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Abstract An Arbitrary Lagrangian-Eulerian (ALE) formulation is applied in a fully
coupled monolithic way, considering the fluid-structure interaction (FSI) problem
as one continuum. The mathematical description and the numerical schemes are
designed in such a way that general constitutive relations (which are realistic for
biomechanics applications) for the fluid as well as for the structural part can be eas-
ily incorporated. We utilize the LBB-stable finite element pairs Q> P; and P2Jr P, for
discretization in space to gain high accuracy and perform as time-stepping the 2nd
order Crank-Nicholson, respectively, a new modified Fractional-Step-8-scheme for
both solid and fluid parts. The resulting discretized nonlinear algebraic system is
solved by a Newton method which approximates the Jacobian matrices by a divided
differences approach, and the resulting linear systems are solved by direct or itera-
tive solvers, preferably of Krylov-multigrid type.

For validation and evaluation of the accuracy and performance of the proposed
methodology, we present corresponding results for a new set of FSI benchmark con-
figurations which describe the self-induced elastic deformation of a beam attached
to a cylinder in laminar channel flow, allowing stationary as well as periodically
oscillating deformations. Then, as an example of FSI in biomedical problems, the
influence of endovascular stent implantation on cerebral aneurysm hemodynamics
is numerically investigated. The aim is to study the interaction of the elastic walls
of the aneurysm with the geometrical shape of the implanted stent structure for
prototypical 2D configurations. This study can be seen as a basic step towards the
understanding of the resulting complex flow phenomena so that in future aneurysm
rupture shall be suppressed by an optimal setting of the implanted stent geometry.
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1 Introduction

In this paper, we consider the general problem of viscous flow interacting with an
elastic body which is being deformed by the fluid action. Such a problem is of great
importance in many real life applications, typical examples are the areas of biomed-
ical fluids which include the influence of hemodynamic factors in blood vessels,
cerebral aneurysm hemodynamics, joint lubrication and deformable cartilage, and
blood flow interaction with elastic veins [2, 9, 25, 26, 34]. The theoretical investi-
gation of fluid-structure interaction problems is complicated by the need of a mixed
description for both parts: While for the solid part the natural view is the material
(Lagrangian) description, for the fluid it is usually the spatial (Eulerian) description.
In the case of their combination some kind of mixed description (usually referred
to as the Arbitrary Lagrangian-Eulerian description or ALE) has to be used which
brings additional nonlinearity into the resulting equations (see [17]).

The numerical solution of the resulting equations of the fluid-structure interaction
problem poses great challenges since it includes the features of structural mechan-
ics, fluid dynamics, and their coupling. The most straightforward solution strategy,
mostly used in the available software packages (see for instance [16]), is to decouple
the problem into the fluid part and solid part, for each of those parts using some well
established solution method; then the interaction process is introduced as external
boundary conditions in each of the subproblems. This has the advantage that there
are many well tested numerical methods for both separate problems of fluid flow
and elastic deformation, while on the other hand the treatment of the interface and
the interaction is problematic due to high stiffness and sensitivity. In contrast, the
monolithic approach discussed here treats the problem as a single continuum with
the coupling automatically taken care of as internal interface. This on the other hand
requires more robust nonlinear and linear solvers for the global problem.

Besides a short description of the underlying numerical aspects regarding dis-
cretization and solution procedure for this monolithic approach (see [17, 24]), we
present corresponding results for a set of FSI benchmarking test cases (‘channel
flow around cylinder with attached elastic beam’, see [30]), and we concentrate on
prototypical numerical studies for 2D aneurysm configurations and first steps to-
wards full 3D models. The corresponding parameterization is based on abstractions
of biomedical data (i.e., cutplanes of 3D specimens from New Zealand white rabbits
as well as computer tomographic and magnetic resonance imaging data of human
neurocrania). In our studies, we allow the walls of the aneurysm to be elastic and
hence deforming with the flow field in the vessel. Moreover, we examine several
configurations for stent geometries which clearly influence the flow behavior inside
the aneurysm such that a very different elastic displacement of the walls is observed,
too. We demonstrate that both the elastic modeling of the aneurysm walls as well
as the proper description of the geometrical details of the shape of the aneurysm
and particularly of the stents are of great importance for a quantitative analysis of
the complex interaction between structure and fluid. This is especially true in view
of more realistic blood flow models and anisotropic constitutive laws for the elastic
walls.
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2 Fluid-structure interaction problem formulation

The general fluid-structure interaction problem consists of the description of the
fluid and solid parts, appropriate interface conditions at the interface and conditions
for the remaining boundaries, respectively. Here, we consider the flow of an incom-
pressible Newtonian fluid interacting with an elastic solid. We denote the domain
occupied by the fluid by Q,f and the solid part by Q; at the time ¢ € [0,T]. Let
I,° = &/ N O be the part of the boundary where the elastic solid interacts with the
fluid. In the following, the description for both fields and the interface conditions
are introduced. Furthermore, discretization aspects and computational methods are
described.

2.1 Fluid mechanics

The fluid flow is assumed to be laminar. It can be described by the Navier-Stokes
equations for incompressible flows

I
pf(aaiterVv)fmef:O, Viv=0 in QF 1)

where p/ is the constant density. The state of the flow is described by the veloc-
ity and pressure fields v/, p/, respectively. The external forces, for example due
to gravity or human motion, are assumed to be not significant and are neglected.
Although the blood is known to be non-Newtonian in general, we assume it to be
Newtonian in this study. This is because we consider large arteries with radii of more
than 2 mm, where the velocity and shear rate are high and the kinematic viscosity
v/ is nearly constant [20], such that the non-Newtonian effects can be neglected.
The constitutive relation for the stress tensor reads

o/ = —p/I+2uD(v/), )

where u is the dynamic viscosity of the fluid, p/ is the Lagrange multiplier cor-
responding to the incompressibility constraint in (1), and D(v/) is the strain-rate
tensor:

D(v/) = %(va+ (vvHT. (3)

For the fluid-structure interaction we use the ALE form of the balance equations.
The corresponding discretization techniques are discussed in section 3. Let us re-
mark that also non-Newtonian flow models can be used for modeling blood flow, for
instance of Power Law type or even including viscoelastic effects (see [7]) which is
planned for future extensions.
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2.2 Structural mechanics

The governing equations for the structural mechanics are the balance equations

S
px(aa—‘; + (VW )v'—g)—V-6°=0, in Q) 4)
where the superscript s denotes the structure, p® is the density of the material, g°
represents the external body forces acting on the structure, and ¢* is the Cauchy
stress tensor. The deformation of the structure is described by the displacement u’,
with velocity field v* = %. Written in the more common Lagrangian description,
i.e. with respect to some fixed reference (for example initial) state 2%, we have

0%’ . . ;
p(;( 012 _g) -V.X= 07 n 9‘7 (5)

where ¥ = Jo*F T is the first Piola-Kirchhoff stress tensor. J denotes the deter-
minant of the deformation gradient tensor F, defined as F = | + Vu®. Unlike the
Cauchy stress tensor 6°, ¥* is non-symmetric. Since constitutive relations are often
expressed in terms of symmetric stress tensor, it is natural to introduce the second
Piola-Kirchhoff tensor S°

S =FT=JFlc'F 7, (6)

which is symmetric. For elastic material the stress is a function of the deformation
(and possibly of thermodynamic variables such as the temperature) but it is inde-
pendent of deformation history and thus of time. The material characteristics may
still vary in space. In a homogeneous material mechanical properties do not vary, the
strain energy function depends only on the deformation. A material is mechanically
isotropic if its response to deformation is the same in all directions. The constitutive
equation is then a function of F. More precisely, it is usually written in terms of the
Green-Lagrange strain tensor, as

1
E=3(C-), )
where | is the identity tensor and C = FTF is the left Cauchy-Green strain tensor.
For the subsequent FSI benchmark calculations we employ the St. Venant-Kirch-
hoff material model as an example for homogeneous isotropic material whose ref-
erence configuration is the natural state (i.e. where the Cauchy stress tensor is zero
everywhere). The St. Venant-Kirchhoff material model is specified by the following
constitutive law

o' = %FW(&E)I +2WE)FT S =A%(wE)l+24°E, ®)
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where A* denotes the first Lamé coefficient, and p* the shear modulus. More com-
plex constitutive relations for hyperelastic materials may be found in [14], and par-
ticular models for biological tissues and blood vessels are reported in [11, 15]. The
material elasticity is characterized by a set of two parameters, the Poisson ratio v*
and the Young modulus E. These parameters satisfy the relations

‘ Al (3% +20°)
v~ _ pHAT) 9
200+ 1) (1) ®
s E s V'E
H=samw M T wmasay (19)

where v¥ = 1/2 for incompressible and v* < 1/2 for compressible material. In the
large deformation case it is common to describe the constitutive equation using a
stress-strain relation based on the Green Lagrange strain tensor E and the second
Piola-Kirchhoff stress tensor S(E) as a function of E. However, also incompressible
materials can be handled in the same way (see [17]).

For the hemodynamic applications, a Neo-Hooke material model is taken which
can be used for compressible or incompressible (for v — 1/2 = 1% — oo ) material
and which is described by the constitutive laws:

GS:fpSIJr%(FFTfI) (11)
A 1
0=—p'+==7) (12)

Both models, the St. Venant-Kirchhoff and the Neo-Hooke material model, share
the isotropic and homogenous properties, and both can be used for the computation
of large deformations. However, the St. Venant-Kirchhoff model does not allow for
large strain computation, while the Neo-Hooke model is also valid for large strains.
In the case of small strains and small deformations, both material laws yield the
same linearized material model. We implemented the St. Venant-Kirchhoff mate-
rial model as the standard model for the compressible case, since the setup of the
benchmark does not involve large strains in the oscillating beam structure. Its imple-
mentation is simpler and, therefore, the FSI benchmark will hopefully be adopted
by a wider group of researchers. If someone wants or has to use the Neo-Hooke
material, the results for a given set of £ and v or A and p are comparable, if the
standard Neo-Hooke material model as in (11), (12) is used. Similarly as in the case
of more complex blood flow models, also more realistic constitutive relations for
the anisotropic behavior of the walls of aneurysms can be included which however
is beyond the scope of this paper.
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2.3 Interaction conditions

The boundary conditions on the fluid-solid interface are assumed to be
c/n=0'n, v/=v, on IL° (13)

where n is a unit normal vector to the interface F,O. This implies the no-slip condition
for the flow and that the forces on the interface are in balance.

3 Discretization and solution techniques

For the moment, we restrict our considerations to two dimensions which allows sys-
tematic tests of the proposed methods for biomedical applications in a very efficient
way such that the qualitatitive behavior can be carefully analyzed. The correspond-
ing fully implicit, monolithic treatment of the fluid-structure interaction problem
suggests that an A-stable second order time stepping scheme and that the same finite
elements for both the solid part and the fluid region should be utilized. Moreover,
to handle the fluid incompressibility constraints, we have to choose a stable finite
element pair. For that reason, the conforming biquadratic, discontinuous linear O, P
pair is used. Let us define the usual finite dimensional spaces U for displacement, V
for velocity, P for pressure approximation as follows

U={ueLl>(I,[W"?Q)*),u=00ndQ},
V={ve (I, W"(Q)])NL(I,[L*(£)]*),v =0 0on 0Q},
P={peL*(I,L*(Q))}
Then the variational formulation of the fluid-structure interaction problem is to
find (u,v,p) € U x V X P that satisfy the corresponding weak form of the balance
equations including appropriate initial conditions. The spaces U, V, P on an interval
[t",t"*1] would be approximated in the case of the Qy, P; pair as
Un = {wy € [C(2) |7 € [Q2(T)]* VT € Fj,uy =0 0n 9},
Vi = {vi € [C(Q),Va|r € [Q2(T))? VT € F5, vy = 00n 0L2,},
Py ={pn € L*(),palr € Pi(T) VT € F}.
Let us denote by u)} the approximation of u(¢"), vj the approximation of v(z") and

P}, the approximation of p(¢"). Consider for each T € .7}, the bilinear transformation
wr : T — T, where T is the unit square. Then, Q»(T) is defined as

Qx(T) ={goy;':qespan < Lx,y,xy,x* y* Xy, y’x, %y >} (14)
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with nine local degrees of freedom located at the vertices, midpoints of the edges
and in the center of the quadrilateral. The space P;(T') consists of linear functions
defined by

Pi(T)={qoy;':qgespan<1,x,y>} (15)

with the function value and both partial derivatives located in the center of the
quadrilateral, as its three local degrees of freedom, which leads to a discontinu-
ous pressure. The inf-sup condition is satisfied (see [5]); however, the combination
of the bilinear transformation y with a linear function on the reference square P (T)
would imply that the basis on the reference square did not contain the full basis. So,

the method can at most be first order accurate on general meshes (see [3, 5])

2= pallo = O(h). (16)

The standard remedy is to consider a local coordinate system (&,7) obtained by
joining the midpoints of the opposing faces of T (see [3, 22, 29]). Then, we set on
each element T

P (T):=span< 1,&,n >. a7

For this case, the inf-sup condition is also satisfied and the second order approxima-
tion is recovered for the pressure as well as for the velocity gradient (see [5, 13])

lp—pally=0(R) and [|V(u—w,)l|, = O(). (18)

For a smooth solution, the approximation error for the velocity in the Lp-norm is
of order O(/*) which can easily be demonstrated for prescribed polynomials or for
smooth data on appropriate domains.

In the last section we present first results for 3-dimensional computation where
we use the P2+ Py pair which also satisfies the Babuska—Brezzi stability condition
and yields a stable discretization of the incompressible problems (see [10]).

3.1 Time discretization

In view of a more compact presentation, the applied time discretization approach
is described only for the fluid part (see [23] for more details). In the following, we
restrict to the (standard) incompressible Navier-Stokes equations

Vi—VAV+v-Vv+Vp=f V.v=0, in Qx(0,7], (19)

for given force f and viscosity v, with prescribed boundary values on the boundary
dQ and an initial condition at t = 0.
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3.1.1 Basic-0-scheme

The basic 6-scheme for time discretization reads:
Given v" and At = .| — t,, then solve for v=v""! and p = p"*!
v—Vv"?
At

+0[—VAV+V-VV|+Vp=g'"l  divv=0, in Q (20)

with right hand side g"*! := 6f"*! 4+ (1 — 0)f* — (1 — )[—VAV" +v" - Vv"]. The
parameter 0 has to be chosen depending on the time-stepping scheme, e.g., 6 = 1
for the Backward Euler (BE), or 8 = 1/2 for the Crank-Nicholson-scheme (CN)
which we prefer. The pressure term Vp = Vp"*! may be replaced by 8Vp"*+! +
(1—0)Vp", but with appropriate postprocessing, both strategies lead to solutions of
the same accuracy. In all cases, we end up with the task of solving, at each time step,
a nonlinear saddle point problem of given type which has then to be discretized in
space as described above.

These two methods, CN and BE, belong to the group of One-Step-0-schemes.
The CN scheme can occasionally suffer from numerical instabilities because of its
only weak damping property (not strongly A-stable), while the BE-scheme is of first
order accuracy only (however: it is a good candidate for steady-state simulations).
Another method which has proven to have the potential to excel in this competi-
tion is the Fractional-Step-0-scheme (FS). It uses three different values for 6 and
for the time step At at each time level. In [24, 31] we additionally introduced a
modified Fractional-Step-0-scheme which particularly for fluid-structure interac-
tion problems seems to be advantageous. A brief description is given below and a
detailed description will appear in the thesis [23].

In the following, we use the more compact form for the diffusive and advective
part:

N(V)v=—VAv+v-Vvy 1)

3.1.2 Fractional-Step-6-scheme

For the Fractional-Step-0-scheme we proceed as follows. Choosing 6 =1 — ? ,0' =
1—-26,and a = % , B =1—a, the macro time step ¢, — 1,41 = t, + At is split
into the three following consecutive substeps (with 8 := a6Ar = BO'Ar):
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[[+ON (V'O v+ L Vpr+0 — [I — BOAIN (V") V" + O Atf"

divv*t® =0

[I+ éN(Vn+176)]Vn+179+Vpn+179 — [[*OCQ'AtN(V'ﬁG)]V'HG
+6/Atfn+179
divv' 1= =0

[I+ éN(V)1+1)]Vn+1 +Vpn+l — [I_ﬁeAtN(Vn+179)]vn+179
+0Af+1-9
divv"tl =0

3.1.3 A modified Fractional-Step-0-scheme

Consider an initial value problem of the following form, with X (¢) € R¢,d > 1:

dX
il fX,r) V>0 22)
X0) = Xo

Then, a modified 8-scheme (see [31]) with macro time step At can be written again
as three consecutive substeps, where 6 =1—1/ v2,X% =Xy, n>0and X" is known:

Xm0 _ xn _ (Xn+9 tn+6)
0At ’
Xn+1—9 _ 176Xn+6+2671Xn

0 0

1 1-6
X —xmt f(Xn+1’tn+l)

0At

As shown in [31], the ‘classical’ and the modified Fractional-Step-0-schemes are

o fully implicit,
e strongly A-stable, and
e second order accurate (in fact, they are ‘nearly’ third order accurate [31]).

These important properties promise some advantageous behavior, particularly in im-
plicit CFD simulations for nonstationary incompressible flow problems. Applying
one step of this scheme to the Navier-Stokes equations, we obtain the following
variant of the scheme:
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Vn+9 — 0 0 0 0
L) Tear N (VOO L v tl =t
divv"t® =0

2. Vn+179 — 169Vn+9 + 299—1Vn

vt ynt1-6

oA +N(V’1+1>Vn+1 +V1311+1 :fn—H
3.

divv**! =0

3b. pttt=(1-0)p 0+ 6p!

These 3 substeps build one macro time step and have to be compared with
the previous description of the Backward Euler, Crank-Nicholson and the classi-
cal Fractional-Step-0-scheme which all can be formulated in terms of a macro time
step with 3 substeps, too. Then, the resulting accuracy and numerical cost are better
comparable and the rating is fair. The main difference to the previous ‘classical’
Fractional-Step-0-scheme is that substeps 1. and 3. look like a Backward Euler step
while substep 2. is an extrapolation step only for previously computed data such that
no operator evaluations at previous time steps are required.

Substep 3b. can be viewed as postprocessing step for updating the new pressure
which however is not mandatory. In fact, in our numerical tests [31] we omitted this
substep 3b. and accepted the pressure from substep 3. as final pressure approxima-
tion, that means p"*! = p"t1,

Summarizing, the numerical effort of the modified scheme for each substep is
cheaper at least for ‘small’ time steps (treatment of the nonlinearity) and complex
right hand side evaluations, while the resulting accuracy is similar. The modified
0-scheme is a Runge-Kutta scheme; it has been derived in [12] as a particular case
of the Fractional-Step-0-scheme.

3.2 Solution algorithms

After applying the standard finite element method, the system of nonlinear algebraic
equations arising from the governing equations described in subsection 2.1 and 2.2
reads (for incompressible solid material)

N uu S uv 0 u fu
Svu  Sw kB vi=|&], (23)
cuBT cVB}Tc 0 p f

which is a typical saddle point problem, where § describes the diffusive and convec-
tive terms from the governing equations. The above system of nonlinear algebraic
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equations (23) is solved using the Newton method as basic iteration which can ex-
hibit quadratic convergence provided that the initial guess is sufficiently close to
the solution. The basic idea of the Newton iteration is to find a root of a function,
R(X) = 0, using the available known function value and its first derivative. One step
of the Newton iteration can be written as

IR(X™)

Xn+l — X" n
to [ax

—1
} R(X"), o4

n
where X = (uy,, vy, p) and alfg(( ) is the Jacobian matrix. To ensure the convergence

globally, some improvements of this basic iteration are used. The damped Newton
method with line search improves the chance of convergence by adaptively changing
the length of the correction vector (see [17, 29] for more details). The damping
parameter @" € (—1,0) is chosen such that

R(X"H ). X" < R(X")- X", (25)

The damping greatly improves the robustness of the Newton iteration in the case
when the current approximation X" is not close enough to the final solution. The

Jacobian matrix 313(;(") can be computed by finite differences from the residual
vector R(X)

; (26)

{9R(X“)] - RL(X" +aje)) — [R:(X" — aje;)
X ij 2a j

where e; are the unit basis vectors in R” and the coefficients ¢; are adaptively cho-
sen according to the change in the solution in the previous time step. Since we know
the sparsity pattern of the Jacobian matrix in advance, which is given by the used
finite element method, this computation can be done in an efficient way such that
the linear solver remains the dominant part in terms of the CPU time (see [29, 33]).
A good candidate, at least in 2D, seems to be a direct solver for sparse systems
like UMFPACK [8] or MUMPS [1]; while this choice provides very robust linear
solvers, its memory and CPU time requirements are too high for larger systems (i.e.
more than 20000 unknowns). Large linear problems can be solved by Krylov-space
methods (BiCGStab, GMRes [4]) with suitable preconditioners. One possibility is
the ILU preconditioner with special treatment of the saddle point character of our
system, where we allow certain fill-in for the zero diagonal blocks, see [6]. As an al-
ternative, we also utilize a standard geometric multigrid approach based on a hierar-
chy of grids obtained by successive regular refinement of a given coarse mesh. The
complete multigrid iteration is performed in the standard defect-correction setup
with the V or F-type cycle. While a direct sparse solver [8] is used for the coarse
grid solution, on finer levels a fixed number (2 or 4) of iterations by local MPSC
schemes (Vanka-like smoother) [17, 29, 35] is performed. Such iterations can be
written as
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—1

ult! u' Swuj@; Suwver 0 def!,
vt =V | —w Z Svu Q; vajr.Qi kB |©2; defi'
pl+1 pl element{; C“Bs\_Q,' chf|Qi 0 defé

The inverse of the local (39 x 39) systems can be computed by hardware optimized
direct solvers. The full nodal interpolation is used as the prolongation operator P
with its transposed operator used as the restriction R = PT, see [16, 29] for more
details.

4 FSI benchmarking

In order to validate and to analyze different techniques to solve such FSI prob-
lems, also in a quantitative way, a set of benchmark configurations has been pro-
posed in [30] (also see the contribution in this volume). The configurations consist
of laminar incompressible channel flow around an elastic object which results in
self-induced oscillations of the structure. Moreover, characteristic flow quantities
and corresponding plots are provided for a quantitative comparison.

parameter  |[FSI1|FSI2|FSI3 parameter STl D e
P’ [10° %] 1| 10l 1 5T . o ;
VS 04| 04| 04 s_ pf 04 04 04
s110°%7 | 0.5 0.5 2.0 v \ ' : ~

i ‘“‘3] Ae=-L_13.5x10*1.4x10%(1.4 x 10
p/ (103X 1 1 1 plU

o [10*5“mi I Re=Y¢ 20 100 200
U] ] Y U 0.2 1 2

Table 1 Parameter settings for the FSI benchmarks.

The domain is based on the 2D version of the well-known CFD benchmark in
[32] and by omitting the elastic bar behind the cylinder one can easily recover the
setup of the ‘classical’ flow around cylinder configuration which allows for vali-
dation of the flow part by comparing the results with the older flow benchmark.
The setting is intentionally nonsymmetric to prevent the dependence of the onset of
any possible oscillation on the precision of the computation. The mesh used for the
computations is shown in Fig. 1. A parabolic velocity profile is prescribed at the left
channel inflow

7 _ _y(H-y) e 4.0 B
v (0,y) 1.5U7%)2 1.5U0.1681y(0.41 y), (27)

such that the mean inflow velocity is U and the maximum of the inflow velocity pro-
file is 1.5U. The no-slip condition is prescribed for the fluid on the other boundary
parts. i.e. top and bottom wall, circle and fluid-structure interface 1';0. The outflow
condition can be chosen by the user, for example stress free or do nothing con-
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level |#refine #el #dof
0 0 62 1338
1 1 248 5032
2 2 992 19488
3 3 3968 76672
4 4 15872 304128
5 5 63488| 1211392
6 6 253952| 4835328
7 7 |1015808(19320832

Fig. 1 Coarse mesh with number of degrees of freedom for refined levels.

ditions. The outflow condition effectively prescribes some reference value for the
pressure variable p. While this value could be arbitrarily set in the incompressible
case, in the case of compressible structure this will have influence on the stress and
consequently the deformation of the solid. In this description, we set the reference
pressure at the outflow to have zero mean value. Suggested starting procedure for
the non-steady tests is to use a smooth increase of the velocity profile in time as

f l—cos(31) .
W (1,0,y) = v .(O,y)iz ifr<2.0 28)
v/ (0,y) otherwise

where v/ (0,y) is the velocity profile given in (27). The following FSI tests are per-
formed for three different inflow speeds. FSI1 is resulting in a steady state solution,
while FSI2 and FSI3 result in periodic solutions. The parameter values for the FSI1,
FSI2 and FSI3 are given in the Table 1. Here, the computed values are summarized
in Table 2 for the steady state test FSI1. In Figures 2 and 3, plots of the resulting
x- and y-displacements of the trailing edge point A (see [30]) of the elastic bar and
plots of the forces (lift, drag) acting on the cylinder and the bar are drawn. Further-
more, computed values for three different mesh refinement levels and two different
time steps for the nonsteady tests FSI2 and FSI3 are presented respectively, which
show the (almost) grid independent solution behavior (for more details see [30]).

5 FSI Optimization benchmarking

The objective of the following benchmarking scenario is to extend the validated
FSI benchmark configurations towards optimization problems such that minimal
drag/lift values of the elastic object, minimal pressure loss or minimal nonstationary
oscillations through boundary control of the inflow, change of geometry or optimal
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FSI2: x & y displacement of the point A [m].

0 0.1
0.08 |
-0.005 ~ 006 |
-0.01 S 0047
E 002}

- r [}

0.015 8 ol
-0.02 | 3 002
S 004
-0.025 | 0.06 |

-0.03 -0.08
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FSI2: lift and drag force [N] on the cylinder+elastic bar.
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-200 140 +
-250 : ‘ ; : 120 ; ; ; ;

34 342 344 346 348 35 34 342 344 346 348 35
time time

lev.] uxof A[x1073 m]luy of A [x107> m] drag [N] lift [N]

2 |—14.02+£12.03[3.85]| 1.25+79.3[1.93]{210.10 £ 72.62[3.85][0.25 £227.9[1.93]
3 |—14.54+£12.50[3.86]| 1.25+80.7[1.93]|212.83 +75.89(3.86](0.92 +-234.3[1.93]
4 |—14.88+12.75[3.86]| 1.24+81.7[1.93]|215.06+77.76|3.86]|0.82 & 237.1[1.93]
lev.] uxof A[x1073 m] uy of A [x 1073 m] drag [N] lift [N]
2 |—14.01 £12.04[3.86]| 1.25+79.3[1.93]{210.09 +72.82[3.86][0.52 £+ 228.6[1.93]
3 | —14.54+12.48[3.86]| 1.25480.7[1.93]|213.06+75.76[3.86]|0.85 £ 234.4[1.93]
4 |—14.87+12.73[3.86]| 1.24+81.7[1.93]|215.18 +77.78[3.86]|0.87 & 238.0[1.93]
lev.] uxof A[x1073 m]uy of A [x10~> m] drag [N] lift [N]
2 [—14.014+12.04[3.86]| 1.284+79.2[1.93]|210.14 £72.86[3.86]|0.49 +228.7[1.93]
3 |—14.48+£12.45[3.86]| 1.24+£80.7[1.93]|213.05+75.74[3.86]|0.84 £ 234.8[1.93]
4 |—14.85+12.70[3.86]| 1.30+81.6[1.93]|215.06+77.65[3.86]|0.61 +237.8[1.93]
[ [ [ [

[ref.]—14.85+£12.70[3.86]] 1.30+81.7[1.93]]215.06 +77.65[3.86]]0.61 £ 237.8[1.93]]

Fig. 2 Results for FSI2 with time step At = 0.002,At = 0.001, Az = 0.0005 [s].
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FSI3: x & y displacement of the point A [m]

0
01 -
02
03 |
04
05
06 -

195 19.6 19.7 198 199 20
time
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195 19.6 19.7 198 199 20 195 19.6 19.7 19.8 19.9
time time
lev.] ux of A [x1073 m] uy of A [x 103 m] drag [N] lift [N]
2 |—3.02+2.83[10.75]| 1.41+35.47[5.37]|458.2 +28.32[10.75](2.41 £ 145.58[5.37|
3 |—2.78£2.62[10.93]| 1.44 £ 34.36[5.46]|459.1 £26.63[10.93](2.41 & 151.26[5.46]
4 |—-2.86+2.70[10.95]| 1.45+34.93[5.47]|460.2 +27.65[10.95]|2.47 & 154.87(5.47]
lev.] ux of A [x107> m] uy of A [x 1073 m] drag [N] lift [N]
2 |—3.02+2.85[10.75]| 1.42+35.63[5.37]|458.7 - 28.78[10.75](2.23 £ 146.02[5.37]
3 |—2.78+2.62[10.92]| 1.44+34.35[5.46]|459.1 £26.62[10.92]|2.39 + 150.68[5.46]
4 |—2.861+2.70[10.92]| 1.45+34.90[5.46][460.2 +27.47[10.92]|2.37 & 153.75[5.46]
lev.| ux of A [x10~> m]fuy of A [x 107> m] drag [N] lift [N]
2 [—3.024+2.85[10.74]| 1.32+35.73[5.36||458.7 £+ 28.80[10.74](2.23 £ 146.00[5.36]
3 |—2.77£2.61[10.93]| 1.43 4 34.43[5.46]|459.1 £26.50[10.93]|2.36 = 149.91[5.46]
4 |—2.88+2.72[10.93]| 1.47 £34.99[5.46]|460.5 +27.74[10.93]|2.50 £ 153.91[5.46]
[ [10.93] [

[ref.]—2.88 +2.72[10.93]] 1.47434.99[5.46][460.5 +27.74[10.93]]2.50 + 153.91[5.46]|

Fig. 3 Results for FSI3 with time step Az = 0.001,A¢ = 0.0005, Ar = 0.00025 [s].
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level nel ndoflux of A [x1073 m] uy of A [x 1073 m] drag [N] lift [N]
2 992 19488 0.02287080 0.8193038(14.27359(0.7617550
3 3968 76672 0.02277423 0.8204231{14.29177|0.7630484
4 15872 304128 0.02273175 0.8207084(14.29484|0.7635608
5 63488| 1211392 0.02271553 0.8208126(14.29486(0.7636992
6 253952| 4835328 0.02270838 0.820854814.29451(0.7637359
7 1015808|19320832 0.02270493 0.8208773(14.29426(0.7637460
|ref. | | | 0.0227| O.8209| 14.294| 0.7637|

Table 2 Results for FSI1.

control of volume forces can be achieved. The main design aim for the subsequent
fluid structure interaction optimization problem is to minimize the lift on the beam
with the help of boundary control of the inflow data. Here, the simulation is based on
the described FSI1 configuration. Further extensions of this optimization problem
will be to control minimal pressure loss or minimal nonstationary oscillations of the
elastic beam through boundary control of the inflow section, change of the geome-
try (elastic channel walls or length/thickness of elastic beam) or optimal control of
volume forces.

As described before, the position of the beam is not symmetric such that the lift
is not zero. To minimize the lift value, we allow additional parabolic inflow at the
top and additional parabolic outflow at the bottom of the domain. The location of
the additional inlet and outlet is shown in the schematic diagram of the geometry
in Figure 4. With V| and V, we denote the magnitude of the additional inflow and
outflow velocity, respectively. Then, the aim is to

minimize (1if> + a(VE +V35))
w.rt. Vi, V.

The arbitrary but fixed parameter ¢ > O reflects the ‘costs’ of the additional in- and
outflow and has to be prescribed. The domain is based on the 2D version of the
described FSI benchmark, shown in Figure 4; however, the thickness of the beam is
increased from 0.02 to 0.04. Fluid and structural parameter values are based on the
FSI1 benchmark. Table 3 provides an overview of the geometry parameters.

geometry parameters value [m]
channel length Ll 25
channel width H| 041
cylinder center position | C|(0.2,0.2)
cylinder radius r|  0.05
elastic structure length Il 0.35
elastic structure thickness| 2| 0.04

Table 3 Overview of the geometry parameters.

Optimal points are those (V;, V5 ) values which result in minimal lift values on the
beam depending on the parameter &.. As ¢ decreases we get the reduction of the lift
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= O | =

Fig. 5 No displacement is visible of the beam due to optimal boundary flow control: Level 1 (left),
Level 2 (right).

level 1 level 2

o |[iter]optimal values (V1,V2)] lift||iter[optimal values (Vi,V5)] lift
1e+0][ 57| (3.74e-1, 3.88¢-1)[8.1904e-1]| 59] _ (3.66¢-1, 3.79¢-1)[7.8497¢-1
le-2|| 60 (1.04e+0, 1.06e+0)|2.2684e-2|| 59 (1.02e+0, 1.04e+0)|2.1755e-2
le-4|| 73 (1.06e+0, 1.08e+1)|2.3092e-4(| 71| (1.04e+0, 1.05e+01)|2.2147e-4
le-6|| 81 (1.06e+0, 1.08e+1)|2.3096e-6(| 86| (1.04e+0, 1.05e+01)|2.2151e-6

Table 4 Results for FSI-Optimization.

on the beam, and the optimal values read (1.06, 10.8) for level 1 and (1.04,10.5) for
level 2 using the simplex algorithm proposed by Nelder and Mead [21]. Results are
given in Table 4 which show the optimal values for the velocities V; and V, provid-
ing also the resulting lift on the beam as compared with the FSI1 benchmark values
in Table 2. In Figure 5, it is visible that the displacement of the beam decreases with
decreasing «, as well as the lift value decreases due to the boundary control. Keep in
mind that the original lift on the beam is approximately 7.6e-1 for the FSI1 bench-
mark while in the case of FSI1-Optimization, it reduces to approximately 2.3e-6 for
o=1e-6. Interested readers are referred to [18] for a comprehensive survey of the
original Nelder-Mead simplex algorithm and for its advantages and disadvantages.
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6 Applications to hemodynamics

In the following, we consider the numerical simulation of special problems encoun-
tered in the area of cardiovascular hemodynamics, namely flow interaction with
thick-walled deformable material (here: the arterial walls) and rigid parts (here:
stents), which can become a useful tool for deeper understanding of the onset
of diseases of the human circulatory system, as for example blood cell and inti-
mal damages in stenosis, aneurysm rupture, evaluation of new surgery techniques
of the heart, arteries and veins (see [2, 19, 34] and the literature cited therein).
In this contribution, prototypical studies are performed for brain aneurysms. The
word ‘aneurysm’ comes from the latin word aneurysma which means dilatation.
An aneurysm is a local dilatation in the wall of a blood vessel, usually an artery,
due to a defect, disease or injury. Typically, as the aneurysm enlarges, the arterial
wall becomes thinner and eventually leaks or ruptures, causing subarachnoid hem-
orrhage (SAH) (bleeding into brain fluid) or formation of a blood clot within the
brain. In the case of a vessel rupture, there is a hemorrhage, which is particularly
rapid and intense in case of an artery. In arteries the wall thickness can be up to 30%
of the diameter and its local thickening can lead to the creation of an aneurysm. The
aim of numerical simulations is to relate the aneurysm state (unrupture or rupture)
with wall pressure, wall deformation and effective wall stress. Such a relationship
would provide information for the diagnosis and treatment of unruptured and rup-
tured aneurysms by elucidating the risk of bleeding or rebleeding, respectively.

Fig. 6 Left: Real view of aneurysm. Right: Schematic drawing of the mesh.

As a typical example for the related CFD simulations, a real view is provided
in Fig. 6 which also contains the automatically extracted computational domain and
(coarse) mesh in 2D, however without stents. In order to use the proposed numerical
methods for aneurysm hemodynamics, in a first step only simplified two-dimension-
al examples, which however include the interaction of the flow with the deformable
material, are considered. Flow through a deformable vein with elastic walls of a
brain aneurysm is simulated to analyze qualitatively the described methods; here,
the flow is driven by prescribing the flow velocity at the inflow section (Poiseuille
flow) while the solid part of the boundary is either fixed or stress-free. Both ends of
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the walls are fixed, and the flow is driven by a periodical change of the inflow at the
right end.

6.1 Geometry of the problem

For convenience, the geometry of the fluid domain under consideration is currently
based on simplified 2D models, see Fig. 7, which allows to concentrate on the de-
tailed qualitative evaluation of our approach based on the described monolithic ALE
formulation. The underlying construction of the (2D) shape of the aneurysm can be
explained as follows:

The bent blood vessel is approximated by quarter circles around the origin.
The innermost circle has the radius 6mm, the next has 8mm, and the last one has
8.25mm.

o This results in one rigid inner wall and an elastic wall between 8mm and 8.25mm
of thickness 0.25mm.

pasom

o
- o
“,‘4‘“‘““
““:“"“«"‘
SIS

(P
// /

oZamin 2

Fig. 7 Left: Schematic drawing of the measurement section. Middle: Mesh without stents (776
elements). Right: Mesh with stents (1431 elements) which are part of the simulations.

The aneurysm shape is approximated by two arcs and lines intersecting the arcs
tangentially. The midpoints of the arcs are the same (—6.75;6), they have the radius
1.125mm and 1.25mm. They are intersected tangentially by lines at angular value
1.3 radians. This results in a wall thickness of 0.125mm for the elastic aneurysm
walls (see Fig. 7). The examined stents are of circular shape, placed on the neck of
the aneurysm, and we use three, respectively five stents (simplified ‘circles’ in 2D
as cutplanes from 3D configurations) of different size and position. Such stents (in
real life) are typically used to keep arteries open and are located on the vessel wall
while ‘our’ (2D) stent is located only near the aneurysm (Fig. 7). The purpose of
this device is to reduce the flux into and within the aneurysm in order to occlude it
by a clot or rupture.
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6.2 Boundary and initial conditions

The (steady) velocity profile, to flow from the right to the left part of the channel, is
defined as parabolic inflow, namely

v/ (0,y)=U(y—6)(y—8). (29)

Correspondingly, the pulsatile inflow profile for the nonsteady tests for which peak
systole and diastole occur for Ar = 0.25s and Ar = 0.75s respectively, is prescribed
as

v/ (1,0,y) = v/ (0,y)(140.75sin(27t)). (30)

The natural outflow condition at the lower left part effectively prescribes some ref-
erence value for the pressure variable p, here p = 0. While this value could be
arbitrarily set in the incompressible case, in the case of a compressible structure this
might have influence on the stress and consequently the deformation of the solid.
The no-slip condition is prescribed for the fluid on the other boundary parts, i.e. top
and bottom wall, stents and fluid-structure interface.

6.3 Numerical results

The Newtonian fluid used in the tests has a density p/ = 1.035 x 10~%kg/mm?> and
a kinematic viscosity v/ = 3.38mm? /s which is similar to the properties of blood.
If we prescribe the inflow speed U = —50mm/s, this results in a Reynolds num-
ber Re ~ 120 based on the prescribed peak systole inflow velocity and the width
of the veins which is 2mm such that the resulting flow is within the laminar region.
Parameter values for the elastic vein in the described model are as follows: The
density of the upper elastic wall is p* = 1.12 x 10~%kg/mm?>, solid shear modulus is
u'= 42.85kg/mms2, Poisson ratio is V¥ = 0.4, Young modulus is E = 120kN/mm2.
As described before, the constitutive relations used for the materials are the incom-
pressible Newtonian model (2) for the fluid and a hyperelastic Neo-Hooke material
for the solid. This choice includes most of the typical difficulties the numerical
method has to deal with, namely the incompressibility and significant deformations.

From a medical point of view, the use of stents provides an efficient treatment
for managing the difficult entity of intracranial aneurysms. Here, the thickness of
the aneurysm wall is attenuated and the aneurysm hemodynamics changes signifi-
cantly. Since the purpose of this device is to control the flux within the aneurysm in
order to occlude it by a clot or rupture, the resulting flow behavior into and within
the aneurysm is the main objective, particularly in view of the different stent ge-
ometries. Therefore, we decided for the 2D studies to locate the stents only in direct
connection to the aneurysm.

Comparing our studies with the CFD literature (see [2, 9, 27, 28, 34]), several
research groups focus on CFD simulations with realistic 3D geometries, but typi-
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cally assuming rigid walls. In contrast, we concentrate on the complex interaction
between elastic deformations and flow perturbations induced by the stents. At the
moment, we are only able to perform these simulations in 2D. However, with these
studies we should be able to analyze qualitatively the influence of geometrical de-
tails onto the elastic material behavior, particularly in view of more complex blood
models and constitutive equations for the structure. Therefore, the aims of our cur-
rent studies can be described as follows:

1. What is the influence of the elasticity of the walls onto the flow behavior inside
the aneurysm, particularly w.r.t. the resulting shape of the aneurysm?

2. What is the influence of the geometrical details of the (2D) stents, that means
shape, size, position, on the flow into and inside the aneurysm?

3. Do both aspects, small-scale geometrical details as well as elastic fluid-structure
interaction, have to be considered simultaneously or is one of them negligible in
first order approximation?

4. Are modern numerical methods and corresponding CFD simulation tools able to
simulate qualitatively the multiphysics behavior of such biomedical configura-
tions?

In the following, we show some corresponding results for the described prototypical
aneurysm geometry, first for the steady state inflow profile, followed by nonsteady
tests for the pulsatile inflow, both with rigid and elastic walls, respectively.

6.3.1 Steady configurations

Due to the given inflow profile, which is not time-dependent, and due to the low
Reynolds numbers, the flow behavior leads to a steady state which only depends on
the elasticity and the shape of the stents. Moreover, for the following simulations,
we only treat the aneurysm wall as elastic structure. Then, the aneurysm undergoes
some slight deformations which can hardly be seen in the following figures. How-
ever, they result in a different volume of the flow domain (see Fig. 9) and lead to
a significantly different local flow behavior since the spacing between stents and
elastic walls may change (see Figure 8).



22 S. Turek, J. Hron, M. Madlik, M. Razzaq, H. Wobker, and J. F. Acker

Cell Vect
Magnitude
B Cell Vect
Magnitude
2—
40— |
15—
30—
1—
20—
0.5—
10— |
o—|
0—|
Cell Vect
~ Magnitude
50—
Cell Vect
Magnitud
a0- ;*'_"|"'
30— 15—
20— ™
10— 05—
0 |
o
Cell Vect
Magnitude
50—
Cell Vect
Magnitude
40— —
30— 15—
1—
20—
10—, 05—
0! o—|
Cell Vect
« Magnitude
50—
Cell Vect
Magnitude
40— £ 2—'
30— o 5—
20—
10—
o—|

Fig. 8 Magnitude of the blood flow velocity for four configurations. Top to bottom: Rigid walls
without stents, elastic walls without stents, rigid walls with stents, elastic walls with stents. Left:
Overall view. Right: Scaled view of the aneurysm.
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Fig. 9 Resulting volume of the fluid domain for different configurations.

In Figure 11, we visualize the different flow behavior by coloring corresponding
to the velocity magnitude and by showing corresponding vector plots inside the
aneurysm. Particularly the influence of the number of stents on the complete fluid
flow through the channel including the aneurysm can be clearly seen.

Summarizing these results for steady inflow, the simulations show that the stent
implantation across the neck of the aneurysm prevents blood penetration into the
aneurysm fundus. Moreover, the elastic geometrical deformation of the wall is
slightly reduced by implanting the stents while the local flow behavior inside the
aneurysm is more significantly influenced by the elastic properties of the outer wall,
particularly due to different width between stents and walls of the aneurysm. In the
next section, we will consider the behaviour of more realistic flow configurations
with time-dependent pulsatile inflow which will be analyzed for the case of elastic
behaviour of the aneurysm walls.

6.3.2 Pulsatile configurations

For the following pulsatile test case, we have taken again the aneurysm part as elastic
while the other parts of the walls belonging to the channel are rigid. First of all, we
show again (see Fig. 10) the resulting volume of the flow domain for five, three and
no stents. In all cases, the oscillating behavior due to the pulsatile inflow is visible
which also leads to different volume sizes. Looking carefully at the resulting flow
behavior, we see differences w.r.t. the channel flow near the aneurysm, namely due
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to the different flow rate into the aneurysm, and significant local differences inside
the aneurysm.

26.63 T T T T T
no stents, elastic fundus
3 stents, elastic fundus
5 stents, elastic fundus --
26.62 rigid walls |
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Fig. 10 Domain volume with rigid and elastic behavior of the aneurysm wall.
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Fig. 11 Left column: no stent. Middle column: three stents. Right column: five stents. Figures

demonstrate the local behavior of the fluid flow inside the aneurysm during one cycle.
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6.3.3 Extension to 3D

Finally, we show first results of extending the monolithic formulation to 3D. A sim-
ilar problem of pulsatile flow in an elastic tube with an aneurysm-like cavity is
solved. The material parameters are the same as in the previous section and the
resulting deformation and flow field at different times are shown in Figure 12.

Fig. 12 Pulsatile fluid flow through an elastic tube with cavity. Flow field represented by velocity
vectors and velocity magnitude at different times.

7 Summary and future developments

We presented a monolithic ALE formulation of fluid-structure interaction problems
suitable for applications with large structural deformations and laminar viscous
flows, particularly arising in biomechanics. The corresponding discrete nonlinear
systems result from the finite element discretization by using the high order O, P,
FEM pair. The systems are solved monolithically via a discrete Newton iteration
and special Krylov-multigrid approaches.

While we restricted our studies to the simplified case of Newtonian fluids and
small deformations, the used numerical components allow the system to be coupled
with additional models of chemical and electric activation of the active response of
the biological material as well as power law models used to describe the shear thin-
ning property of blood. Further extension to viscoelastic models and coupling with
mixture based models for soft tissues together with chemical and electric processes
allow to perform more realistic simulations for real applications.
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We applied the presented numerical techniques to FSI benchmarking settings
(‘channel flow around cylinder with attached elastic beam’, see [30]) which allow
the validation and also evaluation of different numerical solution approaches for
fluid-structure interaction problems. Moreover, we examined prototypically the in-
fluence of endovascular stent implantation on aneurysm hemodynamics. The aim
was, first of all, to study the influence of the elasticity of the walls on the flow be-
havior inside the aneurysm. Moreover, different geometrical configurations of im-
planted stent structures have been analyzed in 2D. These 2D results are far from pro-
viding quantitative results for such a complex multiphysics configuration, but they
allow a qualitative analysis w.r.t. both considered components, namely the elastic
behavior of the structural parts and the multiscale flow behavior due to the geo-
metrical details of the stents. We believe that such basic studies are helpful for the
development of future ‘Virtual Flow Laboratories’ which individually assist to de-
sign personal medical tools.
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