3D Level Set-FEM Techniques for (non-Newtonian) Multiphase Flow Problems Benchmarking and Applications to Monodisperse Droplet Generation and Micro-Encapsulation

<u>S. Turek</u>, H. Damanik, O. Mierka, R. Münster Institut für Angewandte Mathematik, LS III Technische Universität Dortmund ture@featflow.de

http://www.mathematik.tu-dortmund.de/LS3 http://www.featflow.de

Motivation: Fluid Prilling and Encapsulation

- Numerical simulation of *micro-fluidic drug encapsulation ("monodisperse compound droplets")*
- Polymeric "bio-degradable" outer fluid with generalized Newtonian/viscoelastic behaviour
- Optimization/Optimal control w.r.t. boundary conditions, flow rates, droplet size, geometry

stirred reactors

Controlled drug release

Taste or odor masking

Protection of chemically active ingredients (from both sides)

Jet configuration

- Core material is defined as the specific material that requires to be coated (liquid, emulsion, colloid or solid)
- Shell material is present to protect and stabilize the core (Alginate, Chitosan, Gelatin, Pectin, Waxes, Starch)

technische universität dortmund

M. Whelehan

Motivation: Fluid Prilling and Encapsulation

Modular Structure of mgLS-FBM-FEM

I) Treatment of Reinitialization

Higher order Q2 discretization of the Level Set equation $\frac{\partial \phi}{\partial t} + \mathbf{v} \cdot \nabla \phi = 0$

٠

Stability requirement: ϕ should be smooth! \rightarrow Stabilization for transport? Reinitialization / Accurate distance computation / Interface reconstruction

Triangulation of the arising surface

(downward direction)

Hierarchical storage of triangulated subsets Reduction to mass of points weighted with their integral area ٠

(upward direction)

Practical Realization – Interface Reconstruction

Higher order Q2 discretization of the Level Set equation $\frac{\partial \phi}{\partial t} + \mathbf{v} \cdot \nabla \phi = 0$

Stability requirement: *ϕ* should be smooth! → Stabilization for transport?
 Reinitialization / Accurate distance computation / Interface reconstruction

Practical Realization – Reinitialization

Treatment of Surface Tension

Surface Tension: Semi-implicit CSF formulation based on Laplace-Beltrami

$$\mathbf{f}_{\mathrm{ST}} = \int_{\Omega} \sigma \mathbf{k} \hat{\mathbf{n}} \cdot \mathbf{v} \,\delta(\Gamma, \mathbf{x}) \,d\mathbf{x} = \int_{\Omega} \sigma \left(\underline{\Delta} \mathbf{x} \big|_{\Gamma} \right) \cdot \left(\mathbf{v} \,\delta(\Gamma, \mathbf{x}) \right) d\mathbf{x}$$
$$= -\int_{\Omega} \sigma \underline{\nabla} \mathbf{x} \big|_{\Gamma} \cdot \underline{\nabla} \left(\mathbf{v} \,\delta(\Gamma, \mathbf{x}) \right) d\mathbf{x} = -\int_{\Omega} \sigma \underline{\nabla} \mathbf{x} \big|_{\Gamma} \cdot \underline{\nabla} \mathbf{v} \,\delta(\Gamma, \mathbf{x}) \,d\mathbf{x}$$

Application of the semi-implicit time integration yields $\mathbf{x}|_{\Gamma^{n+1}} = \mathbf{x}|_{\Gamma^n} + \Delta t \mathbf{u}^{n+1}$

$$\mathbf{f}_{\mathrm{ST}} = -\int_{\Omega} \boldsymbol{\sigma} \, \delta_{\varepsilon} \Big(dist(\Gamma^{n}, \mathbf{x}) \Big) \underline{\nabla} \, \widetilde{\mathbf{x}} \Big|_{\Gamma}^{n} \cdot \underline{\nabla} \, \mathbf{v} \, d\mathbf{x} \\ - \Delta t^{n+1} \int_{\Omega} \boldsymbol{\sigma} \, \delta_{\varepsilon} \Big(dist(\Gamma^{n}, \mathbf{x}) \Big) \underline{\nabla} \, \mathbf{u}^{n+1} \cdot \underline{\nabla} \, \mathbf{v} \, d\mathbf{x}$$

Advantages

- Relaxes Capillary Time Step restriction
- "Optimal" for FEM-Level Set approach due to global information

Aim: Curvature-free Surface Tension

• Standard surface tension approach

$$\left(\frac{\partial \mathbf{u}}{\partial t} + u \cdot \nabla \mathbf{u}\right) - \operatorname{div} \boldsymbol{\tau} + \nabla p = \rho \mathbf{f} + \mathbf{f}_{\mathrm{CSF},1}$$
$$\mathbf{f}_{\mathrm{CSF},1} = \kappa \sigma \mathbf{n} \delta_{\Gamma}$$

• Curvature-free surface tension

$$\psi = \frac{1}{1 + e^{\frac{\operatorname{dist}_{\Gamma}}{\epsilon}}} \quad \mathbf{n}\delta_{\Gamma} = \nabla\psi \qquad \kappa = -\nabla \cdot \mathbf{n} \qquad \mathbf{n} = \frac{\nabla\psi}{\|\nabla\psi\|}$$
$$\mathbf{f}_{\mathrm{CSF},2} = -\sigma\nabla \cdot \left(\frac{\nabla\psi}{\|\nabla\psi\|}\right)\nabla\psi$$
$$\mathbf{f}_{\mathrm{CSF},3} = -\sigma\nabla \cdot \left(\frac{\nabla\psi \otimes \nabla\psi}{\|\nabla\psi\|}\right)$$

Numerical Evaluation

2D Bubble Benchmarks

Towards a New Stress Formulation

$$ho\left(rac{\partial \mathbf{u}}{\partial t} + u \cdot \nabla \mathbf{u}
ight) - \operatorname{div} \boldsymbol{\tau} + \nabla p =
ho \mathbf{f}$$
 $\boldsymbol{\tau} = \boldsymbol{\tau}_s + \boldsymbol{\tau}_{Xs}$
 $\boldsymbol{\tau}_s = 2\mu \mathbf{D}(\mathbf{u})$

$$\boldsymbol{\tau}_{Xs} = -\sigma \left(\frac{\nabla \psi \otimes \nabla \psi}{\|\nabla \psi\|} \right)$$

New stress, allowing more implicit coupling and more appropriate FEM spaces

Use of standard NSE solvers since no force term on right hand side

Validation of the 3D mgLS-FEM Flow Solver

Benchmarking on Experimental Results

	Separation	Droplet	Stream		
Group	frequency	size	Length		
	[Hz]	[dm]	[dm]		
BCI Dortmund	0,58	0,062	0,122		
iRMB Braunschweig	0,37	0,068	0,113		
AM&N Dortmund	0,60	0,058	0,102		
		CORRES.			

iRMB - LB

TU Do - FEM

Turek S., Mierka O., Hysing S., Kuzmin D.: Numerical study of a high order 3D FEM-Level Set approach for immiscible flow simulation, Repin, S., Tiihonen, T., Tuovinen, T., Numerical methods for differential equations, optimization, and technological problems, Springer, 2012.

Generalized Newtonian Flow Module - Validation

Single phase validation on 2D benchmark "flow around a cylinder" Reference

Reference: Damanik et al.

n=1,50

n=0.75

	Shear thining n=0,75			Shear thickening n=1,50					
	Dam	nanik*	Our	results	Dam	nanik*	Our ı	results	27
level	C _D	CL	C _D	CL	C _D	CL	C _D	CL	
1	3,20082	-0,01261	3,20450	-0,01215	13,6209	0,34250	13,6233	0,34347	
2	3,26433	-0,01342	3,26637	-0,01347	13,7380	0,35052	13,7379	0,35037	
3	3,27739	-0,01342	3,27755	-0,01343	13,7688	0,34941	13,7688	0,34928	

Viscosity distribution

Pseudo 2D rising bubble in Power-Law fluids Droplet generation for Power-Law fluids

Viscoelastic Multiphase Flow

Preliminary numerical results – 2D rising bubble

	Test case	$ ho_1$	$ ho_2$	μ_1	μ_2	g	σ
Material 1: Viscoelastic fluid	1. Viscoelastic ($\Lambda = 10$)	10	0.1	10	1	9.8	0.245
described by the Oldroyd-B model	2. Newtonian $(\Lambda = 0)$	10	0.1	10	1	9.8	0.245
Material Q. Neutonian fluid	3. Viscoelastic ($\Lambda = 10$)	10	0.1	2	1	9.8	0.245
material 2: Newtorlian fluid	4. Newtonian $(\Lambda = 0)$	10	0.1	2	1	9.8	0.245

Next: Particulate Flow

Modelling: Two-phase Flow (Solid-Liquid)

- Fluid motion is governed by the Navier-Stokes equations
- Particle motion is described by Newton-Euler equations

Fictitious Boundary Method

- Surface integral is replaced by volume integral
- Use of monitor function (liquid/solid)
- Normal to particle surface vector is non-zero only at the surface of particles $n_p = \nabla \alpha_p$

$$F_{p} = -\int_{\Gamma_{p}} \sigma \cdot n_{p} d\Gamma_{p} = -\int_{\Omega_{T}} \sigma \cdot \nabla \alpha_{p} d\Omega_{T}$$

$$T_{p} = -\int_{\Gamma_{p}} \left(X - X_{p} \right) \times \left(\sigma \cdot n_{p} \right) d\Gamma_{p} = -\int_{\Omega_{T}} \left(X - X_{p} \right) \times \left(\sigma \cdot \nabla \alpha_{p} \right) d\Omega_{T}$$

 $\alpha_p(X) = \begin{cases} 1 & \text{for} \quad X \in \Omega_p \\ 0 & \text{for} \quad X \in \Omega_f \end{cases}$

Modelling: Two-phase Flow (Solid-Liquid)

- supports HPC concepts (fixed data structures)
- easy grid generator
- relatively low resolution
 - Brute force \rightarrow Finer mesh resolution
 - High resolution interpolation functions
 - Grid deformation (+ monitor function)

Adaptive Grid Deformation: Sedimentation of Particles

Numerical Solution Scheme

technische universität dortmund

Benchmarking and Validation

Settling of a sphere towards a plane wall:

- Sedimentation Velocity
- Particle trajectory
- Kinetic Energy
- Different Reynolds numbers

Setup

Computational mesh:

- 1.075.200 vertices
- 622.592 hexahedral cells
- Q2/P1:

→ 50.429.952 DoFs

Hardware Resources:

• 32 Processors

Benchmarking and Validation

Observations

- Velocity profiles compare well to ten Cate's data
- Maximum velocity close to experiment
- Flow features are accurately resolved

Re	u_{max}/u_{∞}	u_{max}/u_{∞}	u_{max}/u_{∞}
		ten Cate	exp
1.5	0.945	0.894	0.947
4.1	0.955	0.950	0.953
11.6	0.953	0.955	0.959
31.9	0.951	0.947	0.955

Tab. 1 Comparison of the u_{max}/u_{∞} ratios between the FEM-FBM, ten Cate's simulation and ten Cate's experiment

Benchmarking and Validation Source: 13th Workshop on Two-Phase Flow Predictions 2012 Ernst, M., Dietzel, M., Sommerfeld, M.

- Increasing the mesh resolution produces more accurate results Test performed at different mesh levels
 - Maximum velocity is approximated better
 - Shape of the velocity curve matches better

Complex Geometry Examples

Fluidized Bed Example

Bringing Everything Together: Preliminary Studies for Micro-Encapsulation

Next Steps

- Adaptive time stepping + adaptive grid alignment/ALE.
- Coupling with turbulence models.
- Coupling with elastic particles, resp., objects (full FSI).
- Integration of 3D viscoelastic multiphase effects into FEM-FBM.
- Benchmarking and experimental validation for "many" particles/droplets.

Backup slides ...

Benchmarking and Validation

FEM-Multigrid Framework

- Increasing the mesh resolution produces more accurate results Test performed at different mesh levels
 - Maximum velocity is approximated better
 - Shape of the velocity curve matches better \checkmark

Preliminary Numerical Results – 3D Three-phase Flow

Rise of a light droplet carrying an entrapped particle in a surrounding heavier liquid

Benchmarking and Validation

Free fall of particles:

- Terminal velocity
- Different physical parameters
- Different geometrical parameters

Münster, R.; Mierka, O.; Turek, S.: Finite Element fictitious boundary methods (FEM-FBM) for 3D particulate flow, IJNMF, 2010, accepted

J technische universität dortmund

3D Simulations with more Complex Geometries

technische universität dortmund

Numerical Benchmarking

2D Bubble Benchmarks

http://www.featflow.de/beta/en/benchmarks/

Aim: Tailored Monodisperse Droplets via Modulation

DGS Configuration

technische universität dortmund