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SUMMARY

Fluid dynamical problems are often conceptualized in unbounded domains. However, most methods of numerical
simulation then require a truncation of the conceptual domain to a bounded one, thereby introducing artificial
boundaries. Here we analyse our experience in choosing artificial boundary conditions implicitly through the
choice of variational formulations. We deal particularly with a class of problems that involve the prescription of
pressure drops and/or net flux conditions.

KEY WORDS; Nayier—Stokes equations; artificial boundary conditions; flux and pressure conditions; finite elements

1. INTRODUCTION

Most flow problems of scientific or engineering interest, such as flows past obstacles, around comers
or through pipes or apertures, are first conceptualized in unbounded domains. This is an idealization
intended to focus on a phenomenon of interest, free of the effects of distant boundaries. We begin this
paper by reviewing the mathematical formulations for unbounded domains of a class of problems that
involve the prescription of pressure drops and/or net flux conditions. These formulations are suggestive
of analogous formulations for bounded domains, which are appropriate when a bounded domain is
obtained as the truncation of an unbounded domain for the purpose of making a numerical
computation.

We focus particularly on variational formulations rather than on their classical counterparts. The
principal issue concerning variational formulations is not a choice of boundary conditions but a choice
of function spaces. This choice of function spaces, however, scems relatively straightforward in
comparison with choosing boundary conditions. We accept what scems to be the simplest and most
natural choice for these function spaces, namely that which leaves functions as free as possible, and
investigate the consequences through numerical experiments and by drawing out the relationship
between the resulting variational problems and the ‘antificial’ boundary conditions that are implicit in
them, : -

We often refer to the boundary conditions arrived at in this way as ‘do nothing’ boundary
conditions, since we do not try to achieve any special effect or boundary condition through restrictions
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in the function spaces. As it turns out, these boundary conditions are the same as those that have
already been recommended by Gresho (see e.g. Reference 1) for use along outflow boundaries (for
more recent references see Reference 2). In our variational formulations these boundary conditions are
implicitly combined with ‘net flux’ and/or ‘pressure drop’ conditions and applied equally along both
inflow and outflow boundaries. This allows us to consider two types of problems that we show to be
dual to each other: find certain net fluxes (say through individual pipes in a network of pipes) from
prescribed pressure drops; alternatively, find the pressure drops that produce these net fluxes.

There are currently many possible choices of outflow boundary conditions under consideration by
the computational community, without any completely clear criteria for preferring one over another.
Gresho’s contention that these ‘do nothing’ boundary conditions are probably the best possible general-
purpose boundary conditions for use along outflow boundaries seems to be supported from the
mathematical point of view by their simplicity and elegance within the variational framework.

Interestingly enough, these boundary conditions have not received much attention from the
mathematical community. However, as it now seems clear that they have great practical importance, it
is apparent that they deserve serious mathematical investigation as part of the general Navier—Stokes
theory. To that end we close this paper by offering what we can in the way of theorems of existence,
uniqueness, continyous dependence and stability and draw attention to several points of difficulty that
limit our theorems in comparison with what is known in the case of Dirichlet boundary conditions.

Our intetest in these matters was stimulated by our experience in testing a two-dimensional finite
element code of Turek® which is based on the use of discretely divergence-free finite elements. Because
it uses divergence-free elements, it is natural to formulate problems for this code in the same way as
they are usually formulated by mathematicians, namely as pressure-free variational problems for the
. velocity using a test space of divergence-free functions. Our analysis begins with formulations of this

type. However, we also derive equivalent formulations in terms of both the velocity and pressure as
primary variables and also for two-dimensional situations in terms of the streamfunction. The ‘do
nothing’ approach leads to the same result in each case. Of course, the mathematical questions studied
in this paper are relevant to all methods of simulating viscous incompressible flow subject to these
boundary conditions, whatever the means of enforcing them.

The contents of this paper are as follows. As already mentioned, in Section 2 we review the theory of
praperly posing problems that involve flux and pressure conditions in unbounded domains. In Section

- 3 we give analogous variational formulations for the case of bounded domains and report on our
- computational experience with them. In section 4 we draw out the relationship between .these
variational formulations and the corresponding classical formulations in terms of the velocity and
pressure. In Section 5 we give equivalent variational formulations in terms of the streamfunction. That,
of course, is restricted to the two-dimensional case. In Section 6 we present the beginnings of 2

matpematica] theory for these problems in both the two- and three-dimensional cases and for both the
stationary and non-stationary equations. : S o :

" 2. NAVIER-STOKES PROBLEMS IN UNBOUNDED DOMAINS

As mentioned above, many problems in fiuid dynamics are conceptualized and studied mathematically
in unbounded domains. For example, in studying flow past an obstacle, one would usually like t0
determine the asymptotic structure of the wake and the force on the obstacle free of the influence of
distant boundaries. Another example, the one that we are particularly interested in here, concemns fluid
Jets. To fix ideas, consider a plane wall which has a hole in it and let the flow region be its complement.
We call this an aperature domain; see Figure 1, It is a natural problem in an aperture domain to study 2
jet of fluid that is driven through the aperture by a drop in the pressure from one side of the wall to the
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Figure 1. Notation for flow through an aperture in an infinite wall

other. To make the drop in pressure quantitatively precise, one may prove first that the pressure must
tend to a limit at infinity in each half-space and then consider the difference in these limits.

Thus the problem of finding a jet through an aperature may be formulated in classical terms by
supplementing the usual initial-boundary value problem for the Navier-Stokes equations (with
Dirichlet boundary conditions),

u,+u-Vu—vAu+Vp=0, V-u=0, (la)
ul,—o=Uy HUlp=0 ulx,0)—>0 as|x—> oo, (1b)
with an auxiliary condition on the pressure,
© lim p(x,f)— lim p(x, £) = P(f), 2
x> 00 |x}— 00
x; <0 x>0

where P(1) is prescribed. . N
As it happens, there is another equally good way of determining such jets. Ingead of prescribing the
drop in pressure, one may prescribe the net flux through the aperture. That is, one can replace the

auxiliary pressure condition (2) by the auxiliary flux condition

J u-nds = F(1), , 3
s

where F(f) is prescribed. ' . o
Let us turn now to the variatonal formulations of these problems. Consider first the initial boundary

value problem (1) without the auxiliary conditions (2) or (3). In the older 'mathematif:a} htexanne xt is
often posed for arbitrary domains Q, bounded or unbounded, as follows: Find u(?) satisfying the initial

condition u|,_, = u, such that for all ¢ > 0 ,
u(f) e JX) ={e e Wi(D):¢ln=0 V:e=0), (43

¥(Vat, Vo) + (s, + u Vi, ¢)=0, VeeJ¥Q). (4b)

' Here (-, -) denotes the inner product in L*(R2) and W5() denotes the ZSObOIW space f:onsis;i;? of
functions that belong to L*(Q) and have first-order spatial derivatives in (). We are using bold face

to indicate R"-valued functions and function spaces. L .
Elsewhere in the older literature the same problem (1) is formulated slightly differently as follows:

find u(f) satisfying the initial condition u],~ o= 4, such that for allt>0 :
u() € J(Q) = completion of D(Q) in W), (58)

oV, Vep) + (,+ 1Vt @) =0, Vo € (@, (b)
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Here D(Q) = (¢ € C(Q): V- = 0}, where C°(Q) is the set of all smooth functions with
compact supports in Q (i.e. smooth functions vanishing near the boundary and near mﬁmty) The
completion of D(Q) in W}(Q) consists of those elements of WQ) which can be approximated
arbitrarily closely by elements of D(£2) in the norm

12
lullweqy = (I (|u|2+|Vu|2)dx) .

Tt was originally thought that the spaces J1(€2) and J () are the same and that consequently these
two formulations of problem (1) are the same. In fact, for certain classes of domains, the three-
dimensional aperture domain being a prototypical example, these function spaces are different and
neither of the formulations (4) or (5) correctly represents problem (1). Instead, hidden within tl?c
formulation (4) is an auxiliary condition on the pressure, namely that the pressure drop must be zero
the sense of condition (2), and hidden within the formulation (5) is another different auxiliary
condition, namely that the net flux through the aperture must be zero in the sense of condition (3).

Indeed, if we take an element ¢ of D() and apply the divergence theorem to it in the left half-space,
we see that

J <p~ndS=J V-pdr=0.
N x; <0

Tt follows that elements of J, (), being limits of functions in D(Q), must also have zero net flux
through the aperture and thus this condition is also contained in the formulation (5).
The analysis of the formulation (4) is more involved. Let us consider only the case of a three-
 dimensional aperture domain. Then one may construct an explicit function b in J1(€) that carries a
non-trivial net flux through the aperture and normalize it by requiring that

] b:ndS=1.
S

This of course establishes that the two spaces J,(Q) and J(Q) are different. Further, it can be
proven that the only real difference between these two function spaces is the single flux carrier 5. More
precisely, J;(Q) is contained in J}(L), while on the other hand every element ¢ of J7(Q) can be
written as ¢ = Fb + s, where \s is some element of J;(Q) and F = [ @ ndS.

The original intention for setting the condition (4b) in posing the Dirichlet problem was to insure
that there is a scalar function p such that —Vp = u, + u+ Vi — vAu. However, for that it is enough to
test with test functions ¢ belonging to J () or even to its dense subset D(Q). When we test with all ¢
in JT(Q), that inchudes a test with the flux carrier b. This extra test is in fact a test of the pressure drop.
It can be shown that (4b) holds with ¢ = b if and only if the pressure drop is zero. Thus the variational
formulation (4) of problem (1) actually contains the ‘hidden’ condition that the pressure drop from one
side of the wall to the other must be zero.

It remains now to generalize the variational formulations (4) and (5) so as to intentionally
incorporate prescribed values of the pressure drop P(f) in (2) or of the net flux F(f) in (3). We will refer
to the literature for the rigorous analysis and simply state here the final results.

The correct variational formulation of the prescribed pressure drop problem (1), (2) is: Find ()
satisfying the initial condition 5\;—0==uy such that for all t>0

W) e @), | (63)

v(Vu,v(p)+(u,+u-Vu,<p)=;P(:)j oondS, Veel'@. (6
s :
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The correct variational formulation of the prescribed net flux problem (1), (3) is: Find ul) =
F()b+ (1) satisfying the initial condition ;= o=u, such that for all >0

e @, (72)

v(Va, Vo) + (u, +u-Vu, @) =0, Ve € J,(Q. (Tb)

Perhaps it should be pointed out that, having constructed b, the real unknown in (7b) is v and that
equation (7b) can be equivalently written as

v(Vy, Vo) + (v, 4+ v-Vw+b-Vv4v-Vb, @) = =v(Vb, V) = (b, + b+ Vb, ¢).

The results that we have described in this section are from the work of Heywood ** which initiated a
general study of the relationship between the geometry of unbounded domains and the auxiliary
conditions that are needed to formulate well-posed problems for the Navier-Stokes equations. Further
results and references can be found in the works of Solonnikov,® Maslennikova and Bogovskii’ and
Galdi.®’ These investigations all depend in an essential way on an analysis of the function spaces that
enter into the variational formulations of these problems. One notable result, already given in
Reference 4, is that J(Q) = J,(Q) in the case of an exterior domain. Consequently, pressure drops
cannot be prescribed in an exterior domain and solutions of the initial value (Dirichlet) problem (1) are
uniquely determined without them. In particular, flow past an obstale in an exterior domain must be
driven by the prescription of a non-zero limit for the velocity at infinity. Thus there are fundamentally
different mechanisms that drive non-trivial flows in different types of unbounded domains. This paper
concerns the truncation to bounded domains of flows which, in the idealization of an unbounded
domain, are driven by pressure drops.

What we are going to do now is change the point of view to that of the computational practitioner
and use the theory from this section as guidance in formulating problems.

3. FLUX AND PRESSURE CONDITIONS IN BOUNDED DOMAINS

To fix ideas in a familiar setting with which we can make later comparisons, let us begin by
considering a common test problem, that of calculating non-steady flow past an obstable (here taken as
an inclined ellipse) situated in a rectangle; see Figure 2. _

The velocity u(t) is required to be zero on the upper and lower boundaries and on the surface of the
ellipse, while a parabolic “Poiseuille’ inflow profile is prescribed on the upstream boux%dary. We denote
by I the union of those portions of the boundary on which Dirichlet conthl9ns are'unposed.R?ther
than giving serious thought to the downstream boundary condition on §, in seeking a variational
formulation, one can simply decide to ‘do nothing’, i.e. leave the solution and the test space free on
that portion of the boundary. ‘

To give a variational formulation of this problem using solenoidal spaces (mez.mmg spaces
consisting of solenoidal functions), the first step is to construct a solenoidal cxtc'nsxon b of the
prescribed Dirichlet boundary values into the whole of the domain Q. Note t%xat since b is to be
solenoidal, it must carry the incoming flux at the left boundary through the domain and out across the

. S
oF g g

. ‘ r o _
Figure 2. Notation for a flow region having an artificial boundary at the outlet §

_,
T
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downstream boundary. The construction of such a function b might appear to be a difficult task. For aid
in the construction of a flux carrier in the continuous case, the reader may consult Theorem 3.1 and
Exercise 3.4 in Chap. III of Reference 8. Fortunately, in computations involving divergence-free finite
elements, the construction of b can be achieved by simply prescribing the appropriate nodal values
along the boundary I'. This procedure automatically generates a discretely divergence-free extension b
of the boundary values having support in a one-element-wide strip along the boundary. While in
practice one need not be conscious of this, we need to realize that it is being done in order to analyse
the method and the vartational formulations behind it.

Having constructed a solenoidal extension b of the boundary values, a variational formulation of the

problem indicated by Figure 2, using solenoidal vector fields, is obtained by requiring u(f)=b + (),
where for all ¢

") € J{() = o € WHO): ¢l =0,7- ¢ =0}, (32)

v(Va, Vo) + (u,+u-Vu,@) =0, VYge JT(Q). (8b)

Here, as in Section 2, we use bold face to indicate R"-valued functions and function spaces, (. , .)
denotes the inner product in L) and W;(Q) denotes the Sobolev space consisting of functions that
belong to LX(Q) and have first-order spatial derivatives in L*(Q). Tn order to discuss both steady and
non-steady problems simultaneously, we have omitted the initial condition in writing (8). Thus (8)
represents the Navier-Stokes equations along with boundary conditions. The initial-boundary value
problem is formulated by adding the initial condition x|, = uo. The stationary problem is formulated
by adding the condition that #,=0. What we are mainly interested in is how the- equations are
- combined with boundary conditions and other ‘hidden’ auxiliary conditions in variational

formulations.

Corresponding to (8), which is a pressure-free formulation using solenoidal spaces, there is also an
equivalent standard formulation which is expressed without reference to solenoidal spaces. For this
formulation the extension b need not be solenoidal (again it can be constructed by simply assigning
nodal values along the boundary). The requirement is then that u(f) =b + w(f), where for all ¢

WD) € V) = (0 € WHQ): olr =0}, p(t) € INQ), 2)
W93, 9) + (4, + -V, @) — (p, V- ) = 0, . Yop € ¥} (), (9b)
(LV-u)=0, YyeI¥Q). | ©¢)

The results of our computations based on (8), like those reported by others on the basis of (9), show
a truly remarkable “transparency’ of the downstream boundary when it is handled in this way (Figure
3?. Testing by doubling the length of the computational domain is seen to make almost no discernible
difference in the flow in the shorter common region. Figures 3(a)-3(c) are different representations of
exactly the same computations. ' ‘

As Qxese results appear highly satisfactory, there seems little reason to ask about the boundary
conditions that must be implicit in these variational formulations. However, now, to motivate such
questigx{s, et us consider low-Reynods-number flow through a junction in a system of pipes, again
prescribing a Poiseuille inflow upstream, Figure 4 shows steady streamlines for computations based on
~ the same variational formulations as above, each with the same inflow but with varying lengths of pipe
. beyond the junction. :

-There seems to be something of a puzzle here in that the flow thmugh‘the junction is seen to be
highly dependent on the positions of the artificial boundaries even if they are far from the junction. One
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Figurt‘: Ja. Streamlines at Re = 500 after 100 time steps, starting from Stokes flow, with constant Poiseuille inflow, computed in
domains of different lengths on the basis of the variational formulation {8). The flow is nearly identical in the shorter common
region, indicating a satisfactory treatment of the downstream artificial boundary

(b)
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Figure 3(b). The same computations represented by particle tracing, showing von Kanmén strects as usually visualised in physical
' ' experiments by smoke or the like

Figure 3(c). Relative streamlines for the same computations, showing the difference ¥ — & bctwc_:ennthc non-linear solution & and
the solution & of the stationary Stokes problem on the same domain
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Figure 4, Streamlines of flow at Re =50 with constant Poiseuille inflow, computed using the same variational formulaﬁop 8)as
in Figure 3. The net flux through each outlet is highly dependent upon the relative lengths of the downstream sections

might wonder whether the variational formulation (8) or (9) has some ‘hidden’ condition within it
analogous to the ‘hidden’ pressure condition (2) in the variational formulation (4) of problem (1). That
is the point of this discussion, It does have a precisely analogous ‘hidden’ pressure condition. This can
be seen be examining the ‘natural’ boundary conditions that are associated with the variational
formulations (8) and (9), as we shall show in the next section. In particular, it will be seen that they
imply that the mean pressure on each free section S; (see Figure 5) is zero:

lTSl’i_I,Lip ds=0 fori=2,3.

Thus in Figure 4 the pressure gradient is greater in the shorter of the two outflow sections, which

explains why there is a greater flow through that section. This example suggests that we might consider

formulating problems more generally in terms of prescribed pressure drops and that we need not

~ distinguish between sections of inflow and outflow or even know which are which. For a flow region
with multiple inlet/outlets as indicated in Figure 5, it seems natural to seek solutions for which the

mean pressure over each outlet section is prescribed. Therefore let us consider the following.
Prescribed pressure drop problem. For any prescribed Pf) find u(f) and p(f) such that

#u,+uVu—vAu+Vp =0, Veu=0, (10a)
1
ulp =0, —~J pds =P0). (100)
1S3} Js,

It is this type of problem that needs to be considered in order to determine the net flux through each
of various inlets or outlets given the pressure drops between them. One can even ask whether there will
be a positive net inflow or outflow through some particular duct for given prescribed values of the
mean pressures. Notice that at this point we do not want to commit ourselves to any particular
boundary conditions along the outlets S;. Our only stated objective is to achieve prescribed differences
between the mean pressures across the various outlets. It is implicit that we want to achieve this by
whatever boundary conditions work best in some vague sense. We hope to find these by posing the

D

Figure 5. Notation for flow regions having artificial boundaries at multiple inlet/outlets S;
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problem variationally in the most natural possible way. What would that formulation be? For guidance
we look to the analogous problem (1), (2) for unbounded domains. Its variational formulation (6) can
be copied word for word,

Variational pressure drop problem (with solenoidal spaces). Find u(f) such that for all ¢

u() e T = (¢ € W3 Q): @l =0,V 0 =0}, (11a)

v(Va, Vo) + (u, +u-Vu,¢) = - ZP,(t) L ¢ nds, Vo € JT(Q). (11b)

It is easy to see that a variational formulation such as this is mathematically well posed. It is
somewhat more difficult to translate it precisely in terms of boundary conditions and the like. When
one does, as in the next section, it will be seen that the conditions (11) imply something more along the
free boundary S than was asked for in (10b). Therefore problem (10) by itself does not quite form a
well-posed problem. We note too that a more general class of functionals can be introduced on the right
side of (11b). Such more general problems are briefly considered at the end of Section 4. However, the
simple case considered here seems to have a very wide range of useful applications. It is interesting
that this problem, in which conditions for the pressure are prescribed, is so easily set in a pressure-free
variational formulation. The analogue of problem (11) in terms of both primary variables is posed as
follows.

Variational pressure drop problem (without solenoidal spaces). Find u(f) such that for all 1

w) e Vi@Q={oeW@:olr=0,  pl)elX®), (12a)

v(Vu, Vo) + (u, +u+Vu,0) — (p, V- @) = —Z Pj(t)L ¢ ndS, YeeViQ), (12b)
J i

(,V-u)=0, Vyel¥Q. (12¢)

The prescription of pressure drops is not the only natural way of posing problems for flow mrough a
system of ducts like that of Figure 5. Indeed onc may wish to find the pressure (.irops that are rt_:qum:d
to achieve a desired net flux through each of various ducts. Thus we also consider the following.

Prescribed net flux problem. For any prescribed F{(f) satisfying Y, F(f) = 0 find u(?) and p(f) such
that

u +u-Vu—vAu+Vp=0, V-u=90, (13a)
ulr =0, J u+ndS=Ff). (13b)
St

We remark that as in posing problem (10) above we do not want to commit ourselves at this point to

the details of the boundary conditions on S;. ) . .
To incorporate these flux conditions into a variationa! formulation of the Navier-Stokes equations,

we look again to the analogous problem (1), (3) for unbounded d'omains.. Its variaﬁor}al fonm'xtla:;nﬁ(g
can be copied exactly. One first constructs solenoidal flux carriers by, i > 2, carryin fg t; umm D
from an arbitrarily chosen reference inlet/outlet S to each of the others. Thus, if there

inlet/outlets (see Figure 5), let by, i=2, 3, satisfy

' ndS=6, j=2.3. (14)
b, € J1(Q), Js bi-nigé—l, iji ndS 6y J
. [ R, -
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Then an appropriate formulation is the following.

Variational net flux problem (with solenoidal spaces). Find u(t) = Fy(f)b, + F3(f)b3 + w(f) such that
for all ¢

W) eJ,(Q) = [cp eWQ:@lr =0,V =0, L ¢-ndS=0, Vil, (153)

vV, Vo) + (g, +u-Vu,0) =0, Vo e J (). (15b)

If one is not using solenoidal spaces, the functions b; are not required to be solenoidal and the
appropriate formulation is as follows.

Variational net flux problem (without solenoidal spaces). Find u(f) = F(f)b, + F3(f)b; + »(¢) and
p(?) such that for all ¢

Y

) eV, (Q) = ‘(p e WiQ): ¢|r =0, j ¢*'nds=0, Vi]. pl) € L), (16a)

vVu, Vo) + (8, +u-Vu,0) — (p,V-€) =0, YoeV,(Q), (16b)

LV u)=0, Vyel?Q) (16¢)

These formulations too are examined further in later sections. Again it will be seen that these well-
posed variational problems contain further boundary conditions along the free boundary S than asked
for in (13b). Thus problem (13) by itself is not quite well posed. Figure 6 presents the results of several
 typical computations for problems with prescribed net fluxes or pressure drops based on the

formulations (11) and (15).

The problem of a jet through an aperture in a wall can be regarded as a prototypical problem for
computational procedures based on the variational formulations (11) and (15). The computational
results shown in Figure 7 are the first of this type that we know of.

Figure 6{a). Typica! steady computations based on the pressure drop formulation (11), Let P; denote the prescribed mean pressure

over the inlet/outlet S; numbered as in Figure 3. For the computation on the left, P =0, P,=1.5 and P; =2. This produces

inflow across 5 and S;. For the compuation on the right, P, =0, P, =0-5 and P;=2, which produces outflow through both St
and 5;. The Reynolds number is approximately 50

Figure 6(b). Streamlines of fiow past an inclined ellipse at Re= 500 based on the variational flux formulation (15) with both
upstream and doqutream boundaries free. Except for the free upstream boundary, all parameters are the same as in Figure 3.
- Approximately 60% of the flux passes under the ellipse compared with approximately 50% in Figure 3
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They are combined in an obvious way (introducing a flux carrier from
le. The results of three computations are shown, with enlargements of
bed across a free boundary S; on the left, while the mean pressure
tlet is prescribed to be equal to the mean pressure P3 on a free
umber, Re= 10, there is outflow at §;. In second case, at
the third case, at Re= 1000, there is inflow at §; and a
ducts. See Figure 6(d) for an enlargement

Figure 6(c). Formulations (1) and (15) are combined here.
Sy exiting either S, or S3) in this test of the Bernoulli princip
the upper duct. In each case an incoming net flux F is prescri
P; on a free boundary S; at the top of the small upper inlet/ou
boundary S, at the right. In the first case, at very low Reynolds o
Re=50, there is inflow at S; as predicted by Bemoullis principle. In

complex time-dependent vortex structure in both the upper and downstream

* Figure 6(d). Enlargement of part of Figare 6(0)
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Before we began our numerical experiments with free inflow boundary conditions, we were
concerned that such problems might be quite unstable already on the continuous, theoretical level and
that this instability might limit their computational usefulness to very low Reynolds numbers. For
instance, it seemed possible that the upstream Dirichlet condition in Figure 3 might be an important
stabilizing factor, for lack of which the computations shown in Figures 6(a) and 6(b) would somehow
collapse. This concern was heightened by a look at the existence theory for such problems. In Section
6 we present the basic estimates that we know of upon which an existence theory can be given for
steady and non-steady solutions of prescribed net flux and pressure drop problems. It will be seen that
some of these estimates require assumptions about the smallness of the data that one does mot
encounter in dealing with Dirichlet boundary conditions, giving the impression (we have not explicitly
evaluated the constants) that these theorems may be valid only for very small data. Thus, anticipating
difficulties that have not actually arisen in our computations, we looked at alternative variational

: Fig}m", T(a). Stream].ines of a steady jet through an aperture in a wall (2 line segment) for Re=1, 10 and 100, based on the
variational formulation (15) for flow with a prescribed net flux. The fluid adheres to the linear wall, while the left and right
‘ semicircles are free artificial boundaries

X

jetdtg:msh an apdrcr(t’upre in a wall (a line segment, based on the variational formulation

t pressure drop P(¢). The initial velocity is uy=0 and P(f) is the step function

g(t)=l for0 <1< 40, P()=0for41 <r< 80, P()=1for 81 < 1< 120 and P(f)=0 for?; 121 (with ¢ in time steps). The

gures are for £=20, 60 100, 140, 200 and 500. This produces two short bursts (*puff-pufF’) through the hole, which are
S . visualized by particle tracing in Figure 7(c)

Figure 7(b). Streamlines of a non-steady
(11} for flow with a prescribed ti
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(c)

i i in Fi isuali i i i ed at the aperture during the
Figure 7(c). The same computations as in Figure 7(b), visualized by tracing particles that are introduced : .
‘puffs’. 'f‘he result is m:‘msmoke rings’ that leapfrog each other and eventually exit and the free artificial boundary on the right

formulations of flux and pfessure problems using symmetrized ‘conservative’ form§ of the nop?lm.ear
term. Using these forms, the non-linear term vanishes identically in th§ energy estimates, facilitating
existence theorems for less restrictive data. Of course, changing the variational form also changes the
problem that is being solved and may render it unsatisfactory in other respects. That seems to be the
case. . o
One is led to the first of the conservative forms we are referring to by using the identity
VG uf?) = u- (V)" to write the Navier-Stokes equations as :

by + -Vt — e (V)T = v = ~V(p +4[af?) = ~V. an

This e, to a variational formulation in which the term (u- Yu, @) is replaced. .by
(u*Vu, ;l)is - (Z) *Va, 4). On the right side the additional term is absorbed into the Pfess“:;ti‘]"")‘;‘g
what is referred to as ‘total pressure’ or ‘Bernoulli pressure’. The 'total pressure is conlsds bc%
streamlines in Euler flow and therefore is an important qllm.lm)’ In some h’gh‘Rzno en:;lun:luct
situations. For example, it is the ‘Bernoulli principle’ that explains the inflow thr(;]uih;e :h‘:a existence
of Figure 6(c). The reason that the additional term on the left side of (17) fac :h son-lincar o
theory is that when (17) is multiplied through by u to obtain an energy esﬂmﬁ-‘;ﬂ °;e consider the
disappears as if one were considering homogeneous Dirichlet data. Thus motiv

following alternatives to the problems (11) and (15).
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Figure 8, Streamlines and vector plots of pipe flow at Re = 50 with an artificial outflow boundary. The upper figures are based on
the standard formulation (8) and the lower figures on the total pressure formulation (19)

Variational total pressure drop problem (with solenoidal spaces). Find u(f) such that for all
tult) e Jl (Q) and

o V) V= O ) == TR0 eonds, Veesi@. 19
j 5

Variational net flux problem involving total pressure (with solenoidal spaces). Find
u(f) = F5(f)b, + F3(f)b; + w{1) such that for all ¢, v(?) € J;(Q) and

WVu, Vo) + (u +u - Vu — u (Vu', @) =0, YeeJ,(Q). (19)

It will be seen in the next section that the pressure condition corresponding to the problem (18) is no
longer (10b) but rather

|;|J (p+1u®)dS = P). (20)

Another conservative form which is often taken for convenience in analysing numerical methods is
obtained by replacing (#+Va, ¢) by 1 (- Vu, ¢) — (- Vo, u) in (11b) and (15b) (see Reference 10,
p. 284). This gives a legxtxmate weak form of the Navier-Stokes equations, because
(u-Vu, @)= 2(u Vu, @) — 2(u Ve, u) if ¢ is a solenoidal test function which vanishes on the

boundary. When the variational equation (11b) is changed in this way, the new pressure condition
corresponding to (10b) is

1
5 j (p+iiw-nis =20, @)

Figure 8 presents the result of a typical computation based on the formulation (19).

Clearly the boundary conditions that are implicit in the total pressure variational formulation (19) are
not very satisfactory for the problems that we have been considering, although they might perhaps be
satisfactory for some other types of problems. To reason further about this, it is necessary to identify
the boundary conditions which are implicit in the various formulations that we have been considering.

4. ASSOCIATED BOUNDARY CONDITIONS

1t will be shown here that for smooth solutions the variational formulations given above, with and
without use of solenoidal spaces, are equivalent and that the prescribed pressure drop problem also
admits a formulation in terms of classically prescribed boundary conditions. Solutions of the
prescribed flux problem satisfy the same boundary conditions, but with an unknown pressure drop.
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Hence the prescribed flux problem does not have a fully equivalent formulation in terms of classical
boundary conditions.

- Letus consider first the variational pressure drop problems (11) and (12) and show that they are both
equivalent to the classical problem (28) below. Referring to the solutions of these three problems as
Ji-, V- and C*-solutions respectively, it is only necessary to verify that ¥*-solutions € J*-solutions
C C*-solutions C V'}-solutions. It is obvious that ¥'}-solutions ¢ J¥-solutions.

To show that J7-solutions are C*-solutions, integrate (11b) by parts to get

(ll,+u-Vu-vAu,cp)+vJ 6,,u~<pdS=—ZP1J ¢'ndS, VYeoeldiQ). (22)
xQ i S

Then, using test functions that vanish on the boundary, one may conclude that #, + u * Va — vAu is
the gradient of a smooth function p which can be defined by curve integrals
PO)=[ (,+u-Vu—yAu)-ds independent of the path. Indeed, the integral
§C(u, +u+Vu — vAu) + ds around any closed curve C in Q can be approximated by volume integrals
(w, + u* Vu — vAu, @), where ¢ is a smooth solenoidal function with support confined to a small tube
about the curve C, having its streamlines closely aligned with the curve C and carrying a unit net flux
in the direction of C. Since these volume integrals vanish by (22), so must the curve integrals and
hence u, + 1 - Vu — vAu = —Vp for some scalar function p. Thus one may set

(#, 4 u-Vu—vAu, @) = (-Vp,¢) = —Jmpn-cpdS (23)
in (22) to get

ZJ [vo,u+ (P, —p)n] @ dS =0, Ve eJi(Q). (249
i 5
Writing u and ¢ near the boundary in terms of normal and tangential components, i.¢. ¥ = w7 -+ u,n,
(24) implies

3 [ bt + Bi-plle, a5 =0, Ve e JT@ 9)
5

i

ZJ a0, dS =0, Ve e Q). (26)
.

i

Our first conclusion from (25), which is obtained by testing with ¢ € J,(€2), is that for each §; there
exists a constant c; such that '

vau, + (P;—p)=¢; onS;

i i A ect them by a curve C which is normal to S;
Indeed, if x, and x; are any two points on S;, one can con y O el e about C.

at each of them. Then one can consider flux carriers ¢ with support co . '
with a unit net flux into Q near x, and out of 2 near x,. Hence, ngmnﬂg; by lettvnilnggﬂz; 7r;adxus of the tube
shrink, (25) implies that v8,u, + (P; — p) is the same at x, and x,, thus proving t&7).

So far Wt): hmfe only beenzxs;ng test functions ¢ € J;(Q. Such functions must satisfy j?u ‘1‘; t:s :LSS' -;C(:
on each §; and therefore cannot carry flux from one outlet to another. However, the' o ; e
J1(Q) for (25) also contains flux carriers from one outlet to another, such as the ﬁmt;:st:ofx‘llsn céons din
formulating the variational prescribed flux problem (15). Using such flux camerswas functions ne
arguing as before, we conclude that the constants c; are all equal to each other. We are

@7
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the value of this common constant, because the pressure has so far only been determined up to a
constant, We set ¢;=0 in (27).

Finally, (26) implies that d,u, vanishes identically at every point of any of the §;. Indeed, if x € §;, we
can construct a closed curve C in  which just grazes the surface S; at x in any tangential direction.
Then, arguing as before, with flux-carrying test functions ¢ that approximate C, (26) implies that
du, =0 atx.

What we have shown is that any smooth solution of the variational problem (11) is also a solution of
the following.

Classical pressure drop problem. For any prescribed constants P; find u(f) and p(f) such that for all ¢
u,+uVu—vAu+Vp =, Veu=4, (28a)

ulr =0, (2 — vdu)ls, = P, Buityls, = 0. (28b)

It will be shown below, following the statement of Theorem 1, that if S; is a plane section
perpendicular to a cylindrical section of pipe as in Figures 2-6, then the boundary condition (28b)
implies that P; is in fact the mean pressure across S; as originally desired in posing problem (10).

At this point we have shown that J}-solutions C C*-solutions and it only remains to show that C*-
solutions C V7{-solutions. To this end, suppose that u, p satisfies (28). Then it is easily seen that (28b)

implies
vou+ (P, —p)n=0 oneach S,
Hence, multiplying (28a) by ¢ € V{(Q) and integrating by parts, one obtains

v(Vu,V(p)+(u,+u-Vu,&p)-—(p,V-<p)=j VOl @ dS—J pe-ndS
x 9

'_—..—Z P‘J (P'flds.
i Si

which is just (12b). The conditions (12a) and (12c) are obviously satisfied. Thus we have proven the
following,

(6

Theorem 1

For smooth solutions, the three formulations (11), (12) and (28) of the prescribed pressure drop
problem are all equivalent to each other.

It was our intention in formulating problems (11) and (12) to obtain solutions that satisfy the

pressure condition (10b). To check whether this condition is satisfied, we integrate the second of
conditions (28b) to obtain for each i

v

1
mLpdS=P,-+I&I-JS‘ 3ty dS. (29)

The second term on the right can be evaluated using the relation V +u = 0. If 8; is a plane section
perpendicular to a cylindrical pipe as in Figure 2-6, then this term vanishes identically and (29)
reduces to (10b) as desired. However, if §; is a semicircle as in Figure 7, then the second term on the
right side of (29) equals — vF/nr’, where r is the radius of the semicircle and # is the (unknown) net
flux out of  across §;. The corresponding value for a three-dimensional hemisphere is — vF/ .
Thus, in calculating flow through a hole in a wall on the basis of the prescribed pressure drop problem,
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there is a small discrepancy between the pressure drop which was intended and that which is realized,
but it decreases rapidly as r is increased.

We make several final remarks concerning the striking success of the boundary conditions (28b) on
the artificial boundaries S;. First, if a straight section of pipe is bounded at its ends by perpendicular
sections S;, then the unique steady solution of (28) is Poiseuille flow. We imagine and intend (perhaps
the reader has questioned this) that the domains in Figures 2-6 are truncations of large domains that
continue as straight sections of pipe for some distance beyond each of the §;. Having this intention, any
boundary condition which is not satisfied by Poiseuille flow would probably be found unsatisfactory.
Second, realizing that no artificial boundary condition can do a perfect job in non-trivial situations, we
find it very satisfying that (28b) appears to work so well in calculating flows like those of Figures 6
and 7.

Next we consider the prescribed net flux problem and show that its variational formulations (15) and
(16) are equivalent. Referring to the solutions of (15) and (16) as Jj-solutions and V)-solutions
respectively, we first show that ¥j-solutions C Jj-solutions.

Suppose that a vector field u(f) can be written as u(f) =F,(f)b, + F3()bs + v(t), with v(r) and the b;
satisfying the conditions of problem (16). Then V()€ V() and meither v(f) nor_the b; need be
solenoidal as required in problem (15). However, choosing solenoidal flux carriers b; satisfying, the
conditions (14) required in problem (15), we can write u() = Fy()by + F3by+v(t), where
¥(6) = v(t) + Fy(t)(b, — B,) + F3(£)(bs — bs), and easily check that ¥(7) € J(Q). Thus a Vy-solution
u(f) can be written in the form required of a Ji-solution. Finally, it is obvious that the variational
equation (15b) follows from (16b). Thus we find that ¥;-solutions are also Ji-solutions. '

Now suppose that u(f) is a J;-solution. Then we can write u(t) = F(t)bz + F3(Obs+v(0), v'w'th v(?1)
and the b, satisfying the conditions of problem (15), which are only stronger than the conditions of
problem (16). It is also obvious that (16c) is satisfied, Finally, arguing as we did in going from (22). to
(23), we conclude that there exists a scalar function p such that u, + - Vu — vAu = =Vp. Multxpl).rmg
this by ¢ € V() and integrating by parts, we obtain the variational equation (16b). Thus Ji-solutions
are also ¥;-solutions. | Ce .

To identify the boundary conditions that are implicit in these problems, it is casiest to consider the
V,-formulation (16). Integrating (16b) by parts, we obtain

(u, +u+Vu—vAu+Vp, ¢) +J (vou—pn)-@dS=0 Vee V(). (30)
i ¢}

Testing with functions ¢ that vanish on the boundary, one sees that s, +u-u* Al'l —vAu+Vp=0
and hence that the first integral in (30) vanishes for all ¢ € ¥, (). Then testing with ¢ that are non-

zero on &), we easily conclude that
ull" =0, (P - Vanun)lsl- =Gy 3u”~:|s,. =0 (31)

entbfor this can be made more simply than that for (28b), t.)ccause the
however, that since they are constrained by tpe
Oyl is constant on each §; and not necessarily

for some constants ¢;. The argum
test functions in ¥,(Q) need not be solenoidal. Notice,
condition [, ¢+ n dS = 0, we can only show that p —
zero, Integrating the second of conditions (31), we get

LJ ,,ds=ci+ij j ,u,dS. (32)
1S Js, 181 Js, Js,

s are the same for the prescribed flux problem as for the

is evi dition: i
It is evident that the boundary con ures ¢; which appear in them are

prescribed pressure drop problem, except that the mean press
unknowns, We have proven the following. o
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Theorem 2

For smooth solutions, the two formulations (15) and (16) of the prescribed net flux problem are
equivalent to each other. Their solutions satisfy the same boundary conditions (31) as solutions of the

prescribed pressure drop problem, but with mean pressures c{1) that are not known in advance of
solving the problem.

Using the same methods as above, we obtain the following.

Theorem 3

Smooth solutions of the variational total pressure drop problem (18) and of the variational flux
problem involving total pressure, (19), both satisfy the boundary conditions

ull" =0, (p + % Iulz - Van“n)ls, = Pi(t)) anu'r =0 on Sl' (33)

However, for the flux problem the pressures P(7) are not known in advance of solving the problem.
Similarly, if one replaces the non-linear term (u-Vu, p) in the variational pressure and flux

problems (11) and (15) by the symmetrized form }(u* Vu, ¢) — (u* Ve, u), then the associated
boundary conditions are

ll'r =0, (P +%Iun‘2 - Vanun)'s, = Pi(t)v Vanu'r = %unu'r on Si‘ (34)

It is evident upon examining the boundary conditions (33) and (34) that they are not satisfied by
Poiseuille flow. Thus their poor performance in the computation shown in Figure 8 was to be expected.

Let us briefly consider the variational formulations of problems with artificial boundaries when there
are non-zero forces. As a first example, consider flow in a rectangle under the influence of a
gravitational force f with the Dirichlet boundary condition u =0 on the entire boundary 3Q. Of course,
the unique steady solution is =0 in Q. Now let us divide the rectangle into left and right halves by an
artificial boundary and formulate the Navier-Stokes problem with a gravitational force for the left half
alone by adding the term ( f, @) to the right side of (8b) or (11b). The result of a typical computation is
shown in Figure 9 and certainly u = 0

The reason that we have lost the correct solution u#=0 is that the pressure associated with it,
p(x)=j;‘o [ +ds = P(x), is not constant on S and therefore u and p together do not satisfy (28b). This is
easily rectified. In deriving the boundary conditions (28b), we could have considered a general scalar
function P{x, f) by including it under the integral sign in (11b). The derivation of (28b) remains
exactly the same. Thus, to get the correct solution u = 0, p(x) = P,(x), it is evident that the term
— [;a Pr¢ S should be added to the right side of the variational formulations that we have been
considering.

In considering more interesting problems such as heat convection modelled by the Boussinesq -
equations, in which f is essentially the unknown temperature, there is probably no reaily ideal way of
compensating for the variations in pressure along an artificial boundary. However, the simple example
just considered suggests the following simple strategy for a partial compensation and shows that
nothing simpler can be useful in avoiding the effects demonstrated in Figure 9. One may calculate at
every time or periodically a spatially constant mean force f = || Jof dx, from which one gets 2
simple, linear mean pressure P(x, f) = j':o f() - ds which can be used to define a compensating
functional — [, Pe - nt dS for inclusion on the right-hand side of any of the variational formulations
that we have considered. Alternatively, one can substract VP(x, f) from fin the variational equation. We
have not experimented with computations of the Boussinesq equations.

' Let us conclude this section with some general remarks about the relationship between variational
formulations and their associated boundary conditions. One always starts with a basic function space.
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Figure 9. Typical steady state computation restricted to the left half of a rectangle with an artificial boundary and a ‘gravitational’
force f=(0, — 1)”. The Reynolds number is approximately 10

In the solenoidal setting it is J7() or a subspace of it defined by further homogeneous constraints
such as [( @-nds=0,¢-n|g =0 or @-7l5 = 0. Let us take first J}(Q) itself and consider the
problem of finding u € J¥(R) satisfying

v(Du, Do) + (u,+u*Vu—u- (Va) —f,0) = LQ(W +ou)- @ dS (35)

for all ¢ € J}(Q), where Du = §(Vu + Vu”) is the deformation tensor, W(x, 2) is a prescribed force
density on 3Q and ¢ > 0 is a prescribed constant. Then, as in deriving (28b), one obtains

J "'[2Du-(p+%lu|2)11"¢ds=] (W +ou) ¢ dS (36)
Q *)

for all ¢ € J}(Q) and hence the boundary condition (for the effect see Figure 10)
2n+Du—(p+LuPn=W+ou oneachs; (37

Now, if the term —& + (V)" is omitted from (35), then the term } |u(? disappears from (36) and (37).
If the term v(Du, D) is replaced by v(Vu, Vep) in (35), then the term (Vu)' disappears from (?6) and
(37). Similarly, if W or ou is omitted from (35), then it disappears in (36) and (37). Next consider the
effect of constraining the function space by taking a subspace J1(Q) C J, (@) as'tht_: basic function
space. The first effect is that the constraint is imposed on ¥, since # is then squght in :II (Q): Howe\fer,
this is balanced by a second freeing effect due to there being fewer test ﬁmcﬁpns avax_lable in drawing
conclusions from (36). Thus the constraint f; ¢ -» ds = 0 has the effect of introducing an unkm:wg
constant cg into (37), as we saw above in considering the net flux problem. The co_nstramt ¢ ”(I)S"] =
loses the normal component of the boundary condition (37) altogether. The 'constra'mt o 'rl.s, ; 'oses
the tangential constraint of the boundary condition (37). There are many interesting possibilities; see
e.g. Reference 11, Chap. 4.6.

; ifici . i fi is based on the
Figure 10. Vector plots of pipe flow at Re =50 with an artificial outflow boundary. The cqum ?Nt!:tc s;)l;n oy repaced
standard variational formulation (8). The computation on the right is made similarly but with the v
' R " by v(Dw, De), where D is the deformation tensor
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5. STREAMFUNCTION FORMULATIONS

1t is often useful to formulate two-dimensional problems in terms of a streamfunction. The pressure

drop and net flux problems are very conveniently posed in this way. This raises the question of whether

solutions obtained using the natural ‘do nothing’ inflow/outflow boundary conditions in the

~ streamfunction formulation really coincide with those of the corresponding formulations in the primal
variables. The following analysis shows that they do.

In two dimensions the portion of the boundary denoted by I" in Figure 5 is the union of three

disconnected components, I’ =UT";, and the full boundary aQ can be onented in the counterclockwise
direction by a tangent vector 7 as shown in Figure 11,

We denote the values of a scalar-valued function ¢ at the two ends of each outlet S;, oriented as
mentioned, by ¢, and ¢, Also, curlg =(8,¢, — 8;¢)". Below, the solutions of the prescribed
pressure drop and prescribed net flux problems are sought in the form # = curh}. Since y is constant
along streamlines in such a representation, it is referred to as a streamfunction,

If C is any smooth curve in Q going from a first point x; to a second point x, and if 7 is the unit
tangent vector to C oriented in the forward-looking direction and » is the right-side normal
n=(13, — 1), then the net flux of curl¢ crossing C from left to right between x; and x, is

J curl-n ds = J (03¢ — ny3,)dS = J 8,0 dS = ¢(x;) — d(x;). (38)
C c (o

Consequently, if ¢ = curlg, the right side of (11b) can be expressed as — 3", P{¢,, — ¢;). Below we
show that the pressure drop problem (11) is equivalent to the following.

Variational pressure drop problem (streamfunction formulation): Find y(¢) such that for all ¢
V() € H3(Q) = (¢ € W(Q): 8,8l =0, 9, = c,, Vi, (3%92)

v(Veurly, Veurld) + (curly, -+ curly - Veurly, curlg) = — Z P, — 1) (39b)

for every ¢ € Hy(Q).

The ¢; in the definition of H;(Q) are arbitrary constants. However, one of them can be fixed without
losing generality in the vector fields curlg. Requiring one of them to be zero, say ¢; =0, has the
advantage of making ||V2¢]l ;2 a norm on H3(Q). Below, we will show that curlH;(Q) = Ji 1 (D),
from which it is obvious that the formulations (1 1) and (39) are equivalent.

To formulate a streamfunction equivalent of the prescribed net flux problem (15), we need to
introduce streamfunction analogues of the flux carriers b, Let us assume that there are three
inlet/outlets. Then, referring to Figure 11, we take y,, §; € H3(Q) satisfying

ilr =1 oleur, =0 and Wglor, =1, ¥y, =0. 40

5 |
5 it} Iy .
:91
T3\ T n

Figure 11. Notation for flow regions having artificial boundaries at nmultiple inlet/outlets S;
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It is easily seen using (38) that we obtain flux carriers b; satisfying (14) by letting b; = curly, (=2, 3).
Thus we may seck u in the form u=curly with streamfunction ¢ in the form y =P+ Fys 49,
where curly has zero net flux across each S,

Yariational net flux problem (streamfunction Jormulation). Find y(f) = (W24 F3(003 +n(r) such
that for all ¢

n(t) € Q) = (¢ € W}(): 8,plr = 0,9l =0}, (41a)

w(Veurly, Veurlg) + (curly, + curlys - Veurly, curlg) = 0 (41b)

for every ¢ e H,(Q). :
It is obvious that the problems (41) and (15) are equivalent if curlfy(Q) =Jy(Q).

Theorem 4

curlHy(Q) = J}(Q) and curlfy(Q) = J(Q). Therefore the two-dimensional prescribed pressure
drop problems (39) and (11) are equivalent and so also are the prescribed net flux problems (41) and
(15). '

First, it is clear that curlH ¢ JX(Q). To prove the reverse, let ¢ be a given element of J}(Q) which
We assume at first to be smooth. In seeking a function (X3 H3(Q) such that curlp = ¢, we are
motivated by (38) to choose an arbitrary fixed point x, € Q and set

d(x) =L ©-nds, (42)

where C is an arbitrary piecewise smooth curve in from xy to x. It is clear that ¢(x) is indcpendeqt of
the choice of C, since V - ¢ = 0. It is also easily checked that curlp = ¢. Finally, ¢ € H3 (), since
V¢ =0 on each component of T

Now, dropping the smoothness assumption on ¢, suppose that || V(¢ — ¢)|| ) — 0, where the ¢,
are smooth elements of J(€2). Constructing ¢ from ¢, by the fonn.ula'l (42), we have ¢, e'Hz' (Q) and
curlg, = ¢,. Now {Veurld, } is a Cauchy sequence in L*(€2) with limit Vip. There'fore Pris a Cauchy
Sequence in Hy(Q) with limit ¢ satisfying curlg = ¢ provided that ”chr! "l ;20 is @ norm m.H}" Q).
As mentioned following the introduction of H3(€) in (39), we may specify thi,if ¢y=0. Making that
Specification here, we obtain ol W) <Vl o for ¢ € H3(Q) by Poincaré’s mt.:quahty ]and thuc;n
”V2¢HL:(Q) = |[Veurlg| ) by the identity Verlp: Veurly = 25 3:0,98,3:. This completes the

roof that curlH3(Q) = J¥(Q). ' ' o
’ Finally, we seezt(hai curllH(z(S)I) C J,(Q), because the condition ¢| = 0 combined with (38)1_11;1'1phcs
fseurlgends =g, Also, we sce that J, () C curlH,(Q), betfause given ¢ € J 1) a.m.i de r;gt ¢
by (42) with x, € T, the conditions _[9 ¢+ n ds = 0 combined with (38) imply ¢ =0. This completes
the proof of m 4. . '

Spmce the grli)ck?l?ms (39) and (41) are equivalent to the problems’ (11) and (15). respccttxlv?sly, tht:
corresponding natural boundary conditions satisfied by smooq] solutions along the inlet/outlets mus
coincide. This, however, leads to something of a puzzle. The primal §olunon {u, p}, say of the pressure
drop problem (11), satisfies the first-order natural boundary conditions (28b),

6.”1'-8', = Ov (p - valu")lsl = Pi'

On the other hand, the corresponding streamfunction solution ¢ is determined thrﬂtl)ugl; a ﬂ:,ﬁs:ﬁ;
problem, similar to a plate-bending problem with part of the boundary left free. It rdm o;eonc of third
satisfies two natural boundary conditions along the inlet/outlets, one of s?cond o e; anrd boumdary
order. This third-order boundary condition for ¢ would seem to result in a.secon -order

(43)
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condition for & = curly, in contrast with what are only first-order conditions in (28b). This appar.ent
paradox is resolved as follows. First, integrating by parts in the variational equation (39b) and varying
the test function in H}(Q), one obtains in the usual way the necessary condition

A% — Ay, — curl(curly - curly) =0 in Q. 44)
The remaining boundary integral takes the form

| g+ dvog+apvapis=-3 F | s ()
Q i i

where A() = —8,A¥ + 3,1, + 7+ (curly - Veurlg). For a smooth solution u = curly there holds the
identity

—veurlAy + curly, + curly - Veurly = —vAu + 4, +u+Vu = =Vp, (46)
yielding —va, Ay + 8,¥, + 7+ (curly - Vif) = —d1p on 3Q. Thus integrating by parts over 3 yields

5 [ odhvand + 0oty -p+ RIS =0, ¥6 < H(@) @)
I ]

This implies that #yls, =0 and (v3,0,y — p)l;, = —P;, which is just the boundary condition 3)

expressed in terms of the streamfunction .

In Theorems 1 and 2 we decided not to burden the reader with explicit constructions of the
solenoidal test functions, since the constructions are somewhat technical in three dimensions. In two
dimensions, however, they are easily constructed using streamfunctions. According to (38), the net flux
of curl¢ across any curve joining two points x; and x; is just ¢(x;) — ¢(x;). Thus one obtains flux
carriers curlg, around a closed curve C by simply mollifying a step function ¢ that equals zero inside
C and unity outside C. Similarly, if C is a curve joining points on §; and S; (i=j or i), one gets 2

flux carier from S; to S; by mollifying a step function which equals zero on one side of C and unity on
the other side. .

6. EXISTENCE, UNIQUENESS, CONTINUOUS DEPENDENCE, STABILITY

We will give a brief account of the existence theory that we see for the problems that have been
considered in this paper. It is less complete than for Dirichlet boundary conditions because of 2
difficulty in estimating the energy that enters the domain across the boundary when there is an inflow.

This difficulty is avoided, however, if one uses the conservative forms of the non-linear term which
were discussed at the ends of Sections 3 and 4. Then the existence theory proceeds almost exactly as
for Dirichlet conditions. With a few seemingly appropriate restrictions on the domain, one gets smooth
steady solutions (but without any assurance of their stability if the data are large) for any prescriptions
of steady net fluxes F, or pressures P;. For suitably smooth initial values and time-dependent fluxes
F{?) or pressures P{f), regardless of their size, one gets a global (i.e. existing for all ¢ > 0) weak
solution which is smooth on an initial time interval 0 < < T In the case of two dimensions, 7'= c. In
the case of three dimensions, 7= oo if the data are sufficiently small. Since the proofs differ very little
from those for Dirichlet conditions, there is no need to present them here.

Turning to existence questions connected with the standard form of the non-linear term used in
problems (11) and (15) and their equivalents, our results differ from those above in the following ways.
First, we have been unable to obtain an a priori bound for the Dirichlet norms of steady solutions even
when the data are small. The technique of Leray and Hopf for bounding the Dirichlet norm in the case
of non-homogeneous Dirichlet data is of no avail even for the prescribed net flux problem, because it
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does not apply to the most troublesome term. Despite that, we are able to prove the existence of smooth
steady solutions with bounded Dirichlet norms in the case of small data (the prescribed F; or P;). One
gets an impression from the proof, however, that the data may have to be very small. For the non-
stationary problems we get, as before, the existence of a smooth solution on an initial time interval
0 <t < T, with T=co if the data are sufficiently small. However, if the data are large, we have not
proven the global existence of even a weak solution, even in two dimensions, as there seems to be a
basic difficulty in getting a global energy estimate.

To prove an existence theorem for a Navier-Stokes problem, either steady or non-steady, it is
convenient to construct the solution as a limit of Galerkin approximations in terms of the
eigenfunctions of the corresponding steady Stokes problem. This use of the Stokes eigenfunctions
originated with Prodi'> and was further developed by Heywood"® and Heywood and Rannacher.'®
Reference 13 and a related work on Burgers’ equation by Heywood and Xie'* would probably be most
useful to a reader who seeks help in the details of what follows.

Let us consider first problems with prescribed pressure drops. To define the corresponding Stokes
operator, we introduce J*(Q) as the completion of J}(€) in L*(©). Then for every fe J*(€) there
exists exactly one w € J1(€) such that

. Vo) =(f,¢), Ve eJi(Q. (48)

Moreover, for each w € J}(Q) there is at most one f J*(Q) satisfying (48). Thus (48) dfﬁnes a one-
to-one correspondence between functions f€ J*(€2) and functions w in a subspace of J; (<) t'hat we
denote by D(A). Writing Aw = —f defines the desired Stokes operator A : D(A) = J*(Q). Its inverse
A" is completely continuous and self-adjoint as a mapping AT~ T T(Q). Therefore it
p(isseses a sequence of eigenfunctions {*}, which are complete and orthogonal in both J¥() and
Ji Q).

Below, we assume that the inequalities (| - || denoting the norm of LX)

Wl < colwl FIAw| 2 ifn=2,
sup |w ~ '
np N o IVw||'2|Aw|'/? ifn=20r3,

IVw| < cyllAw| if n=20r3

are valid for every weD(&). They may be valid for arbitrar'y gounded two- or three-dlrxﬂnen;iona]
domains in analogy with a recent result for the Laplacian by Xie. However, to date, the only o;vn
proofs of (49) in the situation of Figure 5 require that I" and the S, are smooth and meet at right angles
(or nearly so) and that the domain is two-dimensional: sce ¢.g. Reference 17. em (11) 8

Galerkin approximations &™ = p cb,,(t)a" are defined for the I'Jnressure drop problem
solutions of the finite system of equations (for simplicity wc’denote u" by u)

(u, @) +v(Vu, Vo) = —(u -sz1, Q) — Z P; L. cp‘-n dS Vo€ span{a‘, .,d"L (50)

In secking steady solutions, 4, =0 and (50) is a system of algebraic equations for constant unknowns

Cim- In seeking non-stationary solutions, (50} is a system of ordinary dlfferzntlal eq::{t:gns anc‘l:,:t}s ‘
solutions are required to satisfy the initial conditioxfs (u(O) — up, ¢)=0, cf ecespthcore,ﬁ-‘; '!;elov; _
where g is the prescribed initial velocity. The um_ierlyl‘ng estimates for the existen e e
are obtained by setting @=u or @= —~Au i (50).  The latter is possib

Au € span(d!, ..., ), since {a*} is a spectral basis. .
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Let us consider first the steady problem. Setting ¢ = u in (50) and estimating the terms on the right
side very crudely by

Vo, )] < DIVl < gV, m=20r3, a2y
> p [ wenes| < chlul, )
i S

where the constant ¢; depends on Sobolev’s and Poincaré’s inequalities and c, depends on a trace
inequality, we obtain from (50) the inequality
V|Vl < c3(|Va|? +c,P. (53)
This limits [|Vuj| to the right side of the parabola in Figure 12.
The estimate (53) shown in Figure 12 suggests the following theorem.

Theorem 5

For P =} ;1P| < v*/4csc, there exists a steady smooth solution of the variational problem (11),
and of its equivalents (12) and (39), satisfying

Ve < Yl 1_4ﬂ . (54)
2¢q v

The main points to be shown in proving this are first that the algebraic equations (50) have solutions
u" and then that the solutions 1" satisfy the estimate (54).

To prove the solvability of the finite-dimensional problems (50), we use Brouwer’s fixed point
- theorem, applying it to the mapping w— u defined by the linear problem

v(Vu, Vo) + (w* Vu, ¢) = —Z P,-j ¢'ndS, V¢ espan(d,...,a"), (55)
i S;

where for brevity the superscript m has again been dropped, u=wu". These linear equations ar¢

uniquely solvable if w lies in the ball (54), because then u=0 is the only solution of the corresponding
homogeneous equation (P;=0). Indeed, if w satisfies (54) and u satisfies (55) with the P;=0, then

VIVal? < o[Vl < csi‘c’—uwuz,
3

which implies that u=0, To see that the mapping w— u takes the ball defined by (54) into itself,
suppose that w satisfies (54). Then, similarly to (53), we obtain

vIVull < IVw)|IVu|® + c,P

b V|

P
—
v
_ ‘ Teycq
Figure 12. If u is a steady solution of the prescribed mean pressure problem (formulation (1), (12) or (39)) with P < v/4c364s
then its Dirichiet norm || Vi) must have a value above the upper branch of the parabola or below the lower branch. Theorem 5
gives the existence of a solution with |Va|] below the lower branch
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and therefore

C4P C4P _ Vv _ -4C3C4P
Vb < Sl < T (e bl | J(-* )]

Thus Brouwer’s fixed point theorem can be applied and gives the existence of Galerkin approximations
satisfying (54). Hence by a standard compactness argument there is at least a subsequence of the

Because Ay is solenoidal, one has the rather unusual trace estimate

Z P,-L Au-nds

i

< cPllAul), (57)

which we combine with (49) and (56) to get
z% 1Val? + vIAul? < e, Val 2| Bl + csP) Aui. (58)

Then, using Young’s inequality, we obtain

- 4 4c?
IVl it < pwaps 1 282 9

In the steady case this yields an estimate for the Galerkin approximations of the form
1Aul < c,|Val® +c,P, (60)

which is then inherited by the solution. The full classical smoothnes]ssof §h6 solution can now be
obtained using the Lz-regularity theory for the steady Stokes equations. > This completes the proof of
Theorem 5. For the non-steady problem we have the following results.

Theorem 6

For any smooth P(f) and any prescribed initial value u, € J7(Q) thex:e exist§ a positive nur(r;b;;?‘
and a unique smooth solution # of the non-steady problem (11), ar_ld of its equivalents (12) an ( ‘ ),
which is defined on at least the initial time interval 0 £ t < Tand satisfies {J(O) =ug. The sqlutmn e)usf;
forallt>0ifp = Sup, 5 ¢ 2 IP{(#)] and (||| are suﬁicie'nt].y small. It is also exponf:nnally stable i
these quantities are small enough. These results are all valid in both two and three dimensions.

The basic estimates for this theorem are obtained by setting ¢ = —Au in (50 elu‘:)d <prtoze]e‘d}11nt;gIl ::
above to obtain (58) and (59). It is clear that (59) can be intcgratz.ad on some mterlva ; b\ - n.lethods
the proof of the existence of solution with full classical regularity can be complete ﬁr};t v
of References 13-15, Uniqueness is proved below. This completes the proof of the first p

theorem,
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To prove global existence for small data, first use the third of the inequalities (49) together with (58)
to get

. 2
—||Vu||2+(v~2c1c"2nvun)nAun2 < 2P (61)
Then, on any time interval during which ||Va| < v/4c,c)’”, (61) and (49) imply

&2
< vl 431w < 322 (6
This is easily seen to imply that |[Vu(f)|| < v/4clc;/2 for all ¢ > 0if |Vuy| < v/4c|c;/ 2 and
P< Vz/.'/(32C2)CIC5

The inequalities (51)-(62) are valid for both two and three dimensions. They do not use the full

power of the two-dimensional inequality (49). Using that, one obtains in place of (59) the two-
dimensional estimate

42

- 4
i|1Vu||2+v||Au||2 < -§2Q||u||2||Vun‘+—;iP2. (63)

This can be mtcgmted for all time, regardless of the size of the data, provided that ||u(f)| and

jo | Vas(s))? ds remain finite. The natural way to attempt to show that these quantities remain finite is to
set ¢ = u in (50), getting the energy identity

1d
ﬁuuu +V|Vul? = —(u'Vu,u)—Z: P, Li u-nds, (64)

and then estimate the terms on its right side. The trace inequality

J (u+n)*dS < cgllul? (65)
o

for solenoidal functions can be used to sharpen the estimate (51), as follows:

N 1 12 4 v
oo (| 26) )
<l"vllunﬂ“n\7un”‘ if n

(66)
olul IVal? i n=20c3.
However, even the two-dimensional version of (66) combined with (64) yields only
——uuuz+vuv I” < uuu“’ + 2 Pllu 67)

and hence only a local energy estimate for large data It leads neither to a qualxtatlve improvement in
Theorem 6 nor to a large-data global existence theorem for weak, solutions even, in two dimensions.
The inequality (66) does facilitate thc treatment of uniqueness, continuous dependence on the initial

data and simple energy stablhty If w=v — u is the difference of two solutions of (11) or of (50), we
obtain ‘

nwu2 +vu\7wu = (- Vv, W) — (9~ Vi, W) = (-, )

—||un2+ sup!utzuwu2 ~||Vun‘ Iwl? + cgliwhiVwl?,
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using the second, two- or three-dimensional version of (66) in estimating the last term. Hence

d 1 1
G M1+ 0= clwIVwl? < o (;sup|u|2+v—3nvt:||“) Il (68)

Therefore, on any interval during which ||w|| < v/2c;, Poincaré’s inequality [[w] < ol V|l gives

d v G P
il (ch A L ||Vuu‘) Il < 0. (69)
Uniqueness and continuous dependence on the data can be easily deduced from (68). From (69) we can
see that small perturbations w(f) of u(f) decay exponentially if u(z) is small,

All the results of Theorems 5 and 6 have analogues for the prescribed net flux problem, In proving
them, we do not estimate u directly, but rather the term denoted by v in problem (15). That is, we fix
the choice of smooth solenoidal flux carriers b, and by and then rewrite (15b) in terms of the new
unknown v. This introduces many additional terms of the forms Fi(b;* Vv, @), Fi(v+ Vb, ¢),
F(Vb,, Vo) and FFy(b; * Vb, ¢), but none of these causes essential new difficulties. Even for large
data one can estimate them by a well-known technique of Leray and Hopf. However, for large data the
term (v - Vv, ¢) causes the same difficulties as the term (k- Vi, @) does for problems with prescribed
pressure drops. The Stokes operator for the flux problem is defined just as for the pressure problem,
except that one uses the basic space Ji(Q) in place of JT(Q). In prescribing an xmtlal value 4o for
problem (15) or its equivalents, one must of course ensure that it satisfies the compatibility conditions

j 4y 1 S = F(0). (70)

5

In summary, we obtain the following.

Theorem 7

If F =¥, |Fj is sufficiently small, there exists a steady smooth solution of problem (15), and of its
equivalents (16) and (41). For any smooth Fy(f) and any u, € J (Q) satisfying (70), one has results
precisely analogous to those stated for the prescribed pressure drop problem in Theorem 6.

Mathematical theory has been very valuable to computational practice for many years, in man&)" Ozay;
and in particular for suggesting variational formulations of problems and the Galefkln me : o
constructing solutions. The results of this section ensure that tl3e problems proposed in SISnec‘tlon arvct
well posed and appropriate for numerical computation, at least in the case of srr}all data. In its presen
state, however, the existence theory for the Navier-Stokes equations is too rudimentary to sc:rv:‘:s a;c :
sharp knife giving decisive answers in the case of large data. That is espc?xally true w:;ﬁn OI;; sein e

boundary conditions on inflow boundaries. We have not, however, experienced any difficulties

computations for such problems.
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