
Hardware‐oriented Numerics for PDEs

Motivation, Concepts, Applications

Stefan Turek, Dominik Göddeke
Institut für Angewandte Mathematik , LS III

Technische Universität Dortmund
ture@featflow.de

http://www.mathematik.tu-dortmund.de/LS3
http://www.featflow.de

Hardware‐oriented Numerics for PDEs

Motivation, Concepts, Applications

This talk will provide a motivation for HWON, shares general ideas regarding
algorithmic, numerical and computational challenges und demonstrates
exemplarily the application onto multiphase flow problems.

For mathematical and algorithmic details, particularly w.r.t. GPU Computing,
please join the corresponding Minisymposium (after this talk…..)

Motivation: “Hardware isn’t our friend anymore….”

I) Scientific Computing faces a paradigm shift

II) Unconventional hardware has to be taken into account

III) Realistic applications: Virtual Labs for Multiphase flow

Motivation: “Hardware isn’t our friend anymore….”

I) Scientific Computing faces a paradigm shift

– Adaptive Finite Element Methods (AFEM) and Multigrid Solvers: most
flexible, efficient and accurate simulation tools for PDEs nowadays, but
software realization no longer runs faster automatically on newer
hardware

Motivation: “Hardware isn’t our friend anymore….”

 Speed-up of 80x for free in 16 years
 Stagnation for standard simulation tools
 Absolute performance?

S
pe

ed
-u

p
(lo

gs
ca

le
)

FeatFlow-Benchmark 1993-2008: FEM-MG code

Motivation: “Hardware isn’t our friend anymore….”

I) Scientific Computing faces a paradigm shift

– Adaptive Finite Element Methods (AFEM) and Multigrid Solvers: most
flexible, efficient and accurate simulation tools for PDEs nowadays, but
software realization no longer runs faster automatically on newer
hardware

– Single CPU cores are not getting so much faster, while significant speed-
up is obtained only via different levels of parallelism

– Data movement gets more expensive due to memory wall (in particular
for sparse Linear Algebra problems)

Motivation: “Hardware isn’t our friend anymore….”

II) Unconventional hardware has to be taken into account

– Multicore CPUs - [Cell BE processor (PS3)] - graphics cards (GPUs)

– [HPC accelerators (ClearSpeed)] - reconfigurable hardware (FPGAs)

– Parallelism and heterogeneity everywhere (from single chip in laptops to
workstations up to big clusters and supercomputers)

– However: Compilers and libraries are limited

CPUs minimise latency of
individual operations with
cache hierarchies due to
memory wall problem

GPUs maximise
throughput over
latency and exploit
data-parallelism

• CELL multicore processor (PS3):
7 synergistic processing units
@ 3.2 GHz ≈ 218 GFLOP/s,
Memory @ 3.2 GHz

 GPU (NVIDIA GTX 580):
512cores @ 1.5 GHz,
2 GHz memory bus (192 GB/s)
≈ 1.6 TFLOP/s

Many papers claim speedups of 100x……Myths vs. Reality
(also multicore CPUs are fast; double vs. single precision; more carefully tuned
GPU codes; different numerical efficiency; GPUs as coprocessor for CPUs; …)

Motivation: “Hardware isn’t our friend anymore….”

Motivation: “Hardware isn’t our friend anymore….”

III) Realistic applications: Virtual Labs for Multiphase flow

– How to design algorithms and software on these architectures for
complete Virtual Labs for realistic applications?

– Vision: Highly efficient, flexible and accurate „real life“ simulation based
on modern Numerics and algorithms while exploiting modern hardware!

– Here: Multiphase-CFD as prototype for complex problems

• Mathematical Modelling
• Numerics / CFD Techniques
• Validation / Benchmarking
• HPC Techniques / Software

Accurate, robust, flexible and efficient
simulation of multiphase problems with
dynamic interfaces and complex geometries,
particularly in 3D, is still a challenge!

Why Multiphase Problems?

• Numerical simulation of drug encapsulation (“particles in monodisperse
compound droplets”) for application in biomedical devices

• Polymeric “bio-degradable” outer fluid with viscoelastic effects
• Optimization of chip design w.r.t. flow rates, droplet size, geometry

Application I: Micro-fluidic Drug Encapsulation

Application II: Twinscrew Extruders
• Non-Newtonian rheological models (shear & temperature

dependent) with non-isothermal flow conditions (cooling from
outside, heat production) and solid (granular) particles

• Evaluation of torque acting on the screws, energy consumption
• Prediction of hotspots and maximum shear rates

Aim of this Talk

High Performance Computing

meets

Hardware-oriented Numerics

on

Unconventional Hardware

for

Multiphase Flow Problems

Use the “best” numerical & algorithmic concepts while
exploiting modern hardware at the same time!

• It is more than ‘good Numerics‘ and ‘good Implementation’ on modern
(parallel) hardware architecture

• Consider ‘short-term hardware developments’ now, but ‘long-term
hardware trends’ for designing efficient numerical schemes

• ‘Total Numerical Efficiency’ as critical quantity for balancing numerical
efficiency vs. hardware efficiency

Hardware-Oriented Numerics (HWON)

FEM Multigrid solvers with adaptive meshing are candidates

• ‘High (guaranteed) accuracy for user-specific quantities with minimal
#d.o.f. (~ N) via fast and robust solvers – for a wide class of parameter
variations – with optimal numerical complexity (~ O(N)) …
But: while exploiting a significant percentage of the available huge
sequential/ parallel GFLOP/s rates at the same time’

• What does this mean: Is it easy to achieve high ‘Total Numerical
Efficiency’? How to measure?

Criterion: `Total Numerical Efficiency’

• ‘Optimized’ Multigrid methods for scalar PDE problems (≈Poisson
problems) on general meshes should require ca. 1000 FLOPs per
unknown (in contrast to single-grid Krylov-space methods or direct
solvers a la UMFPACK)

• Problem size 106 : Much less than 1 sec on PC (???)
• Problem size 1012: Less than 1 sec on PFLOP/s computer

 More realistic (and much harder) ‘Criterion’ for
Petascale Computing in Technical Simulations

Example: Fast Poisson Solvers (after FEM discr.)

• Sparse Matrix-Vector techniques (‘indexed DAXPY’) on general
unstructured grids

DO 10 IROW=1,N
DO 10 ICOL=KLD(IROW),KLD(IROW+1)-1

10 Y(IROW)=DA(ICOL)*X(KCOL(ICOL))+Y(IROW)

• Sparse Banded Matrix-Vector techniques on generalized TP grids

Main Component: ‘Sparse’ MV

Generalized Tensorproduct Meshes

…with Fictitious Boundary Methods (FBM) for complex objects

Generalized Tensorproduct Meshes (dynamic)

Generalized Tensorproduct Meshes (piecewise)

Xeon E5450

Numbering 4K DOF 66K DOF 1M DOF

Stochastic (CSR) 500 364 95

Hierarchical (CSR) 536 445 418

Banded 3285 2219 687

Stencil (const) 5720 5094 2415

 often poor, and
 problem size, and
 numbering dependent

In realistic scenarios, MFLOP/s rates for sparse MV are

Sparse MV on TP Grids

0.1 – 0.7/2.4 GFLOP/s

Xeon E5450

Sparse MV on TP Grids

20 - 40 GFLOP/s

GeForce GTX 280

Poisson Solver Tests
(non TP grids)

Poisson Solver Tests

Poisson Solver Tests

Identical solution, but differences of more than a

factor 1000x

regarding the CPU time for one „simple“ (small) subproblem

after „optimization“ on all levels!

• Strong ILU-like smoothers?
– ILU directly on GPUs?
– SPAI – FSAI – AINV: Numerical properties?
– Exploiting local structures: Linelet-GS, linewise GS-ADI?
– 3D ???

• Basic components for different FEM?
– Optimal numbering for nonconforming FEM?
– FEM-adapted grid transfer via sparse MV?

• Realization of a FEM-gMG library
– BLAS-like: Generic vs. Hardware-optimized?

HWON Challenges (I) – Basic Level

• Pressure Poisson Problem (PPP) via MG with
blockwise ILU smoothing (1 – 64 subdomains)
– Problems due to communication
– Numerical problems w.r.t. anisotropic meshes

 Increasing block-Jacobi character
ScaRC as hierarchically

clustered recursive MG-DD
solver

1 P. 2 P. 4 P. 8 P. 16 P. 32 P. 64 P.
%Comm.
PPP-IT

10%
2.2

24%
3.0

36%
3.9

45%
4.9

47%
5.2

55%
5.7

56%
6.2

Parallel Performance

• Scalable (= robust & efficient) parallel solvers?
- Globally unstructured – locally structured
- Exploit structured subdomains for scalable efficiency
- Hide anisotropies locally to increase global robustness
- Higher local arihtmetic costs, but less global communication

• (Recursive) solver expert system?
– numerical + computational a priori knowledge!

• Load balancing?
– due to ’total CPU time per accuracy per processor’?
– dynamical a posteriori process?

HWON Challenges (II) – Advanced Level

• Adaptive meshing & complex (time dependent) geometries
– Grid Deformation: Flexible deformation & preserving logical structures
– Fictitious Boundary Method as filter process for geometrical details

• Coupling mechanisms
– Decoupled vs. Fully Coupled
– Monolithic vs. Segregated
 Design new algorithms due

to high arithmetic intensity

• Higher order discretization in space and time
– Higher order time stepping schemes for increasing the solution part
– Higher order FEM for more dense matrices

( talk by F. Schieweck & T.)

HWON Challenges (III) – more Advanced Level

CPU(Solver) Method
Lift Drag

#NT mean peak mean peak

14,358(81%) Impl. MPSC 39 1% 1% 0% 2%

42,679(51%) Semi-impl. DPM 165 0% 0% 0% 0%

64,485(54%) Semi-expl. DPM 889 0% 8% 0% 0%

• How to define benchmarking scenarios which allow to
measure the absolute performance???

• We have to consider absolute timings w.r.t. (virtually)
optimal algorithms!

HWON Challenges (IV) – Benchmarking

HWON Summary: Extensive Tests show…..
• Even for `basic problems’ (Poisson solver) the combination of

numbering strategies + numerical components + hardware
leads to differences in total efficiency of factor 1000x and more

• `Parallel Peak Performance’ with modern Numerics is even
harder, already for moderate processor numbers

• Besides the mathematical part, the realization of flexible (and
user-friendly?) mathematical software is very challenging

• Absolute performance ratings are necessary!

• Applying HWON to complex algorithms and applications is
another story…

Application to Liquid-Solid Multiphase Flow

Basic Flow Solver: FeatFlow
Numerical features:
• Parallelization based on domain decomposition
• High order FEM discretization schemes
• FCT & EO FEM stabilization techniques
• Newton-Multigrid solvers
• Use of unstructured meshes
• Adaptive grid deformation

HPC features
• (Massively) parallel
• Soon: GPU computing
• Open source

Two phase flow (s-l) with resolved interphases

  ,, gMFF
dt

dU
M pcolexp

p
p   pppp

p
p IT

dt
d

I 




• Fluid motion is governed by the Navier-Stokes equations
• Particle motion is described by Newton-Euler equations

 
p

ppp dnF      
p

pppp dnXXT Postprocessing the
actual flow field

• Surface integral is replaced by volume integral
• Use of monitor function (liquid/solid)  






0
1

Xp
f

p

X

X



for

for

ppn • Normal to particle surface vector is non-zero only at the surface of particles

 


Tp
Tpppp ddnF 

        


Tp
TPppppp dXXdnXXT 

Fictitious Boundary Method

 supports HPC concepts (constant data structures, optimal load balancing)
 reduces requirements put on the computational mesh
 relatively low resolution

 Brute force  Finer mesh resolution
 High resolution interpolation functions
 Grid deformation (+ monitor function)

Fictitious Boundary Method

11 ,  n
p

n
pX 

   ppp XXUXu  

,p
p U

dt
dX

 p
p

dt
d






Velocity “boundary condition” imposed for particles:

Position update: Angle update:
11 ,  n

p
n
pU 

For computed

Two phase flow (s-l) with resolved interphases

Idea : construct transformation with
local mesh area

1. Compute monitor function
and

3. Solve the ODE system

new grid points:
Grid deformation preserves the (local) logical structure of the grid

 tx ,,   fdet
f

  1,0, Cftxf 

  ,,1 
 dxtxf

    ,
,

1, 











tft

tv




]1,0[ t

2. Solve])1,0[(t

0



n
v

       ttvttft
t

,,,,,  



 1,iix 

Grid Deformation Method

Generalized Tensorproduct Meshes

→ Required: efficient calculation of hydrodynamic forces
→ Required: efficient treatment of particle interaction (?)
→ Required: fast (nonstationary) Navier-Stokes solvers

1.

2.

4.

3.

Fluid velocity and pressure:

Calculate hydrodynamic forces:

Calculate velocity of particles: (collision model)

Update position of particles:

The algorithm for consists of the following 4 substeps

5. Align new mesh

1 nn tt

   n
p

n
p

nn
f uBCpuNSE ,, 11 

1n
pF

 11   n
p

n
p Fgu

 11   n
p

n
p uf

Operator-Splitting Approach

Benchmarking and Validation
14.1,3.0  ssd 

02.1,2.0  ssd 

02.1,3.0  ssd 

14.1,2.0  ssd 

Free fall of particles:
• Terminal velocity
• Different physical parameters
• Different geometrical parameters

Münster, R.; Mierka, O.; Turek, S.: Finite Element
fictitious boundary methods (FEM-FBM) for 3D
particulate flow, IJNMF, 2010, accepted

Sedimentation of Many Particles

For the particle-particle collisions (analogous for the particle-wall collisions), the
repulsive forces between particles read:

Handling of small gaps and contact between particles

Dealing with overlapping in numerical simulations

The total repulsive forces exerted on the i-th particle by the other
particles and the walls can be expressed as follows:

  

  

















jijiji
P

jijiji
P

P
ij

dRRXX

dRRXXF

,'

2
,

1

1
0






for

for

for

 jiji RRd ,

 jijiji RRdRR ,

jiji RRd ,





N

ijj

W
i

P
jii FFF

,1
,

'

Repulsive Force Collision Model

1.1
2

1






sp

bd

f






2
2

1






sp

bd

f






20
2

1






sp

bd

f






Impact of heavy balls on small particles

Sedimentation of particles in a complex 3D domain

Geometrical representation of the twinscrews Fictitious Boundary Method

 Fast and accurate description of rotating geometry
 Applicable for conveying and kneading elements
 Mathematical description available for

single, double- or triplet-flighted screws
 Surface and body of the screws are known at any time
 Mathematical formulation replaces external CAD-

description
 Non-Newtonian and temperature dependent physical

properties including rigid particles
 Heat dissipation due to high shear rates

In cooperation with:
Velocity Magnitude Shear dependent viscosity

Twinscrew Flow Simulations

1 flighted 2 flighted 3 flighted

m
ix

in
g

co
nv

ey
in

g

Library of Conveying and Mixing Elements

level 1 level 2 level 3

2D mesh extrusion into 3D
Pre-refined regions in the vicinity of gaps

Static Mesh Refinement & Dynamic FBM

Twinscrew Flow Simulations

Next Steps for Liquid-Solid Multiphase Flow
Adaptive time stepping + adaptive grid alignment/ALE.
Coupling with turbulence models.
Deformable particles/fluid-structure interaction.
Analysis of viscoelastic effects.
Benchmarking and experimental validation for many particles.

Some HWON Rules of Thumb
• Realize all MG components via sparse MV (preconditioners, grid transfer)

& Optimize sparse MV w.r.t. FEM space, numbering and hardware
 Generic and hardware-optimized `gMG-FEM-BLAS’ Toolbox

• Use higher order in time (large time steps) + space (large FEM stencils)
 High arithmetic intensity via dominant `solution part’ ( gMG)

• Design strongly coupled schemes (globally) with Operator-Splitting
components (locally)

 Combine (outer) high robustness & (inner) high efficiency

• Exploit locally regular structures to improve global convergence
 Strong local solvers cost nothing & Hide irregularities locally
 Patchwise adaptivity, generalized TP meshes, Grid Deformation, FBM,…

However:
– Numerical Simulation & High Performance Computing

have to consider recent and future hardware trends,
particularly for heterogeneous multicore architectures and
massively parallel systems!

– The combination of ‘Hardware-oriented Numerics’ and
special ‘Data Structures/Algorithms’ and ‘Unconventional
Hardware’ has to be used!

…or many of the existing
(academic/commercial) PDE software packages

will be ‘worthless’ in a few years!

Conclusion: Huge Potential for the Future …

