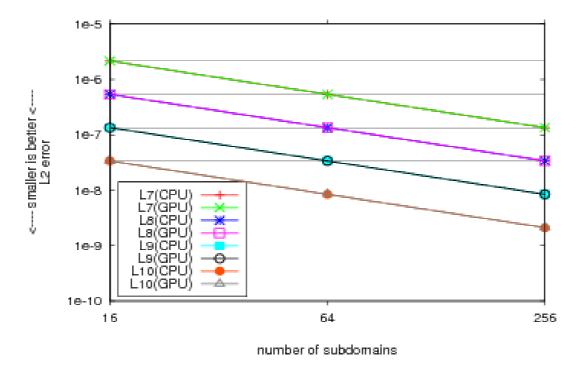
Mixed precision approach

-	single	precision	double precision		
Level	Error	Reduction	Error	Reduction	
2	2.391E-3		2.391E-3		
3	5.950E-4	4.02	5.950E-4	4.02	
4	1.493E-4	3.98	1.493E-4	3.99	
5	3.750E-5	3.98	3.728E-5	4.00	
6	1.021E-5	3.67	9.304E-6	4.01	
7	6.691E-6	1.53	2.323E-6	4.01	
8	2.012E-5	0.33	5.801E-7	4.00	
9	7.904E-5	0.25	1.449E-7	4.00	
10	3.593E-4	0.22	3.626E-8	4.00	

- \star Poisson $-\Delta \mathbf{u} = \mathbf{f}$ on $[0,1]^2$ with Dirichlet BCs, MG solver
- \star Bilinear conforming Finite Elements (Q_1) on cartesian mesh
- ★ Mixed precision solver: double precision Richardson, preconditioned with single precision MG ('gain one digit')
- ★ Same results as entirely in double precision

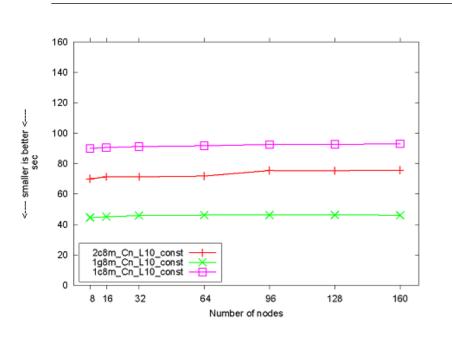
Accuracy

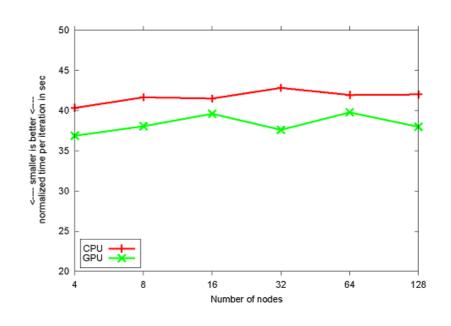
L₂ error against reference solution



- Same results for CPU and GPU
 - expected error reduction independent of refinement and subdomain distribution

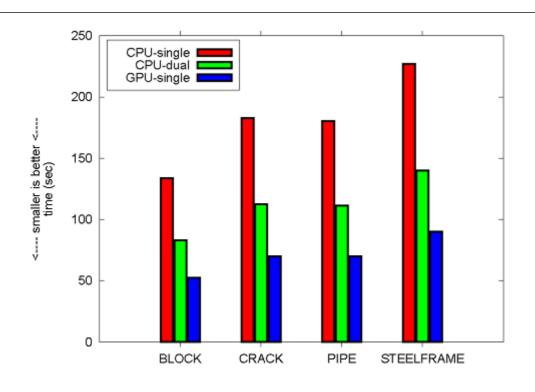
(Weak) Scalability





- ★ Outdated cluster, dual Xeon EM64T,
- ★ one NVIDIA Quadro FX 1400 per node (one generation behind the Xeons, 20 GB/s BW)
- ★ Poisson problem (left): up to 1.3 B DOF, 160 nodes
- ★ Elasticity (right): up to 1B DOF, 128 nodes

Absolute Speedup



- ★ 16 nodes, Opteron X2 2214,
- ★ NVIDIA Quadro FX 5600 (76 GB/s BW), OpenGL
- ★ Problem size 128 M DOF
- ★ Dualcore 1.6x faster than singlecore
- ★ GPU 2.6x faster than singlecore, 1.6x than dual

Speedup Analysis

- Speedups in 'time to solution' for one GPU:
 2.6x vs. Singlecore, 1.6x vs. Dualcore
- Amdahl's Law is lurking
 - Local speedup of 9x and 5.5x by the GPU
 - 2/3 of the solver accelerable => theoretical upper bound 3x
- Future work
 - Three-way parallelism in our system:
 - coarse-grained (MPI)
 - medium-grained (heterogeneous resources within the node)
 - fine-grained (compute cores in the GPU)
 - Better interplay of resources within the node
 - Adapt Hardware-oriented Numerics to increase accelerable part

Stationary Navier-Stokes

$$\begin{pmatrix} A_{11} & A_{12} & B_1 \\ A_{21} & A_{22} & B_2 \\ B_1 & B_2 & C \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \\ p \end{pmatrix} = \begin{pmatrix} f_1 \\ f_2 \\ g \end{pmatrix}$$

- 🛨 4-node cluster
- \star Opteron X2 2214
- \star GeForce 8800 GTX (90 GB/s BW), CUDA
- ★ Driven cavity and channel flow around a cylinder

fixed point iteration

solving linearised subproblems with

global BiCGStab (reduce initial residual by 1 digit)

Block-Schurcomplement preconditioner

1) approx. solve for velocities with

global MG (V1+0), additively smoothed by

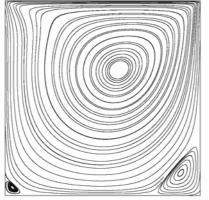
for all Ω_i : solve for u_1 with

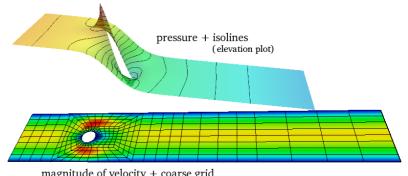
local MG

for all Ω_i : solve for u_2 with

local MG

- 2) update RHS: $d_3 = -d_3 + B(c_1, c_2)$
- 3) scale $c_3 = (M_p^{L})d_3$





magnitude of velocity + coarse grid

Navier-Stokes results

Speedup analysis

	R_{acc}		S_{local}		S_{total}	
	L9	L10	L9	L10	L9	L10
DC Re100	41%	46%	6x	12x	1.4x	1.8x
DC Re250	56%	58%	5.5x	11.5x	1.9x	2.1x
Channel flow	60%	_	6x	_	1.9x	_

Important consequence:

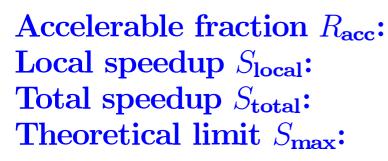
Ratio between assembly and linear solve changes significantly

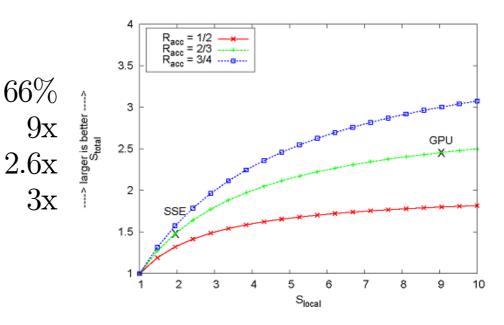
DC Re100		$\mathrm{DC}\ \mathrm{Re}250$		Channel flow	
plain	accel.	plain	accel.	plain	accel.
29:71	50:48	11:89	25:75	13:87	26:74

Acceleration analysis

Speedup analysis

- * Addition of GPUs increases resources
- \star \Rightarrow Correct model: strong scalability inside each node
- \star Accelerable fraction of the elasticity solver: 2/3
- * Remaining time spent in MPI and the outer solver





There is a Huge Potential for the Future ...

But:

- High Performance Computing has to consider recent and future hardware trends, particularly for heterogeneous multicore architectures and massively parallel systems!
- The combination of 'Hardware-oriented Numerics' and special 'Data Structures/Algorithms' and 'Unconventional Hardware' has to be used!

...or most of existing (academic/commercial) FEM software will be 'worthless' in a few years!

Acknowledgements

- FEAST Group (TU Dortmund)
- Robert Strzodka
 (Max Planck Center, Max Planck Institut Informatik)
- Jamaludin Mohd-Yusof, Patrick McCormick (Los Alamos National Laboratories)

