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FEAST (Finite Element Analysis & Solutions Tools) is a Finite Element based solver toolkit for the simu-
lation of PDE problems on parallel HPC systems which implements the concept of ‘hardware-oriented nu-
merics’, a holistic approach aiming at optimal performance for modern numerics. In this paper, we describe
this concept and the modular design which enables applications built on top of FEAST to execute effi-
ciently, without any code modifications, on commodity based clusters, the NEC SX 8 and GPU-accelerated
clusters. We demonstrate good performance and weak and strong scalability for the prototypical Poisson
problem and more challenging applications from solid mechanics and fluid dynamics.

1 INTRODUCTION AND MOTIVATION

The accurate simulation of real-world phenomena in computational science is often based on an un-
derlying mathematical model comprising a system of partial differential equations (PDEs). Important
application domains that we pursue in this setting are computational solid mechanics and computa-
tional fluid dynamics (CSM and CFD, see Section 3). Practical applications in these fields range from
material failure tests (for instance crash tests in the automotive industry) to fluid and gas flow of any
kind, for instance in chemical or medical engineering (e. g., simulation of blood flow in the human
body to predict aneurysms) or flow around cars and aircraft to minimise drag and lift forces.

From an engineering and mathematical point of view, Finite Element (FE) approaches are well-suited
for the numerical treatment of such PDE problems, due to their flexibility and accuracy. Software
development for FE problems has traditionally focused on the improvement of the numerical methodol-
ogy. For instance, adaptivity techniques, higher order discretisations, and a wide range of stabilisation
approaches have been presented. In combination with powerful and robust numerical solution schemes
(in particular hierarchical multigrid strategies), FE techniques form the underlying fabric of many
modern simulation tools.

Hardware aspects used to play only a minor role, since codes automatically ran faster with each
new generation of processors. This trend has come to an end, as physical limitations (heat, leaking
voltage, pin limits) have led to a paradigm change: Performance improvements are no longer driven
by frequency scaling, but by parallelism and specialisation. Quad-core CPUs are available off-the-
shelf, and soon, CPUs will have tens of parallel cores, with hundreds to follow. Future manycore
chip designs will likely be heterogeneous and contain general and specialised cores with non-uniform
memory access (NUMA). Commodity multimedia processors such as the Cell BE or graphics processor
units (GPUs) can be considered as forerunners of this trend even though they can currently only be
used as co-processors to the general-purpose CPU, and form a viable testbed for algorithmic research.
They are of particular interest, as the multi-billion dollar market of video games entails rapid evolution
and superlinear performance improvements across chip generations at comparatively low acquisition
costs, in contrast to more specialised solutions aiming at the HPC market alone (e. g., ClearSpeed’s
Advance Accelerator boards). As an example, the GeForce GTX 285, NVIDIA’s flagship GPU at the
time of writing, contains 30 multiprocessors with eight ‘cores’ and 16 kB of shared cache each, and
a 512-bit interface to main memory; resulting in rather impressive peak numbers of over 1 TFLOP/s
raw compute performance and 160 GByte/s of bandwidth to fast off-chip memory.



1.1 The memory wall problem

The sustained bandwidth to main memory and the latency to access data from main memory is much
more important for FE codes than the raw compute performance. The discretisation process typically
leads to large, but very sparse matrices, and the arithmetic intensity (defined as the ratio of floating
point operations per memory access) of the codes is very low, a ratio ≤ 1 is common. Additionally,
access to off-chip memory costs hundreds of clock cycles. We illustrate this well-known memory wall

problem with a concrete example of a crucial component in the context of FE simulations: Sparse
matrix vector multiply (SpMV, y = y +Ax) for the compressed storage row (CSR) format in which all
nonzero elements of the matrix A are stored contiguously in memory. (Throughout the paper we use
bold upright letters to denote matrices and lowercase letters to denote vectors.) The array colIndex

stores the column index of each element in the original matrix, and the array rowStart stores the
beginning of each row. The SpMV kernel can thus be written in Fortran notation as:

do irow=1, nrows, 1
do j=rowStart(irow), rowStart(irow+1), 1

y(irow) = y(irow) + A(j)*x(colIndex(j))
enddo

enddo

Modern commodity CPU cores can perform more than one floating point operation per cycle due
to the on-chip vector units. With SSE2, a singlecore AMD Opteron 250 CPU as we use for our
tests (see Section 4) is capable of performing two double precision floating point operations per cycle,
resulting in a peak performance of 4.8 GFLOP/s at 2.4 GHz. With a peak memory bandwidth of
5.96 GB/s, the on-chip memory controller is capable of delivering at most 745 million double precision
values per second. FE stencils couple several unknowns according to their geometric support, in the
case of the conforming bilinear quadrilateral Q1 FE we use throughout this paper, resulting in nine
matrix entries for each degree of freedom. In the absence of cache memories for data reuse, the SpMV

kernel has an arithmetic intensity of 2/5 (four loads, one store, one multiply and one add), as the
values in the coefficient vector have to be accessed indirectly via the array colIndex. The (simplified)
theoretical upper performance bound (long integer type for colIndex, same size as data) of SpMV is
thus 745 · 2/5 = 298 MFLOP/s, roughly 6 % of the theoretical peak performance of the Opteron CPU.
These results are in accordance with more detailed surveys of SpMV [26].

The traditional approach to alleviate the memory wall problem is the introduction of large on-chip
cache memories that store a limited amount of data with access latency at least one order of magnitude
lower (in comparison to main memory). For SpMV, there are still many compulsory misses, as typical
problem sizes exceed the capacity of caches by far, so the bandwidth aspect of the memory wall
problem is crucial. The matrix entries are only used once and then discarded, so data reuse is only
possible by caching the coefficient vector x and the index vector colIndex.

1.2 Multicore and manycore trends

The parallelisation and specialisation of resources results in a major challenge for the programming
model, in particular for clusters and supercomputers, where the coarse-grained parallelism (handled
by message passing among distributed memories via MPI) must interact with the fine-grained on-chip
parallelism and the heterogeneity on the nodes. Memory performance improves at a much slower pace
than CPU performance and often scales only with the number of sockets per compute node rather
than the number of cores [26]. ‘Unconventional hardware’ such as the above mentioned GPUs follow
an entirely different approach: As an example, on NVIDIA’s CUDA architectures, it still costs up
to 1,000 clock cycles to access data in off-chip memory. These GPUs can ‘hide’ this latency via a
very efficient lightweight thread scheduling mechanism implemented directly in hardware. The key to
performance for kernels with low arithmetic intensity is thus their ability of keeping more than 30,000
threads ‘in-flight’ simultaneously, stalled threads waiting for memory transactions are suspended, and
automatically resumed once the data is available. Through this approach, a significantly higher fraction



of the theoretical peak bandwidth can be achieved. In this work, we employ GPUs as a representative
of future manycore chip designs.

1.3 Hardware-oriented numerics and related work

As with the coarse grained parallelism on the cluster level, compilers for standard languages are not
expected to be able to parallelise existing data intensive codes efficiently in the medium term. This
task requires explicit, global knowledge about the data flow, information that is hard to extract for
compilers acting locally on the program instructions, or might even only be available at run-time. New
languages and frameworks with data and task parallel intrinsics tailored to heterogeneous memory
hierarchies (e. g., Sequoia [12]) can perform better in this situation. New languages, however, imply
the reimplementation of significant portions of an application, which is prohibitive for established and
actively used codes.

Our hypothesis is that in the field of high performance Finite Element simulations, significant perfor-
mance improvements can only be achieved by hardware-oriented numerics. Numerical and algorithmic
foundation research must accompany (long-term) technology trends; prospective hardware trends en-
force research into novel numerical techniques that are in turn better suited for the hardware. As
an example, multigrid smoothers with optimal numerical properties due to a strong recursive cou-
pling often perform poorly in a parallel environment. Only correspondingly modified schemes that
are potentially less efficient numerically (in terms of convergence rates) are able to achieve better
overall performance in the user-relevant ‘time-to-solution’-metric. The ultimate goal of our concept of
hardware-oriented numerics is thus to balance these metrics to achieve robust and ideally predictable
close-to-peak performance. In previous work, we have pursued these goals for the standard Poisson
problem to focus on the general approach alone [2, 21, 25]. In this paper, we put our concept to the
more general test by evaluating the performance of complex applications built on top of our solver
toolkit Feast.

Publicly available academic software packages simultaneously aiming at modern numerical method-
ology and efficient execution in parallel include PETSc and DUNE. Rüde et al. pursue an approach
similar to ours, using patchwise multigrid smoothers and hierarchical hybrid grids [3]. A recent pub-
lication [17] reports good weak scalability for a 3D Poisson problem on a regularly refined unitcube
domain for up to 9 170 cores (307 billion DOF).

Many publications discuss detailed (implementational) aspects of the memory wall problem for FE
software, multigrid solvers and sparse matrices in general: Douglas and Thorne, and Douglas, Rüde
et al. present cache-oriented multigrid solver components [9–11]. Butarri, Dongarra et al. discuss
the impact of multicore architectures on mathematical software, in particular for (dense) BLAS and
LAPACK-based applications [6]. Finally, Keyes and Colella et al. survey trends towards terascale
computing for a wide range of applications including Finite Element software and conclude that only
a combination of techniques from computer architecture, software engineering, numerical modeling
and numerical analysis will enable a satisfactory scale-out on the application level [7, 20].

2 FEAST - FINITE ELEMENT ANALYSIS & SOLUTION TOOLS

Feast is our next-generation simulation toolkit, implementing a wide range of hardware-oriented
numerics concepts (see previous section). It is being developed as the successor of the established (and
widely used in academia and industry) FE packages Feat and FeatFlow [24], see also http://www.

featflow.de. Prior to describing the core features of Feast, we should point out that even though
we stated in the introduction that ‘re-implementations are prohibitive for large established codes,’
we believe that individual aspects of our approach can be ported to other parallel FE toolkits with a
reasonable effort. In particular, our approach does not imply the re-implementation of entire simulation



software packages in Feast. What makes our approach novel is our holistic realisation of hardware-
oriented numerics ranging from algorithmic and numerical foundation research via parallelisation and
vectorisation, to unconventional hardware.

2.1 Separation of structured and unstructured data

Figure 1: Exemplary TUX geometry. Important features of Feast’s discretisation approach are
highlighted: Globally unstructured, locally structured grids (bottom left, bottom right);
anisotropic refinement to, e. g., resolve boundary layers or shock fronts in CFD (microscopic
anisotropies, top left); boundary adaption during refinement (bottom left); and coverage of
large regions of minor interest with large, regularly refined subdomains (macroscopic feature
size variations, bottom right).

Feast covers the computational domain with a collection of quadrilateral subdomains. The subdo-
mains form an unstructured coarse mesh (cf. Figure 1), and each subdomain is independently refined
in a generalised tensor product fashion. Adaptive refinement strategies, that maintain the tensor prod-
uct property of the mesh, are realised via grid deformation techniques (r-adaptivity, [18]), anisotropic
refinement within each subdomain, and hanging nodes on subdomain edges. The resulting mesh is
used to discretise the domain with Finite Elements. This approach caters to the contradictory needs
of flexibility in the discretisation and efficient implementation: Instead of keeping all data in one gen-
eral, homogeneous data structure, Feast stores only local FE matrices and vectors (corresponding
to subdomains, as usual for domain decomposition approaches) and thus maintains a clear separation
of structured and unstructured parts of the domain. From an implementational point of view, global
computations are performed by a series of local operations on matrices representing the restriction
of the ‘virtual’ global matrix on each subdomain. Local information is exchanged only over bound-
aries of neighbouring subdomains. There is only an implicit overlap, the domain decomposition is
implemented via special boundary conditions in the local matrices, a key technique to obtain good
scalability. Several subdomains can be grouped together and treated within one MPI process.

The nonzero pattern of the local matrices is known a priori, which is exploited to optimise data struc-
tures and linear algebra routines. The structure of the local sub-problems allows a line-wise numbering
of the unknowns, resulting in a banded matrix structure that can be stored as individual vectors per
band. In view of the memory wall problem, it is worth mentioning that optimised linear algebra oper-
ations acting locally on the subdomains can thus be implemented with direct block memory transfers
and without any pointer chasing. Our Sparse Banded BLAS library contains these optimised imple-
mentations for x86-based architectures, vector computers and recently also for GPUs (implemented
in CUDA and OpenGL). Table 1 shows exemplary microbenchmark results for the SpMV kernel on the
matrix resulting from discretising a unitsquare domain with conforming, bilinear quadrilateral Finite
Elements from the Q1 space, yielding N = (210 + 1)2 unknowns. We use five different numbering



schemes for a CSR format, and the band format from SbBlas. CPU timings are measured on an
Opteron 250 CPU (see Section 4). The GPU results on a NVIDIA GeForce GTX 280 (much newer
than the CPU) are shown for reference, as older GPUs do not provide double precision. The results
indicate the superior performance of the SbBlas storage technique over the conventional CSR for-
mat, and illustrate the promising potential of GPUs for FE solvers beyond the marketing numbers
quoted in the introduction. We refer to the thesis by one of the authors for updated timings on newer
hardware [13].

numbering strategy time (ms) MFLOP/s

stochastic 348.8 54
two-level 141.2 134

Cuthill-McKee 133.6 141
hierarchical 117.9 160

XY 114.5 165

band 33.3 540

band-GPU 0.9 21313

Table 1: Microbenchmark results for the SpMV kernel in double precision.

2.2 Parallel multigrid solvers

In the parallelisation of Finite Element codes, numerical robustness, numerical efficiency and scalability
are often contradictory properties. For the problems we are concerned with in the (wider) context
of this paper, multigrid methods are obligatory from a numerical point of view. In parallel, the
strong recursive character of ‘optimal’ serial multigrid smoothers (e. g., ILU) is usually relaxed to
a block-Jacobi approach to decouple the subdomains, as strong recursion between the subdomains
leads to poor scalability due to high communication requirements and an unfavourable ratio between
computation and communication. On the other hand, block-Jacobi approaches are prone to degrade
the global convergence in the presence of macroscopic (high aspect ratios between subdomains) and/or
microscopic anisotropies (high element aspect ratios within subdomains), and anisotropies introduced
by the operators. As a consequence, the numerical efficiency of the parallel solver is dramatically
reduced [23,25].

However, such blocking strategies are mandatory to achieve data locality (an amenable ratio of com-
putation and communication) and thus good parallel efficiency. So, one of the main tasks of the
numerical solution algorithm must be to minimise the negative effects of the block-Jacobi approach.
Feast applies two strategies: On the one hand it employs powerful local smoothers that are able to
‘hide’ local irregularities from the outer solver as much as possible, and on the other hand the coarse
grid solver of the global multilevel scheme provides sufficient coupling.

Our favorite local smoother for moderately complex scenarios is an alternating direction implicit
linewise Gauß-Seidel smoother called ADI-TRIGS that uses the main diagonal, the first superdiagonal
and all subdiagonals of the matrix. This smoother has much better numerical properties than ‘stan-
dard’ Jacobi, Gauss-Seidel or often even ILU smoothers [21]. By exploiting the fixed band pattern of
the local matrices stemming from the underlying FE discretisation (see previous section), ADI-TRIGS
has been implemented efficiently in the SbBlas library.

Using the global multilevel solver as preconditioner of a Krylov subspace method provides additional
global coupling of the unknowns. Together with ‘optimal step lengths’ that are calculated within the
Krylov-space method, this helps to greatly alleviate the negative effects of micro-/macro-anisotropies
not captured by the block-Jacobi approach and thus increases the robustness of the parallel solu-
tion scheme. As a consequence the number of global iterations decreases significantly, resulting in a
correspondingly reduced amount of communication.



For physically more complex scenarios that dynamically develop strongly localised effects like eddies
in turbulent flow or shock fronts in compressible flow simulations, we are convinced that the two afore-
mentioned strategies do not suffice to ‘hide’ these local irregularities from the global solver. We have
therefore realised a more sophisticated strategy in terms of a cascaded multigrid/multilevel scheme,
the so called ScaRC solvers (Scalable Recursive Clustering, [2,21,25]). The main idea is to replace the
local smoothers of the global multigrid (e. g., ADI-TRIGS) by complete local multigrid cycles without
additional communication requirements. Clustering of subdomains and adaptive adjustment of the
local multigrid schemes provides great flexibility to resolve algorithmic or physical local irregularities
even better.

2.3 Scalar and vector-valued problems

The guiding idea to treating vector-valued problems with Feast is to rely on the modular, highly
optimised and fully tested core routines for the scalar case in order to formulate robust schemes for
a wide range of applications, rather than using the best suited numerical scheme for each application
and repeatedly optimising it for new architectures. Vector-valued PDEs as they arise in CSM and
CFD can be rearranged and discretised in such a way that the resulting discrete equation systems
consist of blocks that correspond to scalar subequations. We illustrate this exemplarily in Section 3
with help of the elasticity equation.

This special block-structure can be exploited in two ways: On the one hand, all standard linear alge-
bra operations on the vector-valued system (e. g., matrix-vector operations, defect computations, dot
products) can be implemented as a series of operations for scalar systems, taking advantage of the
highly tuned linear algebra components in Feast’s SbBlas library. On the other hand, the process
of solving the vector-valued linear equation system can be brought down to the treatment of auxiliary
scalar subsystems which can be efficiently treated by Feast’s optimised toolbox of parallel multigrid
solvers. This procedure is facilitated by the use of special preconditioners that shift most of the overall
work to such inner iterations. Once such a solution approach is set up, all further improvements of
Feast’s scalar solvers directly transfer to the solvers for vector-valued systems. Such improvements
can be the addition of better multigrid components (e. g., more robust local smoothers) or algorithmic
adaptations to dedicated HPC architectures and hardware co-processors (see next paragraph). ScaRC

allows for an almost arbitrary (recursive) combination of vector-valued and scalar solvers, thus pro-
viding great flexibility in tuning the linear solution schemes to the given problem. For instance, a
vector-valued Krylov-space scheme can use either a vector-valued multigrid cycle as preconditioner
(which is in turn smoothed by scalar schemes) or directly scalar multigrids as block-preconditioner.
Scalar solvers can be cascaded in the same way. Concrete examples of the solvers are presented in
Sections 4 and 5.

2.4 Co-processor acceleration

Feast’s modular solver structure has the additional benefit that it facilitates the inclusion of hard-
ware co-processors. The abstraction layer of the suggested ‘minimally invasive’ integration [13, 15]
encapsulates heterogeneities of the system on the node level, so that MPI sees a globally homogeneous
system, while the local solver components encapsulate the heterogeneity within the node. To benefit
from co-processor acceleration, application code does not need to be changed at all. The reduced
precision of several co-processor architectures is addressed by a mixed precision iterative refinement
scheme. The current implementation supports GPUs, and a Cell backend is being developed.

This scheme is especially beneficial for cascaded ScaRC solvers: Instead of only accelerating individ-
ual linear algebra operations, we can accelerate entire multigrid solvers for local subproblems. This
concentrates sufficient fine-grained parallelism in a separate task and thus minimises the potential
overhead of repeated co-processor configuration and data transfer in case of a system integration via



relatively narrow busses such as PCIe. In the current implementation, load balancing is done statically
in a preprocessing step.

3 TWO FEAST APPLICATIONS: FEASTSOLID AND FEASTFLOW

In this Section, we introduce two important classes of applications that have been built on top of
Feast: The solid mechanics code FeastSolid solves static and transient elasticity problems for
small and finite deformations. The fluid dynamics code FeastFlow solves the transient incompress-
ible Stokes and Navier-Stokes equations. Other applications, e. g., fluid-solid-interaction and Lattice
Boltzmann methods, are actively being developed, but are not considered here.

3.1 Computational solid mechanics

In computational solid mechanics (CSM) the deformation of solid bodies under external loads is
examined. We consider a two-dimensional body covering a domain Ω̄ = Ω∪∂Ω, where Ω is a bounded,
open set with boundary Γ = ∂Ω. The boundary is split into two parts: the Dirichlet part ΓD

where displacements are prescribed and the Neumann part ΓN where surface forces can be applied
( ΓD∩ΓN = ∅ ). Furthermore the body can be exposed to volumetric forces, e. g. gravity. FeastSolid

is able to handle nonlinear finite elasticity problems and incompressible materials [27]. However,
in this paper we do not use these advanced problem-specific features and only treat the simple yet
fundamental linearised model problem of elastic, compressible material under static loading, assuming
small deformations. This allows us to better quantify the solver aspects we focus on in this paper. In
terms of complexity, this model problem of elasticity is situated between the standard Poisson problem
and the Navier-Stokes application.

Mathematically, we formulate the linearised elasticity equation in terms of the displacements u(x ) =
(

u1(x ), u2(x )
)T

of a material point x ∈ Ω̄ as the only unknowns. The strains can be defined by the

linearised strain tensor εij = 1
2

(

∂ui

∂xj
+

∂uj

∂xi

)

, i, j = 1, 2, describing the linearised kinematic relation

between displacements and strains. The material properties are reflected by the constitutive law,
which determines a relation between the strains and the stresses. We use Hooke’s law for isotropic
elastic material, σ = 2µε + λ tr(ε)I , where σ denotes the symmetric stress tensor and µ and λ are
the so-called Lamé constants, which are connected to the Young modulus E and the Poisson ratio ν
as follows:

µ =
E

2(1 + ν)
, λ =

Eν

(1 + ν)(1 − 2ν)
(1)

The basic physical equations of elasticity are determined by equilibrium conditions. For a body in
equilibrium, the inner forces (stresses) and the outer forces (external loads f ) are balanced: −divσ = f

for x ∈ Ω. Using Hooke’s law to replace the stress tensor, the problem of linearised elasticity can be
expressed in terms of the following elliptic boundary value problem, called the Lamé equation:

−2µdivε(u) − λgraddivu = f , x ∈ Ω (2a)

u = g , x ∈ ΓD (2b)

σ(u) · n = t , x ∈ ΓN (2c)

Here, g are prescribed displacements on ΓD, and t are given surface forces on ΓN with outer normal
n . For details on the elasticity problem, see for example the textbook by Braess [4].

In order to solve vector-valued linearised elasticity problems using the Feast intrinsics described in
the previous paragraphs, the resulting degrees of freedom have to be ordered corresponding to the
spatial directions, a technique called separate displacement ordering [1]. In the 2D case, the unknowns



u = (u1, u2)
T correspond to displacements in x and y-direction. Rearranging the left hand side of

equation (2a) yields:

−
(

(2µ + λ)∂xx + µ∂yy (µ + λ)∂xy

(µ + λ)∂yx µ∂xx + (2µ + λ)∂yy

)(

u1

u2

)

=
(

f1

f2

)

(3)

The domain Ω̄ is approximated by a collection of tensor product subdomains Ω̄i as described in
Section 2.1. We consider the weak formulation of equation (3) and apply a Finite Element discretisation
with conforming bilinear elements Q1. This leads to the linear equation system Ku = f exhibiting the
following block structure,

(

K11 K12

K21 K22

) (

u1

u2

)

=

(

f1
f2

)

, (4)

where f = (f1, f2)
T is the vector of external loads and u = (u1,u2)

T the (unknown) coefficient vector of
the FE solution. The matrices K11 and K22 correspond to scalar elliptic operators (cf. Equation (3))
which allows using Feast’s tuned scalar solvers (cf. Section 2.2). Note, that each global matrix/vector
Kij ,ui, fi, i, j = 1, 2, exists only ‘virtually’ through the corresponding local matrices/vectors defined
over the local subdomains (cf. Section 2.1). The details of the overall solution process are now illus-
trated by means of a basic preconditioned defect correction method:

uk+1 = uk + ωK̃−1
BGS

(f − Kuk) (5)

This scheme acts on the global system (4) and thus couples the two sets of unknowns u1 and u2.
K̃BGS is a block-Gauss-Seidel preconditioner that explicitly exploits the block structure of the matrix
K. One iteration of the global defect correction scheme consists of the following three steps:

1. Compute the global defect (cf. Section 2.3):

(

d1

d2

)

=

(

K11 K12

K21 K22

)(

uk
1

uk
2

)

−

(

f1
f2

)

2. Apply the block-preconditioner

K̃BGS :=

(

K11 0

K21 K22

)

by approximately solving the system K̃BGSc = d. This is performed by two scalar solves and
one (scalar) matrix-vector multiplication:

a) Solve K11c1 = d1.

b) Update RHS: d2 = d2 − K21c1.

c) Solve K22c2 = d2.

3. Update the global solution with the (eventually damped) correction vector:

uk+1 = uk + ωc

3.2 Computational fluid dynamics

To tackle problems from computational fluid dynamics (CFD) we discretise the nonlinear Navier–
Stokes equations. They describe the flow of Newtonian fluids like gases, water and many other liquids
in a domain Ω ∈ R

d, d = 2, 3 and are, under certain assumptions and simplifications, derived from the
conservation laws for mass, momentum and energy.

Confining the domain and imposing boundary conditions, i. e., in- and outflow conditions on the
‘artificial’ boundaries and slip or adhesion conditions at rigid walls, the following system of equations



is obtained under the assumption of constant temperature ϑ and constant kinematic viscosity ν > 0,
ν 6= ν(p, cp):

−ν∆u + (u · ∇)u + ∇p = f , x ∈ Ω (6a)

divu = 0 , x ∈ Ω (6b)

u = g , x ∈ ΓD (6c)

ν∂nu + p · n = 0, x ∈ ΓN (6d)

where p denotes pressure, n the outer normal vector and ΓD and ΓN the boundary parts with, respec-
tively, Dirichlet and Neumann boundary conditions (i. e. inflow, outflow and adhesion conditions).

We discretise the equation with the Q1/Q1 bilinear element pair and use residual-based SUPG/PSPG
stabilisation (streamline upwind/Petrov-Galerkin and pressure-stabilisation/Petrov-Galerkin) to ac-
count for both the LBB deficiency of the Q1/Q1 pair and to stabilise convective terms [5,19]. To allow
for anisotropic elements directional derivatives are incorporated in the stabilisation terms. The non-
linearities are resolved by a fixed point defect correction method such that in each nonlinear iteration
a linear saddle point system is to be solved,

(

A + C1 B

BT C2

) (

u

p

)

=

(

f

g

)

, (7)

where the matrices C1,C2 stem from the SUPG/PSPG stabilisation terms. Our solution algorithm is
a block Schur complement (BSC) approach as described by Murphy et al. [22]. It basically consists of
a global BiCGStab solver acting on the whole saddle point system which is block-preconditioned by

(

Ã 0

BT S̃

)

. (8)

Herein, Ã and S̃ respectively denote preconditioners of A + C1 and of the Schur complement matrix
S = BT(A + C1)

−1
B − C2. The former is realised by approximately solving subsystems of the kind

(A + C1)c = d for which exactly the same solution strategy is applied as for the CSM system (4). The
Schur complement preconditioner S̃ is realised by a suitably weighted linear combination of pressure
mass (and Laplace matrices in case of nonstationary problems, see Turek [24]). The resulting scalar
system can again be solved with Feast’s optimised multigrid schemes, such that the solution of the
whole saddle point system is mainly brought down to the solution of scalar systems again.

4 PERFORMANCE AND SCALABILITY STUDIES

For the tests presented in the next sections, we use three different HPC installations. LiDO, though
slightly outdated, is a typical representative of a commodity based cluster with fast interconnects, NEC
SX-8 is a dedicated HPC system, and USC is a test installation of a heterogeneous cluster enhanced
with GPUs. Table 2 lists the specifications of the machines.

All tests in this section are performed on up to 64 (out of 72) nodes of the LiDO cluster. We use
the ‘showcase’ TUX geometry displayed in Figure 1 and create coarse grids comprising 32, 64, 128,
256, 512 and 1024 subdomains each. As mentioned before, the coarse grids are in parts unstructured
and exhibit a moderate degree of macroscopic anisotropy. We apply anisotropic refinement towards
the ‘belly’ of the TUX in such a way that in each refinement step, the innermost layer of elements is
positioned with a ratio of 2:3 (1:1 denotes regular refinement), leading to a total microscopic anisotropy
of 10–100 for the finest level of refinement. We only consider refinement levels L = 9 and L = 10. The
resulting mesh is discretised with bilinear conforming Finite Elements from the Q1 space, resulting in
global problem sizes ranging from 8.4 M to 270 M (L = 9) and 34 M to 1 B (L = 10) mesh nodes.



LiDO NEC SX-8 USC

CPU type AMD Opteron DP 250 SX-8 vector CPU AMD Opteron 2210
NVIDIA Quadro FX 5600 GPU

CPU details 2.4GHz, 1MB L2 2 GHz 1.8GHz, 2MB L2
CPU count 2 8 1 (dualcore)

Memory 8GB DDR 400 128GB 8GB DDR2 667
Memory BW 2 * 5.96GB/s 8 * 64GB/s 6.4GB/s

Interconnect type DDR Infiniband NEC IXS 4xDDR Infiniband
Interconnect latency approx. 3 µs approx. 5 µs approx. 3 µs

Interconnect BW approx. 750MB/s 16GB/s approx. 1.2GB/s
Installation ITMC, TU Dortmund HLRS, Stuttgart Los Alamos National Laboratory

Table 2: Detailed specifications (per node) of the machines used for performance and scalability tests.

On these domains, we solve the Poisson problem as a standard benchmark configuration, and exemplary
simulations with the applications FeastSolid and FeastFlow. For the Poisson problem, we have
verified correctness by prescribing the analytical Laplacian of some polynomial test function as right
hand side to enable computation of the reduction of the discretisation error with increasing refinement.
Figure 2 shows the computed von Mises stresses for the deformed TUX and the computed velocity field
for a ‘flow through the TUX’ simulation at Reynolds number Re = 200.

For the moderate anisotropies present in the test domain, a BiCGStab solver on the finest level,
preconditioned with a standard data-parallel multigrid cycle using the strong ADI-TRIGS smoother
(MG-ADITRIGS), configured to perform four pre- and postsmoothing steps in an F -cycle, is the best
compromise between fast convergence and time to solution. Therefore, we use this solver configuration
throughout this section for the Poisson problem. FeastSolid shifts the Krylov-space iteration to the
vector-valued problem, and applies the scalar MG-ADITRIGS in its block-Gauss-Seidel preconditioner,
see Section 3.1 for details. FeastFlow does likewise for the velocity-related subproblems while
separate calls of the scalar MG-ADITRIGS are required for the Schur complement preconditioner (see
Section 3.2). The goal in all tests is to reduce initial residuals by six digits, with the exception of
eight digits being used as nonlinear convergence criterion in FeastFlow. All coarse grid problems
are solved very efficiently with UMFPACK [8].

Figure 2: Computed results: Displacements and von Mises stresses for the TUX body under gravity
with FeastSolid, flow through the TUX body with FeastFlow.

4.1 Weak scalability and absolute performance

Table 3 summarises the number of solver iterations required until convergence, and the timings and
MFLOP/s rates (including assembly times only for the FeastFlow application, excluding pre- and
postprocessing for all applications) for a weak scalability analysis where we double the problem size



and the number of CPUs simultaneously. Due to space constraints, we only present results for refine-
ment levels L = 9, 10. On smaller levels of refinement, we observe a different behaviour as caching
effects on the CPU start to play a dominant role, significantly changing the ratio of computation to
communication. But these small problem sizes are not interesting in a weak scalability analysis (and
especially in practice), which is gearing towards the largest problem size possible.

As the degrees of freedom coincide with the mesh nodes for the Q1 FE, the largest problem sizes on
128 CPUs are thus one billion unknowns for the Poisson and FeastSolid applications (with up to
1024 and 512 subdomains fitting into memory respectively). Due to memory constraints, we are only
able to execute the FeastFlow application on refinement level L = 9, yielding 100 M unknowns.

Poisson FeastSolid FeastFlow

CPUs Iters Time MFLOP/s Iters Time MFLOP/s Nonlin Iters Time MFLOP/s

8 5.0 76.0 3128 25.5 409.5 3205 8 210 3460 2720
16 5.5 84.2 6220 23.5 384.4 6294 10 303 5037 5388
32 5.5 85.0 12323 24.5 407.4 12382 8 282 4872 10469
64 5.5 91.2 22970 23.5 402.3 24054 10 391 7215 19530

128 5.0 84.6 45013 23.5 424.2 45624 9 335 9426 38197

Table 3: Weak scalability results on LiDO, refinement level L = 10 (L = 9 for FeastFlow). The
fractional notation is a consequence of the outermost BiCGStab solver permitting an ‘early
exit’ after its first preconditioning step.

The performance results are very satisfactory. The global coarse grid solver, which runs on the mas-
ter process and thus constitutes the sequential part in the otherwise fully data-parallel execution,
contributes less than 1 % to the overall runtime; in fact, for the Poisson test on 128 CPUs, the accu-
mulated idle time of each compute process during coarse grid solves on the master process does not
exceed 0.6 seconds. We conclude that the global coarse grid solver will not become the bottleneck in
terms of scalability in the medium term. The per-CPU performance of 350–400 MFLOP/s may sound
comparatively low at first, but the underlying timing includes all stalls due to communication across
subdomain edges, and in our performance model, we only count mathematically necessary operations,
in other words, we explicitly exclude all operations (but not the timings) due to the parallel execution.
If we consider the MFLOP/s rate for the serial matrix-vector multiplication (cf. Table 1) as an upper
limit of achievable performance, and assume that for a Jacobi smoother the same limit holds as for the
plain matrix-vector multiplication, then detailed measurements show that the per-CPU performance
only increases by approximately 30 MFLOP/s instead of the expected 150 MFLOP/s, confirming that
all local operations are performed within 5-10 % of the attainable peak memory bandwidth and the
difference can be fully attributed to our performance model.

The relatively high iteration numbers of the elasticity solver (compared to the Poisson solver) are
a consequence of the TUX geometry and the used boundary conditions: Long and thin structures in
conjunction with relatively small Dirichlet boundaries (only the TUX bottom between the feet is fixed)
leads to badly conditioned stiffness matrices and thus to an increased number of Krylov-space iterations
(cf. Axelsson [1]). FeastFlow exhibits consistently lower MFLOP/s rates, because computations
are performed for refinement level L = 9, and the arithmetic operations performed during matrix
assembly are not included. Due to the approximate solution of the subproblems, the nonlinear solver
reacts sensitively to the different partitioning of the domain into subdomains, resulting in a different
convergence behaviour and thus different runtimes. Our solvers scale very well for all three applications,
Figure 3 depicts normalised timings per iteration (FeastFlow is normalised with the number of Schur
complement solves).
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Figure 3: Weak scalability results, normalised to time per iteration.

4.2 Strong scalability

We base our evaluation of strong scalability on refinement level L = 9, which increases the exploration
space due to the reduced memory imprint of the subdomains compared to L = 10. Starting from
a distribution of subdomains to CPUs that uses all available memory on a given number of nodes,
we reschedule subdomains to twice, four times and eight times as many nodes. Figure 4 illustrates
the results. For the Poisson and FeastSolid applications, we observe near-perfect strong scalability,
only after eight times the number of nodes, performance starts to degrade slightly, indicating that
communication requirements start to influence performance. The CFD application FeastFlow again
exhibits sensitivity to the different partitions of the domain, but strong scaling remains very good.
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Figure 4: Strong scalability results for the Poisson, FeastSolid and FeastFlow applications.

4.3 Validation of FEAST’s solver concept

As explained in Section 2.3, one aspect of Feast’s approach is to reduce complex applications, vector-
valued problems, and nonlinear systems to sequences of scalar solves. This modular design allows
tuning of kernel features such that applications can directly benefit.

To quantify the implications of this approach, we execute the Poisson application on exactly the same
input mesh and (static) partitioning into parallel jobs as FeastSolid. We use the solvers described at
the beginning of this section. One iteration of the BiCGStab solver for the Poisson problem costs two
scalar multigrid cycles, whereas one iteration of the vector-valued solver in FeastSolid needs four
scalar multigrid cycles plus the overhead of performing one scalar matrix-vector multiplication in its
block-preconditioner and the matrix-vector and vector-vector operations of the BiCGStab iterations.
For the Poisson application on refinement level L = 9, we measure 1.93, 1.98, 2.06, 2.22 and 2.40
seconds per iteration for 8–128 CPUs respecively, and compared to the normalised numbers from
Figure 3 (center), this results in a performance difference of factors 2.09, 2.08, 2.08, 2.05 and 2.05
respectively. These numbers confirm that more than 90 % of the work is done inside the scalar solvers,
which is the behaviour we aimed at in our solver design. Detailed measurements for the FeastFlow



application show that 83 to 85 % of total linear solver time is spent in the scalar solver, independent
of the number of processors, and that MFLOP/s rates are reobtained (cf. Table 3).

5 PERFORMANCE STUDIES ON ADVANCED ARCHITECTURES

Due to space constraints, we do not present a detailed performance study on NEC SX-8 and on USC
as we did on LiDO in the previous section. The sketched results for the GPU-enhanced solver are
similar to a previously published paper focussing exclusively on Feast’s GPU backend [16], note that
we use a slightly different solver configuration in this paper to allow a better comparison. For the
same reason, we perform the exact same experiments on NEC SX-8. Though brief, the results in this
section underline important benefits of the approach we describe in this paper.

The GPU solver (cf. Section 2.4) is prototypical in the sense that it only provides a Jacobi smoother,
more advanced smoothers have not been implemented at the time these tests were performed. The
degree of anisotropy (both in the underlying mesh and the operators) is thus limited. Figure 5
illustrates four prototypical test problems and the deformations and von Mises stresses computed with
the unmodified, yet GPU-accelerated FeastSolid application. We use a solver configuration with a
BiCGStab scheme as outermost vector-valued solver, apply a block-Jacobi preconditioner to reduce the
problem to scalar subblocks, which are ‘inverted’ with one iteration of a data-parallel scalar multigrid
to couple across the entire domain, smoothed by local multigrids treating each subdomain individually.
All 64 subdomains are refined to level L = 10, leading to a total problem size of 134 million DOF.
USC has 16 nodes, and on NEC SX-8, we use two full nodes. Figure 6 summarises the obtained timing
measurements.

Figure 5: Test problems in linearised elasticity, computed with the GPU-accelerated FeastSolid

application ((a) BLOCK, (b) PIPE, (c) CRACK, (d) STEELFRAME).
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Figure 6: Timing comparison of FeastSolid, on USC (with and without GPUs) and NEC SX-8. The
longer computation times of the PIPE and STEELFRAME configurations are a consequence of
the long and thin structures in conjunction with small Dirichlet boundaries, see Section 4.1.

The results underline a very important aspect of Feast’s general approach: To benefit significantly
from hardware acceleration (via GPUs in a commodity based cluster, or on a dedicated HPC system),
not a single line of the application code has to be changed. The GPU-enhanced cluster executes the
test problems between 3.2 and 3.5 times faster than the Opteron cluster, and the NEC SX-8 is more



than 5 times faster. For a detailed discussion of the factors limiting performance in the GPU, and a
scalability analysis of the GPU-enhanced solver, we refer to previous publications [14,16]. Performance
on NEC SX-8 is overall fastest, but still comparatively low compared to the peak capabilities due to the
small local problem size of L = 10. Preliminary experiments indicate that the achievable MFLOP/s
per CPU increase almost linear upon further refinement.

6 CONCLUSIONS AND FUTURE WORK

Looking at current trends in numerical simulation methods and high performance computing tech-
niques, we believe that dedicated hardware-oriented numerics is a key tool to significantly improve
FE software packages for highly challenging current and future real world problems. The previous
certitude, still common among many developers focussing only on numerical aspects, that with every
new processor generation existing codes automatically run faster without any modification, is not valid
anymore. To benefit from this paradigm change in hardware, a change in software architecture is a
must to exploit the performance of current and future multicore and manycore designs, as well as
specialised hardware.

In our contribution, we have outlined Feast, our next-generation solver toolkit that implements
concepts of hardware-oriented numerics. The underlying ideas are not specific to Feast, in fact, not
all of them are novel per se, so that developers of numerical software should be able to include them in
their software. We supported these concepts by detailed numerical and performance experiments, as
well as scalability analyses for elliptic model problems and full applications built on top of Feast.

Future work includes the development of a multi-level scheduling scheme between nodes, sockets and
cores and the evaluation and addition of more dedicated hardware architectures such as the Cell
processor. Our approach is independent of the dimensionality, so adding 3D support is rather an
implementational burden than a conceptual challenge.
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