
Hardware-Oriented Multigrid Finite Element
Solvers on GPU-Accelerated Clusters

Stefan Turek, Dominik Göddeke, Sven H.M. Buijssen and Hilmar Wobker

Institut für Angewandte Mathematik, TU Dortmund, Germany
stefan.turek@math.tu-dortmund.de

1 Introduction and Motivation

The accurate simulation of real-world phenomena in computational science is often based on an un-
derlying mathematical model comprising a system of partial differential equations (PDEs). Important
research fields that we pursue in this setting are computational solid mechanics and computational
fluid dynamics (CSM and CFD, see Section 3). Practical applications range from material failure
tests, as for instance crash tests in the automotive industry, to fluid and gas flow of any kind, for in-
stance in chemical or medical engineering (e. g., simulation of blood flow in the human body to predict
aneurysms) or flow around cars and aircrafts to minimize drag and lift forces. Moreover, the coupling
of both models is essential for fluid structure interaction settings (FSI) which represent problem fields
of very high technological importance. Such configurations include polymer processing or microfluidic
problems exhibiting very complex multiscale behavior due to nonlinear rheological or non-isothermal
constitutive laws, and also due to self-induced oscillations of the structural parts in the flow field. In
all these cases, the fluid part is mostly laminar, but highly viscous.

The corresponding flow models are based on the Navier-Stokes equations which seem to have a quite
simple structure at first sight; nevertheless they constitute ‘grand challenge’ problems for mathemati-
cians and physicists as well as engineers and computer scientists. They are (still today) subject to very
intensive research activities, especially in the following fields:

• time dependent partial differential equations in complex domains
• strongly nonlinear systems of equations
• saddle-point problems due to the incompressibility constraint
• local changes of the problem character in space and time
• temporarily stiff systems of differential equations

These characteristics impose great challenges on almost all numerical algorithms and computational
approaches. Among others, the following mathematical issues have to be taken into consideration if
efficient simulation tools are to be designed:

• large, ill-conditioned nonlinear systems (millions of unknowns)
• locally varying time steps (implicit schemes)
• locally anisotropic spatial meshes (complex geometries)
• efficient parallel solvers (decomposition-invariant scalability)

1

From a mathematical and engineering point of view, finite element methods (FEM) are considered to
be the most promising approaches for the numerical treatment of such PDE problems, due to their
flexibility and accuracy, particularly for general settings and complex geometries including unstruc-
tured computational meshes. Moreover, they provide a complete framework which allows rigorous a
posteriori error control and corresponding adaptive grid manipulations. While classical approaches
provide a sharp quantitative estimation of the error only in certain specific configurations (and should
therefore be better referred to as error indicators), sophisticated finite element techniques overcome
these deficiencies and can be formulated in a very general framework such that adaptive error control
strategies can also be applied to realistic flow and FSI configurations. Summarizing the state of the art,
finite element techniques form in combination with powerful and robust numerical solution schemes
the underlying fabric of many modern simulation tools.

Looking at solution rather than discretization techniques next, hierarchical (geometric) multigrid meth-
ods are more or less obligatory due to their asymptotic optimality, since many of the considered (flow)
problems lead to huge, ill-conditioned problems where the condition number depends on the mesh
width, resp., problem size: Even for a ‘simple’ Poisson problem, a multigrid solver with ‘standard’
choices of smoother, data structure and numbering scheme for the unknowns executes faster than a
(single-grid) Krylov subspace solver with very powerful elementary preconditioners for relevant prob-
lem sizes. Since the solution of Poisson-like subproblems is an essential building block of Navier-Stokes
and also elasticity solvers, the use of multigrid techniques is mandatory for these problem classes.

As a conclusion, we can state that modern FEM software packages for general continuum mechanical
PDE problems, especially in solid mechanics and fluid dynamics, are typically based on highly so-
phisticated discretization techniques, which have the potential to handle very general computational
meshes. However, particularly in the case of huge realistic 3D problems, the realization of efficient
parallel multigrid solvers, providing at least double precision accuracy due to typically bad condition
numbers of the linear systems, is equally essential. Only the combination of all these mathematical
components permits the design of flexible, robust and accurate simulation tools with high numerical
efficiency.

Still, this is not enough to realize simulation software with correspondingly high computational effi-
ciency. In numerics, hardware aspects used to be of minor importance since codes automatically ran
faster with each new generation of processors. This trend has come to an end, as physical limitations
(heat, leaking voltage, pin limits) have led to a paradigm change: Performance improvements are no
longer driven by frequency scaling, but by parallelism and specialization. In fact, single-core perfor-
mance already stagnates or even goes down. Quad-core CPUs are available off-the-shelf, and soon,
CPUs will have tens of parallel cores. Future manycore chip designs will likely be heterogeneous and
contain general and specialized cores with non-uniform memory access characteristics (NUMA). Com-
modity multimedia processors such as the Cell BE or graphics processor units (GPUs) are considered
as forerunners of this trend even though they can currently only be used as co-processors (accelerators)
to the general-purpose CPU.

In order to achieve a significant percentage of the available peak performance, both on conventional
and novel architectures, hardware characteristics must be taken into account in all stages of the
implementation and code optimization. This includes the selection of appropriate data structures
(e. g., to store matrices or to communicate data over the interconnects efficiently) and parallelization
techniques, in particular when combining the coarse-grained parallelism on the cluster level and the
medium- and fine-grained parallelism between the CPU cores, and within accelerator devices like
GPUs. Furthermore, different approaches are necessary for different architectures. The same holds
true for performance tuning techniques like spatial blocking to exploit cache hierarchies or to coalesce
memory transfers into large, more efficient bulk transactions. On the other hand, the meticulous tuning
of each application for each new hardware generation is prohibitively expensive, and techniques are
required that encapsulate the hardware-awareness inside the underlying finite element discretization
and solver toolkit, away from the applications.

2

We are convinced that in the field of high performance finite element simulations, significant per-
formance improvements can only be achieved by hardware-oriented numerics which is a quite young
discipline in the field of computational science and engineering (CSE). The core paradigm of hardware-
oriented numerics is that numerical and algorithmic foundation research must go hand in hand with
(long-term) technology evolution: Prospective hardware trends enforce research into novel numerical
techniques that are in turn better suited for the hardware. As an example, strong multigrid smoothers
with optimal numerical properties often scale poorly in a parallel setting, due to their strong recursive
coupling. Only correspondingly modified schemes that are potentially less numerically efficient on a
single node (e. g., in terms of convergence rates) are able to achieve better overall performance in
the user-relevant ‘time-to-solution’-metric. The ultimate goal of hardware-oriented numerics is thus
to balance these metrics to achieve robust and ideally predictable close-to-peak performance. Only
with the combination of the ‘best’ numerics and ‘best’ computational algorithms for a given hardware
architecture it is possible to satisfy the aims of hardware-oriented numerics, namely to maximize the
total efficiency, i.e., to realize the following ‘vision’ which is the underlying key idea for our finite
element software project Feast:

Hardware-oriented Numerics: Maximize Total Efficiency
High (guaranteed) accuracy for user-specific quantities with minimal number of degrees of freedom

(#DOF) via fast and robust solvers – for a wide class of parameter variations – with optimal
numerical complexity (O(#DOF)) while exploiting a significant percentage of the available

sequential/parallel peak performance at the same time.

2 FEAST - Finite Element Analysis & Solution Tools

Feast is our next-generation simulation toolkit, which prototypically implements a wide range of
hardware-oriented numerics concepts. Feast is designed for large-scale distributed memory simula-
tions and uses MPI for communication. Here, we briefly present the key concepts, and refer to previous
publications for details [2, 15,18].

2.1 Separation of Structured and Unstructured Data

Figure 1: Locally structured, globally unstructured mesh in Feast.

Feast covers the computational domain with a collection of quadrilateral subdomains. The subdo-
mains form an unstructured coarse mesh (cf. Figure 1 and also Figure 4 on page 11, bottom), and
each subdomain is refined in a generalized tensor product fashion. The resulting mesh is used to
discretize the set of PDEs with finite elements. This approach caters to the contradictory needs of
flexibility in the discretization and high performance: The unstructured coarse mesh retains flexibility
in resolving geometric and simulation details, such as boundary layers or discontinuities. The tensor

3

product property of the local meshes entails a linewise numbering of the unknowns which leads to a
banded structure of the matrices and is exploited in optimized numerical linear algebra and multigrid
smoothing and transfer components. Instead of keeping all data in one general, homogeneous data
structure, Feast stores only local FE matrices and vectors (corresponding to subdomains) and thus
maintains a clear separation of structured and unstructured parts of the domain. Several subdomains
can be grouped together and treated within one MPI process.

2.2 Parallel Multigrid Solvers

ScaRC (Scalable Recursive Clustering), the solver concept at the core of Feast, generalizes techniques
from multilevel domain decomposition and parallel multigrid ; combining their respective advantages
into a very robust, and (numerically and computationally) efficient parallel solution scheme for (scalar)
elliptic PDEs. Matrices and vectors are stored only locally as usual for distributed memory approaches,
while at the same time a minimally overlapping decomposition ensures that on the one hand, the union
of all local matrices always composes the ‘virtual’ global matrix, and on the other hand, only the mini-
mally necessary amount of data needs to be shared via communication, i. e., only data associated with
degrees of freedom lying on subdomain boundaries has to be exchanged, ensuring good scalability by
design. Between the different mesh resolutions, the coupling is multiplicative, as in classical multigrid.
Within one hierarchy level, the coupling is additive, i. e. the minimally overlapping subdomains are
treated simultaneously and independently of each other. Global coarse grid problems are solved with
UMFPACK [6] on a master node.

Instead of blockwise application of elementary local smoothers, the ScaRC scheme employs full multi-
grid solvers acting locally on the individual subdomains to ‘hide’ local irregularities as much as possible
from the outer solver, see the recursive data flow in Figure 2. The local solvers are typically configured
to gain, e. g., one digit, and can fully exploit the underlying tensor product property by executing
hardware-optimized code paths.

The resulting hierarchical solvers are very robust, exhibiting very good weak and strong scaling. In
previously published work, we demonstrated – for the maximum available resources at that time –
perfect weak scalability for the Poisson problem on up to 320 Xeon processors [10], and excellent
strong scaling for applications from linearized elasticity and incompressible flow for an experiment
that subsequently quadrupled the resources up to a maximum of 128 CPUs [19].

2.3 Scalar and Multivariate Problems

The guiding idea to treating multivariate problems with Feast is to rely on the modular, highly
optimized and extensively tested core routines for the scalar case in order to formulate robust schemes
for a wide range of applications, rather than using the best suited numerical scheme for each application
and repeatedly optimizing it for new architectures. Multivariate PDEs as they arise in CSM and CFD
can be rearranged and discretized in such a way that the resulting equation systems consist of blocks
that correspond to scalar subequations. We illustrate this exemplarily in Section 3.3 with help of the
elasticity equation. Figure 2 summarizes the idea on a high level.

This special block-structure can be exploited in two ways: On the one hand, all standard linear algebra
operations on the multivariate system (e. g., matrix-vector multiplications, defect computations, dot
products) can be implemented as a series of operations for scalar systems, taking advantage of Feast’s
highly tuned numerical linear algebra components. On the other hand, the process of solving multi-
variate linear equation systems can be brought down to the treatment of auxiliary scalar subsystems
which can be efficiently solved by Feast’s optimized toolbox of parallel multigrid solvers. Once such
a solution approach is set up, the hardware-awareness and all further improvements of Feast’s scalar
library directly transfer to the solvers for multivariate systems. Such improvements can be the addition

4

of better multigrid components (e. g., more robust local smoothers) or algorithmic adaptations to ded-
icated HPC architectures and hardware co-processors (see Section 2.4 and Figure 2). ScaRC allows
for an almost arbitrary (recursive) combination of multivariate and scalar as well as global and local
solvers, thus providing great flexibility in tuning the linear solution schemes to the given problem.

2.4 Co-processor Acceleration

Hardware accelerators such as GPUs are integrated into Feast in a ‘minimally invasive’ way [10,11,13],
encapsulating heterogeneities of the system on the compute node level, so that MPI sees a globally
homogeneous system. Figure 2 illustrates how this concept fits into Feast’s general solution strategy.

Figure 2: Illustration of the minimally invasive accelerator integration in Feast.

The currently implemented prototype [8] offloads local scalar multigrid solvers, specifically tailored
to the tensor product property, onto GPUs. This concentrates sufficient fine-grained parallelism in a
separate task and thus minimizes the potential overhead of repeated co-processor configuration and
data transfer in case of a system integration via relatively narrow busses such as PCIe. On accelerators
that do not natively provide sufficient floating point precision, a mixed precision iterative refinement
technique is applied to ensure accuracy of the results [12]. The entire approach thus has one important
benefit: Application code does not need to be changed at all to benefit from co-processor acceleration.

3 Two FEAST Applications: FEASTSOLID and FEASTFLOW

In this section, we introduce two important classes of applications that have been built on top of
Feast: The solid mechanics code FeastSolid solves static and transient elasticity problems for small
and finite deformations. The fluid dynamics code FeastFlow solves the transient incompressible
Stokes and Navier–Stokes equations. Other applications, e. g., fluid structure interaction and Lattice
Boltzmann methods, are actively being developed, but are not considered here.

5

3.1 Computational Solid Mechanics

In computational solid mechanics (CSM) the deformation of solid bodies under external loads is
examined. We consider a two-dimensional body covering a domain Ω̄ = Ω∪∂Ω, where Ω ⊂ Rd, d = 2, 3,
is a bounded, open set with boundary Γ = ∂Ω. The boundary is split into two parts: the Dirichlet part
ΓD where displacements are prescribed and the Neumann part ΓN where surface forces can be applied
(ΓD∩ΓN = ∅). Furthermore the body can be exposed to volumetric forces, e. g., gravity. FeastSolid
is able to handle nonlinear finite elasticity problems and incompressible materials [20]. However, here
we do not use these advanced problem-specific features and only treat the simple yet fundamental
linearized 2D model problem of elastic, compressible material under static loading, assuming small
deformations. This allows us to better quantify the solver aspects we focus on in this paper. In terms
of complexity, this model problem of elasticity is situated between the standard Poisson problem and
the Navier–Stokes equations.

Mathematically, we formulate the linearized elasticity equation in terms of the displacements u(x) =(
u1(x), u2(x)

)T
of a material point x ∈ Ω̄ as the only unknowns. The strains can be defined by the

linearized strain tensor εij = 1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
, i, j = 1, 2, describing the linearized kinematic relation

between displacements and strains. The material properties are reflected by the constitutive law, which
determines a relation between the strains and the stresses. We use Hooke’s law for isotropic elastic
material, σ = 2µε + λ tr(ε)I , where σ denotes the symmetric stress tensor and µ and λ are the
so-called Lamé constants. The basic physical equations of elasticity are determined by equilibrium
conditions. For a body in equilibrium, the inner forces (stresses) and the outer forces (external loads
f) are balanced:

−divσ = f , x ∈ Ω.

Using Hooke’s law to replace the stress tensor, the problem of linearized elasticity can be expressed in
terms of the following elliptic boundary value problem, called the Lamé equation:

−2µdivε(u)− λgrad divu = f , x ∈ Ω, (1a)

u = g , x ∈ ΓD, (1b)

σ(u) · n = t , x ∈ ΓN. (1c)

Here, g are prescribed displacements on ΓD, and t are given surface forces on ΓN with outer normal n .
To discretize the continuous problem, the domain Ω̄ is approximated by a collection of tensor product
subdomains Ω̄i as described in Section 2.1. We consider the weak formulation of equation (3) and
apply a finite element discretization with conforming bilinear elements Q1. For details on the finite
element technique and on the elasticity problem, see for example the textbook by Braess [3].

3.2 Computational Fluid Dynamics

To tackle problems from computational fluid dynamics (CFD) we discretize the Navier–Stokes equa-
tions. They describe the flow of Newtonian fluids like gases, water and many other liquids in a domain
Ω ⊂ Rd, d = 2, 3 and are, under certain assumptions and simplifications, derived from the conserva-
tion laws for mass, momentum and energy. For the sake of simplicity we restrict ourselves to the 2D
stationary case.

Confining the domain and imposing boundary conditions, i. e., in- and outflow conditions on the
‘artificial’ boundaries and slip or adhesion conditions at rigid walls, the following system of nonlinear
equations is obtained under the assumption of constant kinematic viscosity ν > 0 (independent of

6

pressure and specific heat capacity) and constant temperature:

−ν∆u + (u · ∇)u +∇p = f , x ∈ Ω, (2a)

divu = 0 , x ∈ Ω, (2b)

u = g , x ∈ ΓD, (2c)

ν∂nu + p · n = 0, x ∈ ΓN. (2d)

Here, u denotes the fluid velocity, p the pressure, n the outer normal vector and ΓD and ΓN the
boundary parts with, respectively, Dirichlet and Neumann boundary conditions (i. e., inflow, outflow
and adhesion conditions).

We discretize the equation with the Q1/Q1 bilinear element pair and use residual-based SUPG/PSPG
stabilization (streamline upwind/Petrov-Galerkin and pressure-stabilization/Petrov-Galerkin) to ac-
count for both the LBB deficiency of the Q1/Q1 pair and to stabilize convective terms [4, 14]. To
allow for anisotropic grid cells directional derivatives are incorporated in the stabilization terms [5].
For details on the CFD problem in general see for example the textbook by Ferziger and Peric [7].

3.3 Solving CSM and CFD Problems with FEAST

In order to solve CSM and CFD problems using the Feast intrinsics described in Section 2, the
degrees of freedom of the discretized systems have to be ordered corresponding to the components
of the underlying multivariate equations. We exemplarily illustrate this for the case of linearized
elasticity, where the technique is sometimes called separate displacement ordering [1]. In the 2D case,
the unknowns u = (u1, u2)T are the displacements in x- and y-direction. A corresponding operator-
splitting of the left hand side of equation (1a) yields

−
(

(2µ+ λ)∂xx + µ∂yy (µ+ λ)∂xy

(µ+ λ)∂yx µ∂xx + (2µ+ λ)∂yy

)(
u1

u2

)
=

(
f1

f2

)
. (3)

The finite element discretization of the correspondingly arranged weak form leads to a linear equation
system Ku = f exhibiting a corresponding block structure,(

K11 K12

K21 K22

)(
u1

u2

)
=

(
f1
f2

)
, (4)

where f = (f1, f2)T is the vector of external loads and u = (u1,u2)T the (unknown) coefficient vector
of the finite element solution. Each global matrix/vector Kij ,ui, fi(i, j = 1, 2) exists only ‘virtually’
through the corresponding local matrices/vectors defined over the local subdomains (cf. Section 2.1).
The decisive advantage of this operator-splitting is that the matrices K11 and K22 correspond to scalar
elliptic operators (cf. Equation (3)) which allows using Feast’s tuned scalar solvers (cf. Section 2.2).

We now illustrate how scalar subsystems can be utilized to solve the whole multivariate system by
means of a basic preconditioned defect correction method:

uk+1 = uk + ωK̃−1
BGS(f −Kuk). (5)

This scheme acts on the global system (4) and thus couples the two sets of unknowns u1 and u2. K̃BGS

is a block-Gauss-Seidel preconditioner that explicitly exploits the block structure of the matrix K.
One iteration of the global defect correction scheme consists of the following three steps:

1. Compute the global defect (cf. Section 2.3):(
d1

d2

)
=

(
f1
f2

)
−

(
K11 K12

K21 K22

)(
uk
1

uk
2

)
.

7

2. Apply the block preconditioner

K̃BGS :=

(
K11 0
K21 K22

)
by approximately solving the system K̃BGSc = d. This is performed by two scalar solves and one
(scalar) matrix-vector multiplication:

a) Solve K11c1 = d1.

b) Update RHS: d2 = d2 −K21c1.

c) Solve K22c2 = d2.

3. Update the global solution with the (eventually damped) correction vector: uk+1 = uk + ωc.

The solution of the two scalar subsystems (steps 2(a) and 2(b)) constitutes the largest amount of the
total arithmetic work and fully exploits Feast’s tuned (and co-processor-accelerated) scalar solvers
(cf. Section 4.3).

In the case of the Navier–Stokes equations, the whole solution process can be brought down to the
solution of scalar systems as well. In a first step, the nonlinearities are resolved by a fixed point defect
correction method such that repeatedly (in each nonlinear step) linear saddle point systems of the
form (

A + C1 B
BT C2

)(
u
p

)
=

(
f
g

)
(6)

are to be solved, where the matrices C1,C2 stem from the SUPG/PSPG stabilization terms. In 2D, the
matrix A + C1 has a 2×2 block structure similar to that of the stiffness matrix K in the elasticity case
(see Equation 4). Our solution algorithm is a block Schur complement (BSC) approach as described
by Murphy et al. [16]. It basically consists of a global BiCGStab solver acting on the whole saddle
point system which is block-preconditioned by(

Ã 0

BT S̃

)
. (7)

Herein, Ã and S̃ respectively denote preconditioners of A + C1 and of the Schur complement matrix
S = BT(A + C1)

−1
B −C2. The former is realized by approximately solving subsystems of the kind

(A + C1)c = d for which exactly the same solution strategy is applied as for the CSM system (4).
The Schur complement preconditioner S̃ is realized by a suitably weighted linear combination of
pressure mass and Laplacian matrices (see Turek [17]). Applying the preconditioner means solving
scalar subsystems which can again be done with Feast’s optimized ScaRC schemes. Hence, the
solution of the whole saddle point system is mainly brought down to the solution of scalar systems
again.

4 Performance Assessments

We demonstrate the performance and efficiency of our approach with a number of selected benchmark
tests. These results have been gathered over the past two years on a wide range of different HPC
installations and test clusters using CPUs and GPUs from different hardware generations.

8

4.1 GPU-based Multigrid on a single Subdomain

In the literature, reported speedups obtained on GPUs vary dramatically. Our first experiment assesses
the (realistic) speedup we can obtain in our setting on a single, generalized tensor product subdomain.
We use a GPU-based multigrid iteration to solve the fundamental scalar Poisson problem on one of the
deformed subdomains near the inner boundary in the unstructured channel flow configuration shown
in Figure 4 (bottom), prescribing an analytical right hand side so that we know the exact solution of
the problem and can compute the error of the approximate solution. Single precision is insufficient to
accurately solve this problem while we always achieve correct results with our mixed precision iterative
refinement scheme [12].

CPU GPU GPU
Level DOF

double double
speedup

mixed
speedup

5 1 089 0.0018 0.0156 0.1 0.0140 0.1
6 4 225 0.0059 0.0187 0.3 0.0206 0.3
7 16 641 0.0272 0.0260 1.1 0.0232 1.2
8 66 049 0.1460 0.0356 4.1 0.0284 5.2
9 263 169 0.7747 0.0656 11.8 0.0435 17.8
10 1 050 625 3.3609 0.1731 19.4 0.0944 35.6

Table 1: Multigrid solvers on a single subdomain (Time to solution in seconds and speedup).

The speedup comparisons in Table 4.1 have been obtained on a typical high-end GPU workstation as
of June 2008 (Core2Duo E6750, fast DDR2-800 memory, NVIDIA GeForce GTX 280 GPU). Column 3
demonstrates that the CPU gets less and less efficient as soon as the problem does not fit entirely into
cache anymore, while columns 4 and 6 show that the GPU needs reasonably large problem sizes to
be fully saturated and hide all latencies of accesses to off-chip memory. The speedup we observe for
these two configurations executing entirely in double precision is almost 20× and includes the transfer
of the right hand side to the device and the transfer of the solution back from the device. We do not
include the transfer of the matrix data, because this is part of the matrix assembly and thus separated
from our acceleration of linear solvers, see Section 4.3. In addition, the mixed precision scheme on
the device is almost twice as fast as native double precision (last two columns). It is noteworthy that
we can solve a sparse linear system with one million unknowns in less than 0.1 seconds, using a fully
assembled matrix, not merely a stencil.

4.2 Scalability

Our second experiment demonstrates the excellent weak scalability of our approach (we address strong
scalability elsewhere [19]). The results shown in Figure 3 have been obtained on a cluster with two
singlecore EM64T Xeon CPUs and a Quadro FX1400 GPU per node. We observe excellent scalability
when simultaneously doubling the problem size and the number of nodes for both the Poisson problem
and the FeastSolid application (using the same configuration as shown in Figure 4, top). As the
GPU is one generation behind the Xeon processors and only has 128 MB of memory, it can barely hold
the data associated with one subdomain , and we have to page data in and out of device memory for
each local solve [10,13]. Therefore, the obtained speedups are not spectacular but still noteworthy. In
particular, we are able to accurately solve a Poisson problem with more than 1.3 billion unknowns in
slightly more than 40 seconds.

9

Figure 3: Weak scalability results for the Poisson (left) and the CSM (right) solvers (x-axis: #DOF
and #nodes; y-axis: linear solving time in seconds). When performing the CSM tests, less
nodes were available to us.

4.3 Application Speedup

In this section, we analyse how the (local) speedups of the solvers acting on a single subdomain
(Section 4.1) translate to the application level. For the elasticity application FeastSolid, we solve
a prototypical benchmark problem, a block subjected to an external load (see Figure 4, top). These
results are obtained on a 16-node cluster (Opteron 2210 dualcore CPU, Quadro FX5600 GPU). Each
of the 64 subdomains is refined up to level 10 for a total problem size of 128 million unknowns.
Smoothing the local multigrid with simple Jacobi iterations is sufficient, the mesh is isotropic and the
operator only mildly anisotropic. The GPU-accelerated solver achieves a speedup by a factor of 2.6
for refinement level 10, and 2.0 for level 9 respectively [13].

We benchmark the GPU-accelerated FeastFlow application on a small test cluster (four nodes,
Opteron 2214 dualcore, GeForce 8800 GTX). These GPUs are slightly faster than the Quadros used in
the tests of the elasticity application, but still two generations behind the GPU used in Section 4.1. For
the full Navier-Stokes solver and a ‘flow around a cylinder’ benchmark (see Figure 4, bottom), a strong
smoothing operator is required due to the nonlinearities. We resort to an alternating direction implicit
variant of a tridiagonal smoother that couples each unknown with its left and right neighbor. The
GPU implementation [8] of this smoother is based on cyclic reduction, while the CPU implementation
can use the less expensive serial Thomas algorithm. For this configuration, only refinement level 9 fits
into memory of the four nodes. The total speedup we observe in terms of ‘time to solution’ is 1.9×
(results updated from [9]).

Discussion. We first emphasize that our reported speedups are very noteworthy, as they have been
obtained without changing a single line of application code: Halving the execution time of an already
carefully (numerically and implementationally) optimized code is usually impossible. Nonetheless,
the question arises why the gap to the ‘ideal’ measurements (Section 4.1) is so large. The reason is
inherent to our highly modular approach: We only accelerate the local scalar multigrid solvers, i. e.,
only a portion of the entire linear solver. The approach is thus prone to be limited by Amdahl’s
law. To quantify this effect and to assess how the achieved speedups of the local multigrid solver
translate to the global application, we equip the code with timers measuring the local multigrid solves
only. Looking at the elasticity solver first, we observe local speedups of 4.1 and 9.0 on level 9 and
10, respectively. The local work constitutes roughly 66 % of the entire linear solver, so the maximum
achievable total speedup is 3× assuming infinite local acceleration. With a factor of 2.6× on level
10, we are reasonably close to this ideal speedup. For the Navier-Stokes solver, we measure a local
speedup of 11.4×, resulting in an acceleration of the linear solver by a factor of 4.3. The accelerable
fraction of the linear solver is approximately 84 %, limiting the speedup to a factor of 6.4. However,

10

Figure 4: Computed benchmark results for the elasticity (top) and fluid dynamics (bottom) solvers.

considering the entire nonlinear problem, all matrices have to be assembled in each nonlinear step (see
Section 3.3), a task that is currently not accelerated by the GPU. Furthermore, the nonlinear defect
correction loop is executed on the CPU. For this particular test problem, 40 % of the entire time to
solution is spent in the assembly routine, and for the accelerated solver, this fraction increases to over
70 %. Consequently, the speedups are diminishing significantly, and measurements reveal that only
50 % of the entire solution process (baseline CPU version) can be accelerated, resulting in a theoretical
upper bound of a factor of two. With a measured speedup of 1.9× for the entire application, we are
sufficiently close to this optimum.

Conclusion and Outlook. Even when using a strong, robust multigrid smoother, our GPU-based
local multigrid solver is more than one order of magnitude faster than a corresponding CPU imple-
mentation. Since we only accelerate the scalar local portions of the entire multivariate global linear
solver, the total speedup on the application level is bound by the fraction of time spent in these local
solves. The only possibility to improve speedups significantly while not suffering from the implications
of Amdahl’s law is to re-implement large portions of each application specifically for the GPU, which
can be impractical or prohibitively expensive in practice. Nonetheless, we achieve speedups by a factor
of two or more for simulations in CSM and CFD. In the spirit of ‘hardware-oriented numerics’ however,
we are pursueing ideas to design solution schemes with a higher potential for acceleration, ideally more
than 90 %. The linear solver in the Navier-Stokes benchmark is already close to this goal, exhibiting an
acceleration potential of 84 %. For nonlinear problems however, the assembly of the linearized systems
can constitute the dominant part of the computations, at least for the GPU-accelerated version. The
second challenge in future work is thus to port the assembly process to GPUs in a similarly ‘minimally
invasive’ way, so that we maintain the most important benefit of our approach: Application code does
not have to be changed at all.

11

5 Summary

We have motivated the concept of hardware-oriented numerics and described our finite element and
solver toolbox Feast, which prototypically implements many of its aspects. For two important model
applications from solid mechanics and fluid dynamics we have demonstrated how we break down the
solution process into sequences of scalar solves. This approach has the important advantage that all
performance improvements and in particular adaptions to specific hardware architectures are auto-
matically transferred to the application level, without having to change application code at all. In the
context of this chapter, we use GPUs as accelerators to the general-purpose CPU. We implemented
scalar multigrid solvers on the GPU, which executes the scalar local subdomain solves within the mul-
tivariate global parallel solver. The resulting hybrid solvers scale very well, and we observe noteworthy
speedups. However, as we only accelerate portions of the entire solution scheme, our speedups are
limited by the remaining fraction, and local speedups of more than one order of magnitude do not
(yet) translate fully to the application level.

Acknowledgements

This work has been funded in part by German Deutsche Forschungsgemeinschaft (projects TU 102/22-
2, TU 102/27-1 and TU 102/11-3), and by German Bundesministerium für Bildung und Forschung in
the SKALB project (grant 01IH08003D) of call ‘HPC Software für skalierbare Parallelrechner’.

References

[1] Owe Axelsson. On iterative solvers in structural mechanics; separate displacement orderings and
mixed variable methods. Mathematics and Computers in Simulations, 50(1–4):11–30, November
1999.

[2] Christian Becker. Strategien und Methoden zur Ausnutzung der High-Performance-Computing-
Ressourcen moderner Rechnerarchitekturen für Finite Element Simulationen und ihre Realisierung
in FEAST (Finite Element Analysis & Solution Tools). PhD thesis, Universität Dortmund, May
2007. http://www.logos-verlag.de/cgi-bin/buch?isbn=1637.

[3] Dietrich Braess. Finite Elements – Theory, fast solvers and applications in solid mechanics.
Cambridge University Press, 2nd edition, April 2001.

[4] Alexander N. Brooks and Thomas J. R. Hughes. Streamline upwind/Petrov-Galerkin formulations
for convection dominated flows with particular emphasis on the incompressible Navier-Stokes
equations. Computer Methods in Applied Mechanics and Engineering, 32(1–3):199–259, September
1982.

[5] Sven H.M. Buijssen. Efficient Multilevel Solvers and High Performance Computing Techniques for
the Finite Element Simulation of the Transient, Incompressible Navier–Stokes Equations. PhD
thesis, TU Dortmund, Fakultät für Mathematik, 2010. in preparation.

[6] Timothy A. Davis. A column pre-ordering strategy for the unsymmetric-pattern multifrontal
method. ACM Transactions on Mathematical Software, 30(2):165–195, June 2004.

[7] Joel H. Ferziger and Milovan Perić. Computational Methods for Fluid Dynamics. Springer, Berlin,
3rd edition, December 2001.

[8] Dominik Göddeke. Fast and Accurate Finite-Element Multigrid Solvers for PDE Simulations
on GPU Clusters. PhD thesis, TU Dortmund, Fakultät für Mathematik, May 2010. http:

//hdl.handle.net/2003/27243.

12

[9] Dominik Göddeke, Sven H.M. Buijssen, Hilmar Wobker, and Stefan Turek. GPU acceleration
of an unmodified parallel finite element Navier-Stokes solver. In Waleed W. Smari and John P.
McIntire, editors, High Performance Computing & Simulation 2009, pages 12–21, June 2009.

[10] Dominik Göddeke, Robert Strzodka, Jamaludin Mohd-Yusof, Patrick S. McCormick, Sven H.M.
Buijssen, Matthias Grajewski, and Stefan Turek. Exploring weak scalability for FEM calculations
on a GPU-enhanced cluster. Parallel Computing, 33(10–11):685–699, September 2007.

[11] Dominik Göddeke, Robert Strzodka, Jamaludin Mohd-Yusof, Patrick S. McCormick, Hilmar
Wobker, Christian Becker, and Stefan Turek. Using GPUs to improve multigrid solver perfor-
mance on a cluster. International Journal of Computational Science and Engineering, 4(1):36–55,
November 2008.

[12] Dominik Göddeke, Robert Strzodka, and Stefan Turek. Performance and accuracy of hardware-
oriented native-, emulated- and mixed-precision solvers in FEM simulations. International Journal
of Parallel, Emergent and Distributed Systems, 22(4):221–256, January 2007.

[13] Dominik Göddeke, Hilmar Wobker, Robert Strzodka, Jamaludin Mohd-Yusof, Patrick S. Mc-
Cormick, and Stefan Turek. Co-processor acceleration of an unmodified parallel solid mechan-
ics code with FEASTGPU. International Journal of Computational Science and Engineering,
4(4):254–269, October 2009.

[14] Thomas J.R. Hughes, Leopoldo P. Franca, and Marc Balestra. A new finite element formulation for
computational fluid dynamics: V. Circumventing the Babuška-Brezzi condition. A stable Petrov-
Galerkin formulation of the Stokes problem accomodating equal-order interpolations. Computer
Methods in Applied Mechanics and Engineering, 59(1):85–99, November 1986.

[15] Susanne Kilian. ScaRC: Ein verallgemeinertes Gebietszerlegungs-/Mehrgitterkonzept auf Par-
allelrechnern. PhD thesis, Universität Dortmund, Fachbereich Mathematik, January 2001.
http://www.logos-verlag.de/cgi-bin/buch?isbn=0092.

[16] Malcolm F. Murphy, Gene H. Golub, and Andrew J. Wathen. A note on preconditioning for
indefinite linear systems. SIAM Journal on Scientific Computing, 21(6):1969–1972, May 2000.

[17] Stefan Turek. Efficient Solvers for Incompressible Flow Problems: An Algorithmic and Compu-
tational Approach. Springer, June 1999.

[18] Stefan Turek, Christian Becker, and Susanne Kilian. Hardware–oriented numerics and concepts
for PDE software. Future Generation Computer Systems, 22(1-2):217–238, February 2004.

[19] Stefan Turek, Dominik Göddeke, Christian Becker, Sven H.M. Buijssen, and Hilmar Wobker.
FEAST – Realisation of hardware-oriented numerics for HPC simulations with finite elements.
Concurrency and Computation: Practice and Expecience, February 2010. Special Issue Proceed-
ings of ISC 2008.

[20] Hilmar Wobker. Efficient Multilevel Solvers and High Performance Computing Techniques for
the Finite Element Simulation of Large-Scale Elasticity Problems. PhD thesis, TU Dortmund,
Fakultät für Mathematik, March 2010. http://hdl.handle.net/2003/26998.

13

