

Hardware-oriented Numerics for PDE and Unconventional High Performance Computing Techniques

Motivation, Concepts, Applications to CFD

Stefan Turek and the FEAST Group Institut für Angewandte Mathematik (LS3), TU Dortmund <u>http://www.mathematik.tu-dortmund.de/LS3</u> <u>http://www.featflow.de</u>

U technische universität dortmund

- Scientific Computing has been facing a paradigm shift
- II) Unconventional hardware has to be taken into account
- **III)** Realistic applications: *Virtual Labs* for Multiphase flow

Main message: Future solvers for simulations of PDEs

are influenced by

HWON + (UC)HPC Techniques on Exascale Hardware

Motivation

- I) Scientific Computing has been facing a paradigm shift
 - Adaptive Finite Element Methods (AFEM) and Multigrid Solvers: most flexible, efficient and accurate simulation tools for PDEs nowadays, but software realization no longer runs faster automatically on newer hardware
 - Single CPU cores are not getting so much faster (frequency scaling), while significant speed-up is obtained via different levels of parallelism
 - Data movement is usually more expensive than computations (memory wall) in particular for Linear Algebra problems

FeatFlow-Benchmark 1993-2008: FEM-MG F77-code

technische universität dortmund

II) Unconventional hardware has to be taken into account

Parallelism and *heterogeneity* ubiquitous in modern hardware:

- → Multicore CPUs, multicore accelerators (XEON Phi), GPUs
- → Heterogeneity on a node (e.g. CPUs + GPUs)
- → Heterogeneous chips (ARM SoCs, Cell in PS3, Jaguar in PS4)
- → Many levels of parallelism (fine-grained SIMD to coarse grained MP)

U technische universität dortmund

Consequences from *modern* and *unconventional* hardware:

- \rightarrow Algorithms and whole software-frameworks have to be re-tailored
- → Hardware-aware implementation vs. numerical efficiency gets crucial
- → Insufficient compiler-/library-/autotuning-support → careful tuning
- → Myths vs. reality: 100x speedups via GPGPU, 'prototype codes', ...

III) Realistic (= industrial) applications: *Virtual Labs*

- How to design algorithms and software on these architectures for <u>complete</u> Virtual Labs for realistic applications?
- Vision: Highly efficient, flexible and accurate "real life" simulation based on <u>modern Numerics</u> and algorithms while exploiting <u>modern hardware</u>!
- Here: Multiphase-CFD as prototype for complex problems

High Performance Computing

meets

Hardware-oriented Numerics

on

Unconventional Hardware

for

Multiphase Flow Problems

Hardware-Oriented Numerics (HWON) technische universität

Use the "best" numerical & algorithmic concepts while exploiting modern hardware at the same time!

- It is more than 'good Numerics' and 'good Implementation' (and hence 'good scheduling of building blocks') on modern (parallel) hardware architecture
- Consider 'short-term hardware developments' now, but 'long-term hardware trends' for designing efficient numerical schemes
- 'Total Numerical Efficiency' as critical quantity for balancing numerical efficiency vs. hardware efficiency

`Total Numerical Efficiency'

- 'High (guaranteed) accuracy for user-specific quantities with minimal #d.o.f. (~ N) via fast and robust solvers for a wide class of parameter variations with optimal numerical complexity (~ O(N)) ...
 But: while exploiting a significant percentage of the available huge single node/full machine TeraFLOP/ExaFLOP rates at the same time'
- Is it easy to achieve high 'Total Numerical Efficiency'? How to measure?

What is the problem since 'Exascale Computing seems to be easy' (as stated in literature...).. ©

Problem: Adaptive Space-time-FEM-Multigrid-like solvers are the candidates from a mathematical point of view

Why Exascale Computing is 'easy'.....

- If parallel efficiency is bad, take a much less efficient serial algorithm
- \rightarrow Easier to parallelize
- → More impressive speedups and scaling
- Show very high "Macho Flop" rates per iteration or time step
- → Take explicit approaches without solvers of (non)linear systems
- Never show total CPU time-to-solution and obtained accuracy
- \rightarrow Who wants to solve real problems?
- → Only the Macho Flops count
- Never try to realize complex, but numerically efficient algorithms
- Spending millions of CPU hours allows you not to read scientific papers

Fast Poisson FEM-MG-Solvers

- 'Optimized' Multigrid methods for scalar PDE problems (≈Poisson problems) on general meshes should require appr. 1000 FLOPs per unknown (in contrast to single-grid Krylov-space methods or direct solvers a la UMFPACK)
- Problem size 10⁶ : Much less than 1 sec on PC (???)
- Problem size 10¹⁵: Less than 1 sec on ExaFLOP/s computer
- More realistic (and much harder) 'Criterion' for Exascale Computing in Technical Simulations
- Necessary component: Sparse Matrix-Vector applications on general (= "unstructured") grids

Unstructured Meshes with locally regular substructures due to hierarchical data structures for adaptive MG-FEM

Tensorproduct (TP) Meshes (static)

...with Fictitious Boundary Methods (FBM) for complex objects

Tensorproduct (TP) Meshes (dynamic)

technische universität dortmund

technische universität dortmund

Sparse MV on TP Grids: Old, but...

technische universität

dortmund

technische universität **Poisson Solver (Basic) Tests** dortmund exec. time (seconds, logscale) gMG (SPAI) gMG (Jac) BiCGStab (SPAI) BiCGStab (JAC) 1000 CG (JAC) CG (JAC) 100 BiCGStab (JAC) BiCGStab (SPAI) 10 gMG (Jac) gMG (SPAI) Storn. XYZ Hie. СМ 2LV XYZ Hie. СМ 2LV Stoch. CPU GPU (6 Threads) technische universität dortmund

Identical solution, but differences of more than a factor 1000x regarding the CPU time for one "simple" (small) subproblem after "optimization" on all levels!

...not enough for TFLOP results (higher order FEM, ScaRC solvers,...)

...this is only 1 component in complex PDE applications...

Summary: Extensive Tests show.....

- Even for `basic problems' (Poisson solver) the combination of numbering strategies + numerical components + hardware leads to differences in total efficiency of factor 1000x and more on a single node
- (Massively) `Parallel Peak Performance' with modern Numerics is even harder, already for moderate processor numbers
- Besides the mathematical part, the realization of flexible (and user-friendly?) mathematical software is very challenging
- Absolute performance ratings are necessary and must take the Numerics into account!

Some HWON Rules of Thumb (so far...) technische universität dortmund

- Realize all MG components via sparse MV (preconditioners, grid transfer)
 & Optimize sparse MV w.r.t. FEM space, numbering and hardware
- \rightarrow Generic and hardware-optimized gMG-FEM-BLAS Toolbox
- Use higher order in time (large time steps) + space (large FEM stencils)
- \rightarrow High arithmetic intensity via dominant solution part (\rightarrow gMG)
- Design strongly coupled schemes (globally) with Operator-Splitting components (locally)
- → Combine (outer) high robustness & (inner) high efficiency
- Exploit locally regular structures to improve global convergence
- → Strong local solvers cost nothing & Hide irregularities locally
- → Patchwise adaptivity, generalized TP meshes, Grid Deformation, FBM

New HWON Exascale Challenges

- Energy efficiency (see next example...)
- **Parallel in time (PARAREAL-like...)?**
- Numerical Scientific Computing regarding dynamically changing heterogeneous hardware?
- → Asynchronicity and resilience
- > Robustness of numerical solvers
- > Numerical loadbalancing vs. scheduling
- Uncertainty Quantification including stochastic effects due to
- > Numerical errors
- → Modeling errors
- Propagation of input uncertainty

Realization as flexible, re-usable, scalable software (SPP EXA)?

Project: Solar - Supercomputer

Wir bauen den 'grünsten' Supercomputer der Welt!

- \rightarrow 80qm Photovoltaik-Solarpaneele: Mathe-Dach
- \rightarrow 2t Gel-Blei Solar-Akkus
- \rightarrow 3 kW Leistung / 18 TFlop/s
- → Speicherung, Pufferung, Wandlung, Messung: modernste Technik
- \rightarrow keine Energie-Folgekosten

technische universität

dortmund

Mobilprozessoren + HWON machen es möglich → NVIDIA Tegra K1 → sparsam, effizient → günstig → experimentell! Für Studierende, die 'basteln' wollen ...nicht nur mathematisch! HWON Challenges (I) – Basic Level

Strong ILU-like smoothers?

- ILU directly on GPUs?
- SPAI FSAI AINV: Numerical properties?
- Exploiting local structures: Linelet-GS, linewise GS-ADI?
- ► 3D ???

Basic components for different FEM?

- Optimal numbering for nonconforming FEM?
- FEM-adapted grid transfer via sparse MV?

Realization of a FEM-gMG library

BLAS-like: Generic vs. Hardware-optimized?

Parallel Performance

- Pressure Poisson Problem (PPP) via MG with blockwise ILU smoothing (1 – 64 subdomains)
 - Problems due to communication
 - Numerical problems w.r.t. anisotropic meshes
 - → Increasing block-Jacobi character
 - ScaRC as hierarchically clustered recursive MG-DD solver

	-				-		-	-
	1 P.	2 P.	4 P.	8 P.	16 P.	32 P.	64 P.	
%Comm.	10%	24%	36%	45%	47%	55%	56%	
# PPP-IT	2.2	3.0	3.9	4.9	5.2	5.7	6.2	SB

HWON Challenges (II) – Advanced

Scalable (= robust & efficient) parallel solvers?

- Globally unstructured locally structured
- Exploit structured subdomains for scalable efficiency
- Hide anisotropies locally to increase global robustness
- Higher local arihtmetic costs, but less global communication

(Recursive) solver expert system?

numerical + computational a priori knowledge!

Load balancing?

- due to 'total CPU time per accuracy per processor'?
- dynamical a posteriori process?

HWON Challenges (III) – Advanced

- Adaptive meshing & complex (time dependent) geometries
 - Grid Deformation: Flexible deformation & preserving logical structures
 - Fictitious Boundary Method as filter process for geometrical details

•	Coupling mechanisms	CPU(Solver)	Method	Lift		ft	Drag	
	Decoupled vs. Fully Coupled			#NT	mean	peak	mean	peak
	Monolithic vs. Segregated	14,358(81%)	Impl. MPSC	39	1%	1%	0%	2%
	\rightarrow Design new algorithms due	42,679(51%)	Semi-impl. DPM	165	0%	0%	0%	0%
	to high arithmetic intensity	64,485(54%)	Semi-expl. DPM	889	0%	8%	0%	0%

- Higher order discretization in space and time
 - Higher order time stepping schemes for increasing the solution part
 - Higher order FEM for more dense matrices

HWON Challenges (IV) – Benchmarks technische universität dortmund

- How to define benchmarking scenarios which allow to measure the absolute performance???
- We have to consider absolute timings w.r.t. (virtually) optimal algorithms!

Summary: Extensive Tests show.....

- Even for `basic problems' (Poisson solver) the combination of numbering strategies + numerical components + hardware leads to differences in total efficiency of factor 1000x and more
- `Parallel Peak Performance' with modern Numerics is even harder, already for moderate processor numbers
- Besides the mathematical part, the realization of flexible (and user-friendly?) mathematical software is very challenging
- Absolute performance ratings are necessary!
- Applying HWON to complex algorithms and applications is another story...

Application to Multiphase Flow

technische universität dortmund FeatFlow-PRO (by IANUS Simulation)

technische universität dortmund

Numerical features: **HPC features:** Higher order (Q2P1) FEM schemes in space Moderately parallel Implicit FD/FEM in time • GPU computing FCT & EO FEM stabilization techniques • Open source Use of semi-unstructured meshes Dynamic adaptive grid deformation Fictitious Boundary (FBM) methods Newton-Multigrid solvers Multiphase flow module (resolved interfaces): **Engineering aspects:** Non-Newtonian flow module: l/l - interface tracking (Level Set) Geometrical design generalized Newtonian model s/l - interface capturing (FBM) Modulation strategy (Power-law, Carreau,...) - combination of ℓ/ℓ and s/ℓ viscoelastic model s/l/l Optimization • (Giesekus, FENE, Oldroyd,...) FFpro: FEM-based tools for the accurate simulation of multiphase flow problems, particularly with liquid-(rigid) solid interfaces

Consider the flow of N solid particles in a fluid with density ρ and viscosity μ . Denote by $\Omega_f(t)$ the domain occupied by the fluid at time t, by $\Omega_i(t)$ the domain occupied by the ith-particle at time t and let $\overline{\Omega} = \overline{\Omega}_f \cup \overline{\Omega}_i$.

The fluid flow is modelled by the **Navier-Stokes equations**:

$$\rho \left(\frac{\partial u}{\partial t} + u \cdot \nabla u \right) - \nabla \cdot \sigma = f, \quad \nabla \cdot u = 0$$

where σ is the total stress tensor of the fluid phase:

$$\sigma(\mathbf{X}, \mathbf{t}) = -\mathbf{p}\mathbf{I} + \boldsymbol{\mu}[\nabla \mathbf{u} + (\nabla \mathbf{u})^{\mathsf{T}}]$$

The motion of particles can be described by the **Newton-Euler equations**. A particle moves with **a translational velocity** U_i and **angular velocity** ω_i which satisfiy:

$$M_{i}\frac{dU_{i}}{dt} = F_{i} + F_{i}' + (\Delta M_{i})g, \qquad I_{i}\frac{d\omega_{i}}{dt} + \omega_{i} \times (I_{i}\omega_{i}) = T_{i,}$$

- M_i : mass of the i-th particle (i=1,...,N)
- I_i : moment of inertia tensor of the i-th particle
- ΔM_i : mass difference between M_i and the mass of the fluid
- F_i : hydrodynamic force acting on the i-th particle
- T_i : hydrodynamic torque acting on the i-th particle

The position and orientation of the i-th particle are obtained by integrating the **kinematic equations**:

$$\frac{dX_{i}}{dt} = U_{i}, \ \frac{d\theta_{i}}{dt} = \omega_{i}, \ \frac{d\omega_{i}}{dt} = I_{i}^{-1}T_{i}$$

which can be done numerically by an explicit Euler scheme:

$$X_{i}^{n+1} = X_{i}^{n} + \Delta t U_{i}^{n} \quad \omega_{I}^{n+1} = \omega_{I}^{n} + \Delta t \left(I_{i}^{-1}T_{i}^{n}\right) \quad \theta_{I}^{n+1} = \theta_{I}^{n} + \Delta t \omega_{I}^{n}$$

Boundary Conditions

We apply the velocity u(X) as no-slip boundary condition at the interface $\partial \Omega_i$ between the i-th particle and the fluid, which for $X \in \Omega_i$ is defined by:

$$u(X) = U_i + \omega_i \times (X - X_i)$$
Numerical Solution Scheme

Fictitious Boundary Method

Eulerian Approach:

- FBM = special case of (scaled) Penalty method
- Internal objects are represented as a boolean (in/out) function on the mesh
- Complex shapes are possible (surface triangulation, implicit functions)
- Use of a fixed mesh possible \rightarrow only first order accurate
- But: Higher accuracy possible by using mesh adaptation techniques

Dynamic ALE-Mesh Adaptation

Advantages:

- Constant mesh/data structure → GPU
- Increased resolution in regions of interest
- PDE approach ← → anisotropic 'umbrella' smoother, snapping/projection
- Straightforward usage on 3D unstructured meshes

Quality of the method depends on the construction of the monitor function

- Geometrical description (solid body, interface triangulation)
- Field oriented description (steep gradients, fronts) \rightarrow numerical stabilization

Oscillating Cylinder

- Measure Drag/Lift Coefficients for a sinusoidally oscillating cylinder
- Compare results for FBM, adapted FBM and adapted FBM + boundary projection/parametrization

Nodes concentrated near liquid-solid interface Nodes projected and parametrized on boundary plus concentration of nodes near boundary

Oscillating Cylinder Results

Drag Coefficient Cd for Classic FBM, FBM+adapt, FBM+param+adapt

(Passive) Microswimmer

technische universität dortmund

Sedimentation

Chemical Reactions technische universität dortmund $A + B \xrightarrow{k \to \infty} P$ $\partial_t \phi + u \cdot \nabla \phi = \nabla \cdot (d\nabla \phi)$ with $\phi = c_A - c_B$ Toor and Chiang fluid A Challenges: concent plotted along Extreme resolution requirements \rightarrow AFC + GD • Extremely different time-scales \rightarrow Operator splitting – fluid B ٠ \rightarrow MEMM (Fox et al.) Micromixing–subgrid mixing models • Transported scalar field ϕ Monitor function Computational mesh Computational ref. Bothe et al.

Viscous Liquid Jets

J. M. Nóbrega et al.: The phenomenon of jet buckling: Experimental and numerical predictions

technische universität

dortmund

Hydrodynamic force and torque acting on the i-th particle

$$F_{i} = -\int_{\partial\Omega_{i}} \sigma \cdot n_{i} d\Gamma_{i}, \quad T_{i} = -\int_{\partial\Omega_{i}} (X - X_{i}) \times (\sigma \cdot n_{i}) d\Gamma$$

Force Calculation with Fictitious Boundary Method

Problems: The FBM can only decide:

- `INSIDE`(1) and `OUTSIDE`(0)
- No description of the surface

Alternative: Replace the surface integral by a volume integral

Define an *indicator function* α_i :

$$\alpha_{i}(X) = \begin{cases} 1 & \text{for } X \in \Omega_{i} \\ 0 & \text{for } X \in \Omega_{f} \end{cases}$$

Remark: The gradient of α_i is zero everywhere except at the surface of the i-th Particle and approximates the normal vector (in a weak sense), allowing us to write:

$$F_{i} = -\int_{\Omega_{\tau}} \sigma \cdot \nabla \alpha_{i} d\Omega , \quad T_{i} = -\int_{\Omega_{\tau}} (X - X_{i}) \times (\sigma \cdot \nabla \alpha_{i}) d\Omega$$

Numerical Force Evaluation (II)

technische universität dortmund

Large-scale FBM-Simulations

Integration over Ω_T too expensive:

- Gradient is non-zero on $\partial \Omega_i$
- Information available from FBM
- Evaluate boundary cells only
- Visit each cell only once

$$= -\sum_{I \in Ih} \int_{\Omega} \sigma_{h} \cdot \nabla \alpha_{hj} d\Omega ,$$

$$- \int_{T_{i}} T_{i} = -\sum_{T \in T_{h,i}} \int_{\Omega_{T}} (X - X_{i}) \times (\sigma_{h} \cdot \nabla \alpha_{h,i}) d\Omega$$

 $\alpha_{h,i}(x)$: finite element interpolant of $\alpha(x)$ T_{h,i} : elements intersected by i-th particle

technische universität dortmund

Contact/Collision Modelling

- \rightarrow Distance d(A,B)
- → Relative velocity $v_{AB} = (v_A + \omega_A \times r_A (v_B + \omega_B \times r_B))$
- \rightarrow Collision normal N = (X_A (t) X_B (t))
- \rightarrow Relative normal velocity N · (v_A + $\omega_A \times r_A (v_B + \omega_B \times r_B))$
- distinguishes three cases of how bodies move relative to each other:
 - \rightarrow Colliding contact : N · v_{AB} < 0
 - \rightarrow Separation : N · v_{AB} > 0

 \rightarrow Touching contact : N · v_{AB} = 0

technische universität dortmund

Contact Force Calculation

- Contact force calculation realized as a three step process
 - → Broadphase
 - → Narrowphase
 - → Contact/Collision force calculation
- Worst case complexity for collision detection is O(n²)
 - → Computing contact information is expensive
 - → Reduce number of expensive tests → Broad Phase
- Broad phase
 - \rightarrow Simple rejection tests exclude pairs that cannot intersect
 - → Use hierarchical spatial partitioning
- Narrow phase
 - → Uses Broadphase output
 - \rightarrow Calculates data neccessary for collision force calculation

Special single, resp., multibody collision models

Single Body Collision Model

For a single pair of colliding bodies we compute the impulse f that causes the velocities of the bodies to change:

$$f = \frac{-(1 + \epsilon)(n_1(v_1 - v_2) + \omega_1(r_{11} \times n_1) - \omega_2(r_{12} \times n_1))}{m_1^{-1} + m_2^{-1} + (r_{11} \times n_1)^T I_1^{-1}(r_{11} \times n_1) + (r_{12} \times n_1)^T I_2^{-1}(r_{12} \times n_1)}$$

Using the impulse f, the change in linear and angular velocity can be calculated:

$$v_{1}(t + \Delta t) = v_{1}(t) + \frac{fn_{1}}{m_{1}}, \omega_{1}(t + \Delta t) = \omega_{1}(t) + I_{1}^{-1}(r_{11} \times fn_{1})$$
$$v_{2}(t + \Delta t) = v_{2}(t) - \frac{fn_{1}}{m_{2}}, \omega_{2}(t + \Delta t) = \omega_{2}(t) - I_{2}^{-1}(r_{12} \times fn_{1})$$

technische universität

dortmund

technische universität dortmund

Multi-Body Collision Model

In the case of **multiple colliding bodies** with *K* contact points the impulses influence each other. Hence, they are combined into a system of equations that involves the following matrices and vectors:

- N: matrix of contact normals
- C: matrix of contact conditions
- M: rigid body mass matrix
- f: vector of contact forces (f_i≥0)
- f^{ext}: vector of external forces(gravity, etc.)

$$\frac{N^{T}C^{T}M^{-1}CN}{A} \cdot \frac{\Delta tf^{t+\Delta t}}{x} + \frac{N^{T}C^{T}\left(u^{t} + \Delta tM^{-1} + f^{ext}\right)}{b} \ge 0, f \ge 0$$

A problem of this form is called a **Linear Complementarity Problem** (LCP) which can be solved with efficient iterative methods like the **Projected Gauss-Seidel solver (PGS)**.

Kenny Erleben, Stable, Robust, and Versatile Multibody Dynamics Animation

Benchmarking and Validation (I)

Free fall of particles:

- Terminal velocity
- Different physical parameters
- Different geometrical parameters

Münster, R.; Mierka, O.; Turek, S.: Finite Element fictitious boundary methods (FEM-FBM) for 3D particulate flow, IJNMF, 2011

Source: Glowinski et al. 2001

Benchmarking and Validation (II)

Settling of a sphere towards a plane wall:

- Sedimentation Velocity
- Particle trajectory
- Kinetic Energy
- Different Reynolds numbers

Setup

dortmund

technische universität

Computational mesh:

- 1.075.200 vertices
- 622.592 hexahedral cells
- Q2/P1:

→ 50.429.952 DoFs

Hardware Resources:

32 Processors

Sedimentation Benchmark (I)

technische universität dortmund

Observations

- Velocity profiles compare well to ten Cate's data
- Maximum velocity close to experiment
- Flow features are accurately resolved

Re	u_{max}/u_{∞}	u_{max}/u_{∞}	u_{max}/u_{∞}
		ten Cate	exp
1.5	0.945	0.894	0.947
4.1	0.955	0.950	0.953
11.6	0.953	0.955	0.959
31.9	0.951	0.947	0.955

Tab. 1 Comparison of the u_{max}/u_{∞} ratios between the FEM-FBM, ten Cate's simulation and ten Cate's experiment

Sedimentation Benchmark (II)

Source: 13th Workshop on Two-Phase Flow Predictions 2012 Acknowledgements: Ernst, M., Dietzel, M., Sommerfeld, M.

Sedimentation Benchmark (III)

FEM-Multigrid Framework

- Increasing the mesh resolution produces more accurate results Test performed at different mesh levels
 - Maximum velocity is approximated better
 - Shape of the velocity curve matches better \checkmark

Some More Complex Examples

Driven Cavity with Particles

(More) Complex Geometry Examples

Fluidized Bed Example

DGS Configuration

Microswimmer Example

J technische universität dortmund

Application to microswimmers (in: Nature Comm.)

- Exp.: Cooperation with AG Fischer (MPI IS Stuttgart)
- Analysis with respect to shear thickening/thinning
- Use of grid deformation to resolve *s/l* interface

Example: Twinscrew Extruder (I)

- Numerical simulation of (partially filled) *twinscrew extruders*
- *Non-Newtonian rheological* models (shear & temperature dependent) with *non-isothermal* conditions (cooling from outside, heat production)

technische universität

dortmund

- Analysis of the influence of local characteristics on the global product quality, prediction of hotspots and maximum shear rates
- Optimization of torque acting on the screws, energy consumption

Example: Screw Extruder (III)

technische universität dortmund

technische universität
Example: Virtual Wind Tunnel (I)

technische universität dortmund

- Numerical simulation of complex geometries
- Use of a regular semi-unstructured preadapted mesh
- Resolution of small scale details by local mesh adaptation

Influence of Mesh Adaptation (II)

Car representation by the computational mesh

- Details may be lost without adaptation
- Better resolution with the same number of DOFs
- Mesh adaptation saves at least one refinement level

Example: Fluid Prilling&Encapsulation

technische universität dortmund

- Numerical simulation of *micro-fluidic drug encapsulation ("monodisperse compound droplets")*
- Polymeric "bio-degradable" outer fluid with generalized Newtonian behaviour
- Optimization w.r.t. boundary conditions, flow rates, droplet size, geometry

technische universität **Extensions & Future Activities** dortmund Fluidics Viscoelastic fluids Multiphase problems → Liquid-Liquid-Solid → Melting/Solidification Hardware-Oriented Numerics Improve parallel efficiency of collision EXTRUD detection and force computation on GPU FEATELOW FEATFLOW ----Dynamic grid adaptation Benchmarking More complex object(s) "Many" objects! technische universität

dortmund

Some HWON Rules of Thumb

- Realize all MG components via sparse MV (preconditioners, grid transfer)
 & Optimize sparse MV w.r.t. FEM space, numbering and hardware
- → Generic and hardware-optimized `gMG-FEM-BLAS' Toolbox
- Use higher order in time (large time steps) + space (large FEM stencils)
- \rightarrow High arithmetic intensity via dominant `solution part' (\rightarrow gMG)
- Design strongly coupled schemes (globally) with Operator-Splitting components (locally)
- → Combine (outer) high robustness & (inner) high efficiency
- Exploit locally regular structures to improve global convergence
- → Strong local solvers cost nothing & Hide irregularities locally
- → Patchwise adaptivity, generalized TP meshes, Grid Deformation, FBM

However:

- Numerical Simulation & High Performance Computing have to consider recent and future hardware trends, particularly for heterogeneous multicore architectures and massively parallel systems!
- The combination of 'Hardware-oriented Numerics' and special 'Data Structures/Algorithms' and 'Unconventional Hardware' has to be used!

...or many of the existing (academic/commercial) PDE software packages will be 'worthless' in a few years!

Backup slides ...

Microswimmer Example

Compared to the classic FBM approach the force curve is much smoother with grid adaptation

Turek/Münster/Mierka | TU Dortmund

Microswimmer Example

Turek/Münster/Mierka | TU Dortmund

Fluid Prilling and Encapsulation (I)

- Numerical simulation of micro-fluidic drug encapsulation ("monodisperse compound droplets")
- Polymeric "bio-degradable" outer fluid with generalized Newtonian behaviour
- Optimization w.r.t. boundary conditions, flow rates, droplet size, geometry

Jet Configuration

- Core material is defined as the specific material that requires to be coated (liquid, emulsion, colloid or solid)
- Shell material is present to protect and stabilize the core (Alginate, Chitosan, Gelatin, Pectin, Waxes, Starch)

technische universität

dortmund

Turek/Münster/Mierka | TU Dortmund

Turek/Münster/Mierka | TU Dortmund

Page 84